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Abstract. Detecting vascular lesions is an important task in the diag-
nosis and follow-up of the coronary heart disease. While most existing
solutions tackle calcified and non-calcified plaques separately, we present
a new algorithm capable of detecting both types of lesions in CT images.
It builds up on a semi-supervised classification framework, in which the
training set is made of both unlabeled data and a small amount of data
labeled as normal. Our method takes advantage of the arrival of newly
acquired data to re-train the classifier and improve its performance. We
present results on synthetic data and on datasets from 15 patients. With
a small amount of labeled training data our method achieved a 89.8%
true positive rate, which is comparable to state-of-the-art supervised
methods, and the performance can improve after additional iterations.

1 Introduction

As the evaluation of coronary lesions is challenging and tedious, and acquiring
moderate expertise in coronary CT angiography (CTA) may take more than
one year [1], a variety of methods has been proposed to perform this detection
automatically. Most of the algorithms have been directed towards abnormality
modeling, i.e. identifying the particularities of lesions. As the latter are hetero-
geneous by nature, and obtaining a model that copes with all possible abnormal-
ities is difficult, most approaches have tackled the segmentation of one type of
lesion: calcified plaques [2] or soft plaques [3]. However, these methods often rely
on different image acquisition techniques for each task (e.g. non-enhanced CT
for calcium quantification, contrast-enhanced CT for lumen segmentation and
Dual-Source CT for soft plaque locating), which makes it difficult to combine
them, in order to simultaneously tackle the automated detection of both types
of plaques. Recently, a novel family of methods has made use of machine learn-
ing techniques to simultaneously detect the different forms of lesions [4]. Since
such methods use supervised classification schemes, the set of examples used
for training has to be highly reliable. Unfortunately, it is very expensive to col-
lect labeled data that are accurate, as well as representative of all types of lesions.
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A first attempt to use an unsupervised scheme has been proposed in [5]. However,
it failed to distinguish bifurcations from actual lesions.

To overcome these shortcomings, here we propose to use a semi-supervised
classification scheme that focuses in the healthy vessel sections. It permits both
calcified and non-calcified lesions to be identified as the complement of the
healthy sections. To do so, we introduced a classification algorithm belonging
to a family named Learning from only Positive and Unlabeled data (LPU). Only
a relatively small amount of healthy sections must be provided at the learning
stage of this algorithm. Its use to identify vascular lesions is novel to the best of
our knowledge. We also proposed a strategy that exploits new data that daily
arrive in a clinical environment, in order to refine the learning and thus improve
the classification performance. Our software has been made publicly available1.

2 Method

In the context of lesion identification, classification methods try to differentiate
between two main classes: the healthy and the diseased one. However, while the
appearance of healthy vascular sections does not vary much, the appearance of
the diseased ones may show a large variability. In other words, the healthy class
is likely to form a dense cluster in the feature space, while the diseased class
is represented by sparse points rather than by a cluster. Moreover, we consider
that obtaining reliable labels of only healthy vessel sections is an easier task than
obtaining representative examples of all types of diseased vessels. Based on these
two statements, we addressed the vascular lesion identification through an LPU
framework using support vector machines (SVM) [6]. Such an algorithm can be
applied to the problems where the training input data is made up of labeled
samples (the healthy class) and a large amount of unlabeled samples coming
from the mixture (healthy and diseased samples).

2.1 Learning from Only Positive and Unlabeled Samples

Let Q = (q1, ..., qk), qi ∈ X be a collection of samples generated according to
a probability distribution Pq and X = (x1, ..., xn), xi ∈ X a set generated ac-
cording to a probability distribution Px. The goal is to identify the elements
of X that are similar to the elements of Q. It is assumed that elements in Q
belong to a particular class (our healthy class), and that elements belonging to
X are actually formed by two different distributions. Some are generated by Pq

(healthy samples) and the rest (the diseased samples) by another process Pother .
Therefore, Px is a mixture distribution:

Px = βPq + (1 − β) Pother where 0 < β < 1. (1)

Porter et al. [6] have defined a relative content density function p that can be used
as a similarity measure to quantify the relative concentration of Pq with respect

1 http://www.creatis.insa-lyon.fr/software/public/DLDalgorithms/

http://www.creatis.insa-lyon.fr/software/public/DLDalgorithms/
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Table 1. The LPU algorithm

Input : Q set- Samples of healthy vessel cross-sections

Input : X set- Samples of unlabeled vessel cross-sections

1 : Assign y=1 labels to Q

2 : Assign y=-1 labels to X

3 : Assign the y=1 class weight of a SVM to 2β
4 : Assign the y=-1 class weight of a SVM to 1-2β
5 : Train the SVM

Select f that minimizes R(f)
6 : Classify samples in X using the trained model M

Output : Classified X samples

to Px, and which is given by the Radon-Nikodym derivative p = dPq/dPx. Given
a threshold ρ, the set {x ∈ X : p(x) > ρ} contains samples that are more likely
to be generated by Pq than by Pother.

The latter problem can be solved as a density level detection problem, where
a function f is constructed so that it approximates the set {p > ρ} by means of
the set {f > 0}. Steinwart et al. [7] have proposed a risk function R that can
be estimated from sample data, and serves as a criterion to assess the quality of
the approximation of {p > ρ} by {f > 0}:

R(f) =
2β

1 + 2β

1
|Q|

∑

x∈Q

I(f(x) ≤ 0) +
1

1 + 2β

1
|X |

∑

x∈X

I(f(x) > 0), (2)

where ρ = 1
2β , I(·) = 1 if the argument is true and 0 otherwise.

The main advantage of defining such a risk function R is that it allows us
to use a SVM in order to choose a function f that minimizes R [7]. For this
purpose, a surrogate problem is constructed by automatically assigning labels
y to the available data. The required steps to build the surrogate problem and
solve the LPU algorithm are outlined in Table 1.

Let us note however, that the LPU formulation is theoretically valid in the
infinite sample limit, i.e. |X | = ∞. Additionally, the problem we tackle is highly
unbalanced, i.e the cardinality of one class is much larger than that of the other
one (in our case, this corresponds to a true ρ value close to 1). With unbalanced
classes most learning methods tend to favor a response that assigns all samples
to one class, which can worsen when combined with finite sample effects. Since
infinite samples cannot be achieved, it is at least desired that |X | � |Q|.

2.2 LPU in a Clinical Environment

In the LPU formulation unlabeled data makes part of the training set. This
key difference w.r.t. supervised classification approaches is an advantage in two
aspects. First, the training set can be easily augmented since no labels are re-
quired for the X set. Second, it is desirable and feasible to increase the training
set without great risk of overfitting.
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Fig. 1. LPU in a clinical environment. Positive samples are those identified as healthy
(either by the algorithm or an expert), negative ones are those classified as diseased,
and unlabeled ones are samples that belong to the X set before classification.

Based on this key feature, we proposed to progressively increase the two sets
that make up the training data set: the addition of samples to Q aimed at nor-
mality description improvement, whereas the increase of X kept the relation
|X | � |Q| and reduced the finite sample effect. Consequently, we suggested to
periodically re-train the model M after new data incorporation, instead of keep-
ing it static. Our proposal suits the clinical data workflow where new unlabeled
data arrive daily. Moreover, no additional labeling is required to exploit the ar-
riving data. The algorithm (Fig. 1) starts with an initial pair of sets, unlabeled
data X1 and (manually) labeled data Q1, then it iterates as follows:

1. Training: A pair of sets Qi and Xi is used to train a model Mi.
2. Classification: The model Mi is used to label the data from Xi. A clinician

validates the labels corresponding to actual lesions (subset denoted X−
i ).

3. Set increase: This step is performed for both Q and X sets.
(a) Among the samples that the clinician did not consider as lesions (subset

denoted X+
i ) a sub-subset X̌+

i is randomly removed from the set Xi and
combined with the set Qi to build up the increased set Qi+1 = Qi ∪ X̌+

i .
(b) At the arrival of newly acquired data, this is combined with the subset

Xi \ X̌+
i to make up the increased set Xi+1.

4. Loop: The algorithm jumps to the step 1 in order to obtain a new refined
model Mi+1 by using the increased sets Qi+1 and Xi+1 for training. For this
purpose, the labels previously assigned to Xi are considered as unavailable.

2.3 Features

To select the features that fit our problem we followed some of the guidelines
in [8]. We used a combination of metrics that are able to capture both the circular
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shape with radially decreasing intensity profiles of healthy vessel cross-sections,
and the divergence from such typical patterns. However, we used a different
selection strategy based on the empirical risk R minimization. Four metrics cal-
culated in cross-sections orthogonal to the vessel centerline (Concentric rings [5],
Core, Hessian eigenvalues and Flux [9]) were kept.

3 Experiments and Results

The LPU algorithm was solved using the LIBSVM software [10] with a Gaussian
radial basis function (RBF) kernel. The SVM regularization term λ and the σ2

parameter of the RBF kernel were optimized through a grid search. Different
β ∈ [0.1, 0.2, ...0.80, 0.81, 0.82, .., 0.98, 0.99] values were tested. The selection of
the optimal β value was included in the optimization process. For every {λ, σ, β}
combination, the empirical risk R associated with f , was calculated according
to Equation 2. The learned decision function f , minimizing the empirical risk,
was applied on the X set to evaluate the performance of the method.

We first evaluated our method on synthetic images with known ground truth.
We then applied it to 3D cardiac CT data sets, where lesions had been annotated
by an expert for the purpose of evaluation only. In our experiments, lesion detec-
tion was evaluated using three measures: true positive rate TPR = TP

TP+FN , true
negative rate TNR = TN

TN+FP and balanced error rate BER = 1 − TPR+TPN
2 .

Here TP denotes the number of correctly classified diseased cross-sections, TN
the number of correctly classified healthy cross-sections, while FP and FN re-
spectively are the numbers of falsely classified healthy and diseased cross-section.
We preferred the use of BER instead of the commonly used accuracy, since the
latter is not very meaningful in highly unbalanced problems as the one we tackle.

3.1 Synthetic Data

We first evaluated the performance of our method on 70 artificially generated
volumes containing a variety of cases typically encountered in vascular analysis.
Phantoms were created using the typical Hounsfield Unit values that are found in
CT images for blood, background and plaque components, as well as the typical
image dimensions and voxel size. Gaussian noise was also added, resulting in a
contrast-to-noise-ratio value of 10.

To demonstrate the effectiveness of the iterative increase of the training set,
we simulated five iterations. The cardinality (|Q|, |X |) at each iteration was as
follows: (500, 15000), (1000, 19000), (1200, 22000), (1300, 22000), (1600, 23000).
A sixth case aimed at illustrating the situation, where the condition |X | � |Q|
is broken, with (|Q|, |X |) = (1600, 2000).

The LPU algorithm had a good performance in terms of TPR, which is de-
sirable for disease detection (Fig. 2). As more samples were included in the sets,
the TNR improved. Since the TPR remained unchanged, the total error (BER)
decreased. The 6-th case confirmed the expected poor performance of LPU when
the condition |X | � |Q| is broken.
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Fig. 2. Evolution of TNR, TPR and BER as a consequence of the modification of Q
and X datasets. Left, 5 iterations in synthetic data, and a 6-th case, where |X| � |Q|
does not hold. Right, 13 iterations using patient data. Final TNR, TPR and BER values
were 86.7%, 83.8% and 14.2%, respectively.

3.2 Patient Data

Fifteen cardiac CT datasets, with centerlines available in a total of 53 arteries,
were obtained from two different sources: Hôpital Louis Pradel (Bron, France)
and Rotterdam Coronary Artery Algorithm Evaluation Framework [11], the lat-
ter containing data acquired at the Erasmus Medical Center (Rotterdam, The
Netherlands). Cross-sections orthogonal to the centerlines were calculated, from
which the required features were extracted. Additionally, each cross-section was
labeled as normal or abnormal by an observer. These annotations were used
to evaluate the performance of the classifier and a small percentage of anno-
tated normal cross-sections were used to build up the initial set Q1. At the first
iteration, we used normal data from a healthy subject (|Q1| = 426) and unla-
beled cross-sections (|X1| = 1148) from two patients. Due to a limited amount
of annotated data available for evaluation, only one patient was added at every
new iteration. This allows us to demonstrate the behavior of our method in real
data, although in clinical practice several patients may arrive daily. At the final
iteration, the cardinalities of the sets were: |Q13| = 886, |X13| = 12180.

The evolution of the TNR, TPR and BER as a function of the iterations is
presented in Figure 2. Similarly to the synthetic data, the error decreased as new
samples were added to Q and X . LPU showed a tendency to overestimate the
lesions, possibly because the number of labeled samples |Q| = 886 used for train-
ing was not yet sufficiently representative of all normal configurations. However,
despite a small number of training data, the TNR increased from 0.53 to 0.86 as
new samples were added, i.e. the false alarm rate (1-TNR) decreased from 0.47
to 0.14. From the tendency of TPR, TNR and BER (Fig. 2), we believe that le-
sion overestimation can be reduced by using LPU with an increased training set.
Figure 3 shows examples of classified cross-sections in several coronary arteries.

The same definition of TP has been used in [5], so a direct comparison of
the results can be done. In that work, a TPR=0.860 and TNR=0.812 have been
reported. From this information we have computed the BER=0.164. While, our
new proposal gives a lower TPR=0.838, it has a higher TNR=0.867 that can be
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Fig. 3. Lesion detection results. Color-coded labels on a stretched curved planar
reformatted view of different coronary arteries.

explained by the fact that our novel method does not misclassify bifurcations,
contrary to the one in [5]. Our lower BER=0.142 confirms that our overall perfor-
mance is better. Another related work [4] lacks a clear definition of the evaluation
measurement unit, making direct comparison uneasy. Their evaluation has been
performed in terms of detected lesions, i.e. a lesion is correctly detected (TP) if
at least one cross-section within the extent of the lesion is detected as diseased.
The available information permitted us to compute their TPR=0.890. Using the
latter definition of TP, our approach gave a slightly better TPR=0.898.

4 Conclusions

We proposed a new semi-supervised algorithm to detect coronary artery lesions
in CTA images. The method can achieve a high detection rate (TPR) even when
a small amount of labeled training data is available. Its false alert rate (1-TNR)
can be substantially reduced by increasing the training set, as new data arrive
and new normal samples are validated. The improvement is guaranteed since
adding new samples reduces the finite sample problem. However, recovery is
not guaranteed if the user erroneously validates misclassified samples. The com-
putational time increases with the size of the sets Q and X . After a number
of iterations, the classification error may not significantly decrease despite the
inclusion of additional samples. Therefore, the optimal trade-off between com-
putational time and capacity of improvement is to be carefully evaluated. Let
us note that the LPU formalism uses only one type of labels (here ’normal’) to
train the classifier. It is not straightforward to use the diseased samples correctly
labeled in previous iterations, in order to train the model in the next iterations.
Future work should attempt to overcome this limitation.
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