
JMLR: Workshop and Conference Proceedings 25:427–442, 2012 Asian Conference on Machine Learning

Learning From Ordered Sets and Applications in

Collaborative Ranking

Truyen Tran†‡
truyen.tran@deakin.edu.au

Dinh Phung† dinh.phung@deakin.edu.au

Svetha Venkatesh†
svetha.venkatesh@deakin.edu.au

†Pattern Recognition and Data Analytics, Deakin University, Waurn Ponds, Vic 3216, Australia.
‡Department of Computing, Curtin University, Bentley, WA 6102, Australia

Editor: Steven C.H. Hoi and Wray Buntine

Abstract

Ranking over sets arise when users choose between groups of items. For example, a group
may be of those movies deemed 5 stars to them, or a customized tour package. It turns
out, to model this data type properly, we need to investigate the general combinatorics
problem of partitioning a set and ordering the subsets. Here we construct a probabilistic
log-linear model over a set of ordered subsets. Inference in this combinatorial space is
highly challenging: The space size approaches (N !/2)6.93145N+1 as N approaches infinity.
We propose a split-and-merge Metropolis-Hastings procedure that can explore the state-
space efficiently. For discovering hidden aspects in the data, we enrich the model with latent
binary variables so that the posteriors can be efficiently evaluated. Finally, we evaluate
the proposed model on large-scale collaborative filtering tasks and demonstrate that it is
competitive against state-of-the-art methods.

Keywords: Ordered sets, ranking with ties, split-merge, MCMC, latent models, Boltz-
mann machines, collaborative filtering

1. Introduction

Rank data has recently generated a considerable interest within the machine learning com-
munity, as evidenced in ranking labels (Dekel et al., 2003; Vembu and Gärtner, 2010) and
ranking data instances (Cohen et al., 1999; Weimer et al., 2008). The problem is often
cast as generating a list of objects (e.g., labels, documents) which are arranged in decreas-
ing order of relevance with respect to some query (e.g., input features, keywords). The
treatment effectively ignores the grouping property of compatible objects (Wagstaff et al.,
2010). This phenomenon occurs when some objects are likely to be grouped with some
others in certain ways. For example, a grocery basket is likely to contain a variety of goods
which are complementary for household needs and at the same time, satisfy weekly budget
constraints. Likewise, a set of movies are likely to given the same quality rating according
to a particular user. In these situations, it is better to consider ranking groups instead of
individual objects. It is beneficial not only when we need to recommend a subset (as in the
case of grocery shopping), but also when we just want to produce a ranked list (as in the
case of watching movies) because we would better exploit the compatibility among grouped
items.

c© 2012 T. Tran, D. Phung & S. Venkatesh.

Tran Phung Venkatesh

This poses a question of how to group individual objects into subsets given a list of all
possible objects. Unlike the situation when the subsets are pre-defined and fixed (e.g.,
sport teams in a particular season), here we need to explore the space of set partitioning
and ordering simultaneously. In the grocery example we need to partition the stocks in the
store into baskets and then rank them with respect to their utilities; and in the movie rating
example we group movies in the same quality-package and then rank these groups according
to their given ratings. The situation is somewhat related to multilabel learning, where our
goal is to produce a subset of labels out of many for a given input, but it is inherently more
complicated: not only we need to produce all subsets, but also to rank them.

This paper introduces a probabilistic model for this type of situations, i.e., we want to
learn the statistical patterns from which a set of objects is partitioned and ordered, and
to compute the probability of any scheme of partitioning and ordering. In particular, the
model imposes a log-linear distribution over the joint events of partitioning and ordering.
It turns out, however, that the state-space is prohibitively large: If the space of complete
ranking has the complexity of N ! for N objects, then the space of partitioning a set and
ordering approaches (N !/2)6.93145N+1 in size as N approaches infinity (Mureşan, 2008, pp.
396–397). Clearly, the latter grows much faster than the former by an exponential factor
of 6.93145N+1. To manage the exploration of this space, we design a split-and-merge

Metropolis-Hastings procedure which iteratively visits all possible ways of partitioning and
ordering. The procedure randomly alternates between the split move, where a subset is
split into two consecutive parts, and the merge move, where two consecutive subsets are
merged. The proposed model is termed Ordered Sets Model (OSM).

To discover hidden aspects in ordered sets (e.g., latent aspects that capture the taste of
a user in his or her movie genre), we further introduce binary latent variables in a fashion
similar to that of restricted Boltzmann machines (RBMs) (Smolensky, 1986). The posteriors
of hidden units given the visible rank data can be used as a vectorial representation of the
data - this can be handy in tasks such as computing distance measures or visualisation.
This results in a new model called Latent OSM.

Finally, we show how the proposed Latent OSM can be applied for collaborative filtering,
e.g., when we need to take seen grouped item ratings as input and produce a ranked list
of unseen item for each user. We then demonstrate and evaluate our model on large-scale
public datasets. The experiments show that our approach is competitive against several
state-of-the-art methods.

The rest of the paper is organised as follows. Section 2 presents the log-linear model over
ordered sets (OSM) together with our main contribution – the split-and-merge procedure.
Section 3 introduces Latent OSM, which extends the OSM to incorporate latent variables
in the form of a set of binary factors. An application of the proposed Latent OSM for
collaborative filtering is described in Section 4. Related work is reviewed in the next section,
followed by the conclusions.

2. Ordered Set Log-linear Models

2.1. General Description

We first present an intuitive description of the problem and our solutions in modelling,
learning and inference. Fig. 1(a) depicts the problem of grouping items into subsets (repre-

428

Learning From Ordered Sets

(a) OSM (b) (c)

Figure 1: (a) Ordered Set Model; (b) the split operator; and (c) the merge operator. The
figure in (c) represents the result of a merge of the middle two subsets in (b).
Conversely, the (b) figure can be considered as result of a splitting the middle
subset of the (c) figure. Arrows represent the preference orders, not the causality
or conditioning.

sented by a box of circles) and ordering these subsets (represented by arrows which indicate
the ordering directions). This looks like a high-order Markov chain in a standard setting,
and thus it is tempting to impose a chain-based distribution. However, the difficulty is
that the partitioning of set into subsets is also random, and thus a simple treatment is not
applicable. Recently, Truyen et al (2011) describe a model in this direction with a careful
treatment of the partitioning effect. However, their model does not allow fast inference
since we need to take care of the high-order properties.

Our solution is as follows. To capture the grouping and relative ordering, we impose on
each group a subset potential function capturing the relations among compatible elements,
and on each pair of subsets a ordering potential function. The distribution over the space of
grouping and ordering is defined using a log-linear model, where the product of all potentials
accounts for the unnormalised probability. This log-linear parameterization allows flexible
inference in the combinatorial space of all possible groupings and orderings.

In this paper inference is carried out in a MCMC manner. At each step, we randomly
choose a split or a merge operator. The split operator takes a subset at random (e.g.,
Fig. 1(c)) and uniformly splits it into two smaller subsets. The order between these two
smaller subset is also random, but their relative positions with respect to other subsets
remain unchanged (e.g., Fig. 1(b)). The merge operator is the reverse (e.g., converting
Fig. 1(b) into Fig. 1(c)). With an appropriate acceptance probability, this procedure is
guaranteed to explore the entire combinatorial space.

Armed with this sampling procedure, learning can be carried out using stochastic gradient
techniques (Younes, 1989).

2.2. Problem Description

Given two objects xi and xj , we use the notation xi ≻ xj to denote the expression of
xi is ranked higher than xj , and xi ∼ xj to denote the between the two belongs to the
same group. Furthermore, we use the notation of X = {x1, x2, . . . , xN} as a collection of N
objects. Assume that X is partitioned into T subsets {Xt}

T
t=1. However, unlike usual notion

of partitioning of a set, we further posit an order among these subsets in which members of
each subset presumably share the same rank. Therefore, our partitioning process is order-

429

Tran Phung Venkatesh

sensitive instead of being exchangeable at the partition level. Specifically, we use the indices
1, 2, ..., T to denote the decreasing order in the rank of subsets. These notations allow us
to write the collection of objects X = {x1, . . . , xN} as a union of T ordered subsets:1

X = X1
⋃

X2 . . .
⋃

XT (1)

where {Xt}
T
t=1 are non-empty subsets of objects so that xi ∼ xj , ∀xi, xj ∈ Xt i 6= j, ∀t.

As a special case when T = N , we obtain an exhaustive ordering among objects wherein
each subset has exactly one element and there is no grouping among objects. This special
case is equivalent with a complete ranking scenario. To illustrate the complexity of the
problem, let us characterise the state-space, or more precisely, the number of all possible
ways of partitioning and ordering governed by the above definition. Recall that there
are s (N,T) ways to divide a set of N objects into T partitions, where s (N,T) denotes
the Stirling numbers of second kind (van Lint and Wilson, 1992, p. 105). Therefore, for
each pair (N,T), there are s (N,T)T ! ways to perform the partitioning with ordering.
Considering all the possible values of T give us the size of our model state-space:

N
∑

T=1

s (N,T)T ! = Fubini (N) =
∑∞

k=1
kN

2k+1 (2)

which is also known in combinatorics as the Fubini’s number (Mureşan, 2008, pp. 396–397).
This number grows super-exponentially and it is known that it approachesN !/(2 (log 2)N+1)
as N → ∞ (Mureşan, 2008, pp. 396–397). Taking the logarithm, we get logN ! − (N +
1) log log 2− log 2. As log log 2 < 0, this clearly grows faster than logN !, which is the log of
the size of the standard complete permutations.

2.3. Model Specification

Denote by Φ(Xt) ∈ R
+ a positive potential function over a single subset2 Xt and by Ψ(Xt ≻

Xt′) ∈ R
+a potential function over a ordered pair of subsets (Xt, Xt′) where t < t′. Our

intention is to use Φ(Xt) to encode the compatibility among all member of Xt, and Ψ(Xt ≻
Xt′) to encode the ordering properties between Xt and Xt′ . We then impose a distribution
over the collection of objects as:

P (X) =
1

Z
Ω(X), where Ω(X) =

∏

t

Φ(Xt)
∏

t′>t

Ψ(Xt ≻ Xt′) (3)

and Z =
∑

X Ω(X) is the partition function. We further posit the following factorisation
for the potential functions:

Φ(Xt) =
∏

i,j∈Xt|j>i

ϕ(xi ∼ xj); Ψ(Xt ≻ Xt′) =
∏

i∈Xt

∏

j∈Xt′

ψ(xi ≻ xj) (4)

where ϕ(xi ∼ xj) ∈ R
+ captures the effect of grouping, and ψ(xi ≻ xj) ∈ R

+ captures
the relative ordering between objects xi and xj . Hereafter, we shall refer to this proposed
model as the Ordered Set Model (OSM).

1. Alternatively, we could have proceeded from the permutation perspective to indicate the ordering of the
subsets, but we simplify the notation here for clarity.

2. In this paper, we do not consider the case of empty sets, but it can be assumed that φ(∅) = 1.

430

Learning From Ordered Sets

2.4. Split-and-Merge MCMC Inference

In order to evaluate P (X) we need to sum over all possible configurations of X which is
in the complexity of the Fubini(N) over the set of N objects (cf. Section 2.2, Eq. 2). We
develop a Metropolis-Hastings (MH) procedure for sampling P (X). Recall that the MH
sampling involves a proposal distribution Q that allows drawing a new sample X ′ from the
current state X with probability Q(X ′|X). The move is then accepted with probability

Paccept = min {1, l × p} , where l =
P (X ′)

P (X)
=

Ω(X ′)

Ω(X)
and p =

Q(X|X ′)

Q(X ′|X)
(5)

To evaluate the likelihood ratio l we use the model specification defined in Eq (3). We then
need to compute the proposal probability ratio p. The key intuition is to design a random
local move from X to X ′ that makes a relatively small change to the current partitioning
and ordering. If the change is large, then the rejection rate is high, thus leading to high
cost (typically the computational cost increases with the step size of the local moves). On
the other hand, if the change is small, then the random walks will explore the state-space
too slowly.

We propose two operators to enable the proposal move: the split operator takes a non-
singleton subset Xt and randomly splits it into two sub-subsets {X1

t , X
2
t }, where X2

t is
inserted right next to X1

t ; and the merge operator takes two consecutive subsets {Xt, Xt+1}
and merges them. This dual procedure will guarantee exploration of all possible configura-
tions of partitioning and ordering, given enough time (See Figure 1 for an illustration).

2.4.1. Split Operator

Assume that among the T subsets, there are Tsplit non-singleton subsets from which we ran-
domly select one subset to split, and let this be Xt. Since we want the resulting sub-subsets
to be non-empty, we first randomly draw two distinct objects from Xt and place them into
the two subsets. Then, for each remaining object, there is an equal chance going to either
X1

t or X2
t . Let Nt = |Xt|, the probability of this drawing is

(

Nt(Nt − 1)2Nt−2
)−1

. Since the
probability that these two sub-subsets will be merged back is T−1, the proposal probability
ratio psplit can be computed as in Eq (6). Since our potential functions depend only on the
relative orders between subsets and between objects in the same set, the likelihood ratio
lsplit due to the split operator does not depend on other subsets, it can be given as in Eq
(7). This is because the members of X1

t are now ranked higher than those of X2
t while they

are of the same rank previously.

psplit =
TsplitNt(Nt − 1)2Nt−2

T
(6) lsplit =

∏

xi∈X1
t

∏

xj∈X2
t

ψ(xi ≻ xj)

ϕ(xi ∼ xj)
(7)

2.4.2. Merge Operator

For T subsets, the probability of merging two consecutive ones will be (T −1)−1 since there
are T−1 pairs, and each pair can be merged in exactly one way. Let Tmerge be the number of
non-singleton subsets after the merge, and let Nt and Nt+1be the sizes of the two subsets Xt

431

Tran Phung Venkatesh

and Xt+1, respectively. Let N
∗
t = Nt +Nt+1, the probability of recovering the state before

the merge (by applying the split operator) is
(

TmergeN
∗
t (N

∗
t − 1)2N

∗

t −2
)−1

. Consequently,
the proposal probability ratio pmerge can be given as in Eq (8), and the likelihood ratio lmerge

is clearly the inverse of the split case as shown in Eq (9).

pmerge =
T − 1

TmergeN∗
t (N

∗
t − 1)2N

∗

t −2
(8) lmerge =

∏

xi∈Xt

∏

xj∈Xt+1

ϕ(xi ∼ xj)

ψ(xi ≻ xj)
(9)

Finally, the pseudo-code of the split-and-merge Metropolis-Hastings procedure for the
OSM is presented in Algorithm 1.

1. Given an initial state X.
2. Repeat until convergence

2a. Draw a random number η ∈ [0, 1].
2b. If η < 0.5 {Split}

i. Randomly choose a non-singleton subset.
ii. Split into two sub-subsets and insert one sub-subset right after the
another.
iii. Evaluate the acceptance probability Paccept using Eqs.(6,7,5).
iv. Accept the move with probability Paccept.

Else {Merge}
i. Randomly choose two consecutive subsets.
ii. Merge them in one, keeping the relative orders with other subsets
unchanged.
iii. Evaluate the acceptance probability Paccept using Eqs.(8,9,5).
iv. Accept the move with probability Paccept.

End

End

Algorithm 1: Pseudo-code of the split-and-merge Metropolis-Hastings for OSM.

2.5. Estimating Partition Function

To estimate the normalisation constant Z, we employ an efficient procedure called An-
nealed Importance Sampling (AIS) proposed recently (Neal, 2001). More specifically, AIS
introduces the notion of inverse-temperature τ into the model, that is P (X|τ) ∝ Ω(X)τ .

Let {τs}
S
s=0 be the (slowly) increasing sequence of temperature, where τ0 = 0 and τS =

1, that is τ0 < τ1... < τS . At τ0 = 0, we have a uniform distribution, and at τS =
1, we obtain the desired distribution. At each step s, we draw a sample Xs from the
distribution P (X|τs−1) (e.g. using the split-and-merge procedure). Let P ∗(X|τ) be the
unnormalised distribution of P (X|τ), that is P (X|τ) = P ∗(X|τ)/Z(τ). The final weight
after the annealing process is computed as

w =
P ∗(X1|τ1)

P ∗(X1|τ0)

P ∗(X2|τ2)

P ∗(X2|τ1)
...

P ∗(XS |τS)

P ∗(XS |τS−1)

432

Learning From Ordered Sets

(a) (b)

Figure 2: (a) A Semi-Restricted Boltzmann Machine representation of vectorial data: each
shaded node represents a visible variable and empty nodes the hidden units. (b)
A Latent OSM for representing ordered sets: each box represents a subset of
objects.

The above procedure is repeated R times. Finally, the normalisation constant at τ = 1

is computed as Z(1) ≈ Z(0)
(

∑R
r=1w

(r)/R
)

where Z(0) = Fubini(N), which is the number

of configurations of the model state variables X.

2.6. Log-linear Parameterisation and Learning

Here we assume that the model is in the log-linear form, that is ϕ(xi ∼ xj) = exp {
∑

a αafa(xi, xj)}
and ψ(xi ≻ xj) = exp {

∑

b βbgb(xi, xj)}, where {fa(·), gb(·)} are sufficient statistics (or fea-
ture functions) and {αa, βb} are free parameters.

Learning by maximising (log-)likelihood in log-linear models with respect to free pa-
rameters often leads to computing the expectation of sufficient statistics. For example,
〈fa(xi, xj)〉P (xi∼xj)

is needed in the gradient of the log-likelihood with respect to αa, where

P (xi ∼ xj) is the pairwise marginal. Unfortunately, computing P (xi ∼ xj) is inherently
hard, and running a full MCMC chain to estimate it is too expensive for practical pur-
poses. Here we follow the stochastic approximation proposed in (Younes, 1989), in that we
iteratively update parameters after very short MCMC chains (e.g., using Algorithm 1).

3. Introducing Latent Variables to OSMs

In this section, we further extend the proposed OSM by introducing latent variables into the
model. The latent variables serve multiple purposes. For example, in collaborative filtering,
each person chooses only a small subset of objects, thus the specific choice of objects and the
ranking reflects personal taste. This cannot be discovered by the standard OSM. Second, if
we want to measure the distance or similarity between two ordered partitioned sets, e.g. for
clustering or visualisation, it may be useful to first transform the data into some vectorial
representation.

433

Tran Phung Venkatesh

3.1. Model Specification

Denote by h = (h1, h2, ..., hK) ∈ {0, 1}K the hidden units to be used in conjunction with the
ordered sets. The idea is to estimate the posterior P (hk = 1|X) - the probability that the

kth hidden unit will be activated by the input X. Thus, the requirement is that the model
should allow the evaluation of P (hk = 1 | X) efficiently. Borrowing from the Restricted
Boltzmann Machine architecture (Smolensky, 1986; Welling et al., 2005), we can extend the
model potential function as follows:

Ω̂(X,h) = Ω(X)
∏

k

Ωk(X)hk (10)

where Ωk(X) admits the similar factorisation as Ω(X), i.e. Ωk(X) =
∏

tΦk(Xt)
∏

t′>tΨk(Xt ≻
Xt′), and

Φk(Xt) =
∏

i,j∈Xt|j>i

ϕk(xi ∼ xj); Ψk(Xt ≻ Xt′) =
∏

i∈Xt

∏

j∈Xt′

ψk(xi ≻ xj) (11)

where ϕk(xi ∼ xj) and ψk(xi ≻ xj) capture the events of tie and relative ordering between

objects xi and xj under the presence of the kth hidden unit, respectively.

We then define the model with hidden variables as P (X,h) = Ω̂(X,h)/Z, where Z =
∑

X,h Ω̂(X,h). A graphical representation is given in Figure 2b. Hereafter, we shall refer
to this proposed model as the Latent OSM.

3.2. Inference

The posteriors are indeed efficient to evaluate:

P (h | X) =
∏

k

P (hk | X), where P (hk = 1 | X) =
1

1 + Ωk(X)−1
(12)

Denote by h1k as the shorthand for hk = 1, the vector (P (h11 | X), P (h12 | X), ..., P (h1K | X))
can then be used as a latent representation of the configuration X.

The generation of X given h is, however, much more involved as we need to explore the
whole subset partitioning and ordering space:

P (X | h) =
Ω̂(X,h)

∑

X Ω̂(X,h)
=

Ω(X)
∏

k Ωk(X)hk

∑

X Ω(X)
∏

k Ωk(X)hk
(13)

For inference, since we have two layers X and h, we can alternate between them in a
Gibbs sampling manner, that is, sampling X from P (X | h) and then h from P (h | X).
Since sampling from P (h | X) is straightforward, it remains to sample from P (X|h) =
Ω̂(X,h)/

∑

X Ω̂(X,h). Since Ω̂(X,h) has the same factorisation structure into a product
of pairwise potentials as Ω(X), we can employ the split-and-merge technique described in
the previous section in a similar manner.

To see how, let ϕ̂(xi ∼ xj ,h) = ϕ(xi ∼ xj)
∏

k ϕk(xi ∼ xj)
hk and ψ̂(xi ≻ xj ,h) =

ψk(xi ≻ xj)
∏

k ψk(xi ≻ xj)
hk , then from Eqs.(4,10,11). We can see that Ω̂(X,h) is now

434

Learning From Ordered Sets

factorised into products of ϕ̂(xi ∼ xj ,h) and ψ̂(xi ≻ xj ,h) in the same way as Ω(X) into
products of ϕ(xi ∼ xj) and ψ(xi ≻ xj):

Ω̂(X,h) = Ω(X)
∏

k

Ωk(X)hk =
∏

t

Φ̂(Xt,h)
∏

t′>t

Ψ̂(Xt ≻ Xt′ ,h)

where

Φ̂(Xt,h) =
∏

i,j∈Xt|j>i

ϕ̂(xi ∼ xj ,h); Ψ̂(Xt ≻ Xt′ ,h) =
∏

i∈Xt

∏

j∈Xt′

ψ̂(xi ≻ xj ,h)

Estimating the normalisation constant Z can be performed using the AIS procedure
described earlier (cf. Section 2.5), except that the unnormalised distribution P ∗(X|τ) is
given as:

P ∗(X | τ) =
∑

h
Ω̂(X,h)τ = Ω(X)τ

∏

k

(1 + Ωk(X)τ)

which can be computed efficiently for each X.

For sampling Xs from P (X | τs−1), one way is to sample directly from the P (X | τs−1)
in a Rao-Blackwellised fashion (e.g. by marginalising over h we obtain the unnormalised
P ∗(X|τ)). A more straightforward way is alternating between X | h and h | X as usual.
Although the former would give lower variance, we implement the latter for simplicity.
The remaining is similar to the case without hidden variables, and we note that the base
partition function Z(0) should be modified to Z(0) = Fubini(N)2K , taking into account of
K binary hidden variables. A pseudo-code for the split-and-merge algorithm for Latent
OSM is given in Algorithm 8.

1. Given an initial state X.
2. Repeat until convergence

2a. Sample h from P (h | X) using Eq.(12).
2b. Sample X from P (X | h) using Eq.(13) and Algorithm 1.
End

End

Algorithm 2: Pseudo-code of the split-and-merge Gibbs/Metropolis-Hastings for Latent
OSM.

3.3. Parameter Specification and Learning

Like the OSM, we also assume log-linear parameterisation. In addition to those poten-
tials shared with the OSM, here we specify hidden-specific potentials as follows: ϕk(xi ∼
xj)

hk = exp {
∑

a λakfa(xi, xj)hk} and ψk(xi ≻ xj)
hk = exp {

∑

b µbkgb(xi, xj)hk}. Now
{fa(xi, xj)hk, gb(xi, xj)hk} are new sufficient statistics. As before, we need to estimate
the expectation of sufficient statistics, e.g., 〈fa(xi, xj)hk〉P (xi,xj ,hk)

. Equipped with Algo-

rithm 8, the stochastic gradient trick as in Section 2.6 can then be used, that is, parameters
are updated after very short chains (with respect to the model distribution P (X,h)).

435

Tran Phung Venkatesh

4. Application in Collaborative Filtering

In this section, we present one specific application of our Latent OSM in collaborative
filtering. Recall that in this application, each user has usually expressed their preferences
over a set of items by rating them (e.g., by assigning each item a small number of stars).
Since it is cumbersome to rank all the items completely, the user often joins items into
groups of similar ratings. As each user often rates only a handful of items out of thousands
(or even millions), this creates a sparse ordering of subsets. Our goal is to first discover
the latent taste factors for each user from their given ordered subsets, and then use these
factors to recommend new items for each individual.

4.1. Rank Reconstruction and Completion

In this application, we are limited to producing a complete ranking over objects instead of
subset partitioning and ordering. Here we consider two tasks: (i) rank completion where we
want to rank unseen items given a partially ranked set3, and (ii) rank reconstruction4 where
we want to reconstruct the complete rank X̂ from the posterior vector (P (h11 | X), P (h12 |
X).., , P (h1K | X)).

Rank completion. Assume that an unseen item xj might be ranked higher than any
seen item {xi}

N
i=1. Let us start from the mean-field approximation

P (xj | X) =
∑

h

P (xj ,h | X) ≈ Qj(xj | X)
∏

k

Qk(hk | X)

From the mean-field theory, we arrive at Eq (14), which resembles the factorisation in (10).

Qj(xj | X) ∝ Ω(xj , X)
∏

k

Ωk(xj , X)Qk(h
1
k
|X) (14)

Now assume that X is sufficiently informative to estimate Qk(hk | X), we make further
approximation Qk(h

1
k | x) ≈ P (h1k | x). Finally, due to the factorisation in (11), this

reduces to

Qj(xj | X) ∝
∏

i

[

ψ(xj ≻ xi)
∏

k

ψk(xj ≻ xi)
Pk(h

1
k
|X)

]

The RHS can be used for the purpose of ranking among new items {xj}.

Rank reconstruction. The rank reconstruction task can be thought as estimating X̂ =
argmaxX′ Q(X ′|X) where Q(X ′|X) =

∑

h
P (X ′|h)P (h|X). Since this maximisation is

generally intractable, we may approximate it by treating X ′ as state variable of unseen
items, and apply the mean-field technique as in the completion task.

4.2. Models Implementation

To enable fast recommendation, we use a rather simple scheme: Each item is assigned a
worth φ(xi) ∈ R

+ which can be used for ranking purposes. Under the Latent OSM, the

3. This is important in recommendation, as we shall see in the experiments.
4. This would be useful in data compression setting.

436

Learning From Ordered Sets

worth is also associated with a hidden unit, e.g. φk(xi). Then the events of grouping and
ordering can be simplified as

ϕk(xi ∼ xj) = θ
√

φk(xi)φk(xj); and ψk(xi ≻ xj) = φk(xi)

where θ > 0 is a factor signifying the contribution of item compatibility to the model
probability. Basically the first equation says that if the two items are compatible, their
worth should be positively correlated. The second asserts that if there is an ordering, we
should choose the better one. This reduces to the tie model of (Davidson, 1970) when there
are only two items.

For learning, we parameterise the models as follows

θ = eν ; φ(xi) = eui ; φk(xi) = eWik

where ν, {ui} and {Wik} are free parameters. The Latent OSM is trained using stochastic
gradient with a few samples per user to approximate the gradient (e.g., see Section 3.3). To
speed up learning, parameters are updated after every block of 100 users. Figure 3(a) shows
the learning progress with learning rate of 0.01 using parallel persistent Markov chains, one
chain per user (Younes, 1989). The samples get closer to the observed data as the model
is updated, while the acceptance rates of the split-and-merge decrease, possibly because
the samplers are near the region of attraction. A notable effect is that the split-and-merge

dual operators favour sets of small size due to the fact that there are far more many ways
to split a big subset than to merge them. For the AIS, we follow previous practice (e.g. see
(Salakhutdinov and Murray, 2008)), i.e. S = {103, 104} and R = {10, 100}.

For comparison, we implemented existing methods including the Probabilistic Matrix
Factorisation (PMF) (Salakhutdinov and Mnih, 2008) where the predicted rating is used
as scoring function, the Probabilistic Latent Preference Analysis (pLPA) (Liu et al., 2009),
the ListRank.MF (Shi et al., 2010) and the matrix-factored Plackett-Luce model (Truyen
et al., 2011) (Plackett-Luce.MF). For the pLPA we did not use the MM algorithm but
resorted to simple gradient ascent for the inner loop of the EM algorithm. We also ran the
CoFiRANK variants (Weimer et al., 2008) with code provided by the authors5. We found
that the ListRank-MF and the Plackett-Luce.MF are very sensitive to initialisation, and
good results can be obtained by randomly initialising the user-based parameter matrix with
non-negative entries. To create a rank for Plackett-Luce.MF, we order the ratings according
to quicksort.

The performance will be judged based on the correlation between the predicted rank and
ground-truth ratings. Two performance metrics are reported: the Normalised Discounted
Cumulative Gain at the truncated position T (NDCG@T) (Järvelin and Kekäläinen, 2002),
and the Expected Reciprocal Rank (ERR) (Chapelle et al., 2009):

NDCG@T = 1
κ(T)

T
∑

i=1

2ri − 1

log2(1 + i)
; ERR =

∑

i

1

i
V (ri)

i−1
∏

j=1

(1− V (rj)) for V (r) =
2r−1 − 1

16

where ri is the relevance judgment of the movie at position i, κ(T) is a normalisation
constant to make sure that the gain is 1 if the rank is correct. Both the metrics put more
emphasis on top ranked items.

5. http://cofirank.org

437

Tran Phung Venkatesh

10
2

10
3

0.2

0.3

0.4

0.5

0.6

Epoch

Dist(sample,observed)
Split accept. rate
Merge accept. rate

2 4 6 8 10

0.4

0.45

0.5

0.55

0.6

0.65

T

N
D

C
G

@
T

PMF
pLPA
ListRank.MF
Plackett−Luce.MF
CoFiRANK.Regress
CoFiRANK.Ordinal
CoFiRANK.N@10
Latent OSM

0 50 100
0.6

0.65

0.7

0.75

0.8

0.85

Hidden size

E
R

R

Test data
Train data

(a) (b) (c)

Figure 3: Results with MovieLens data. (a) Learning progress with time:
Dist(sample,observed) is the portion of pairwise orders being incorrectly
sampled by the split-and-merge Markov chains (N = 10,K = 20). (b)
Rank completion, as measured in NDCG@T (N = 20, K = 50). (c) Rank
reconstruction (N = 10) - trained on 9, 000 users and tested on 1, 000 users.

M = 10 M = 20 M = 30

Plackett-Luce.MF -14.7 -41.3 -72.6
Latent OSM -9.8 -37.9 -73.4

Table 1: Average log-likelihood over 100 users of test data (Movie Lens 10M dataset), after
training on the N = 10 movies per user (K = 10). M is the number of test movies
per user. The Plackett-Luce.MF and the Latent OSM are comparable because
they are both probabilistic in ranks and can capture latent aspects of the data.
The main difference is that the Plackett-Luce.MF does not handle groupings or
ties.

4.3. Results

We evaluate our proposed model and inference on large-scale collaborative filtering datasets:
the MovieLens6 10M and the Netflix challenge7. The MovieLens dataset consists of slightly
over 10 million half-integer ratings (from 0 to 5) applied to 10, 681 movies by 71, 567 users.
The ratings are from 0.5 to 5 with 0.5 increments. We divide the rating range into 5
segments of equal length., and those ratings from the same segment will share the same
rank. The Netflix dataset has slightly over 100 million ratings applied to 17, 770 movies by
480, 189 users, where ratings are integers in a 5-star ordinal scale.

Data likelihood estimation. Table 1 shows the log-likelihood of test data averaged over 100
users with different numbers of movies per user. Results for the Latent OSM are estimated
using the AIS procedure.

6. http://www.grouplens.org/node/12
7. http://www.netflixprize.com

438

Learning From Ordered Sets

0 2 5 10 20 50

0.6

0.65

0.7

Hidden size

E
R

R

PMF
LOSM

0 2 5 10 20 50
0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Hidden size

E
R

R

PMF
LOSM

(a) MovieLens, N = 20 (b) Netflix N = 10

Figure 4: Rank completion quality vs. number of hidden units - note that since the PMF
is not defined when hidden size is 0, we substitute using the result for hidden size
1.

Rank reconstruction. Given the posterior vector, we ask whether we can reconstruct the
original rank of movies for that data instance. For simplicity, we only wish to obtain a
complete ranking, since it is very efficient (e.g. a typical cost would be N logN per user).
Figure 3(c) indicates that high quality rank reconstruction (on both training and test data)
is possible given enough hidden units. This suggests an interesting way to store and process
rank data by using vectorial representation.

Rank completion. In collaborative filtering settings, we are interested in ranking unseen
movies for a given user. To highlight the disparity between user tastes, we remove movies
whose qualities are inherently good or bad, that is when there is a general agreement among
users. More specifically, we compute the movie entropy as Hi = −

∑5
r=1 Pi(r) logPi(r)

where Pi(r) is estimated as the proportion of users who rate the movie i by r points. We
then remove half of the movies with lowest entropy. For each dataset, we split the data into
a training set and a test set as follows. For each user, we randomly choose 10, 20 and 50
items for training, and the rest for testing. To ensure that each user has at least 10 test
items, we keep only those users with no less than 20, 30 and 60 ratings, respectively.

Figs. 3(b), 4(a) and Table 2 report the results on the MovieLens 10M dataset; Figs. 4(b)
and Table 3 show the results for the Netflix dataset. It can be seen that the Latent OSM
performs better than rivals when N is moderate. For large N , the rating-based method
(PMF) seems to work better, possibly because converting rating into ordering loses too
much information in this case, and it is more difficult for the Latent OSM to explore the
hyper-exponential state-space .

5. Related Work

This work is closely related to the emerging concept of preferences over sets in AI (Brafman
et al., 2006; Wagstaff et al., 2010) and in social choice and utility theories (Barberà et al.,

439

Tran Phung Venkatesh

N = 10 N = 20 N = 50
ERR N@5 ERR N@5 ERR N@5

PMF 0.673 0.603 0.687 0.612 0.717 0.638

pLPA 0.674 0.596 0.684 0.601 0.683 0.595
ListRank.MF 0.683 0.603 0.682 0.601 0.684 0.595
Plackett-Luce.MF 0.663 0.586 0.677 0.591 0.681 0.586
CoFiRANK .Regress 0.675 0.597 0.681 0.598 0.667 0.572
CoFiRANK .Ordinal 0.623 0.530 0.621 0.522 0.622 0.515
CoFiRANK .N@10 0.615 0.522 0.623 0.517 0.602 0.491

Latent OSM 0.690 0.619 0.708 0.632 0.710 0.629

Table 2: Model comparison on the MovieLens data for rank completion (K = 50). N@T is
a shorthand for NDCG@T .

N = 10 N = 20
ERR N@1 N@5 N@10 ERR N@1 N@5 N@10

PMF 0.678 0.586 0.607 0.649 0.691 0.601 0.624 0.661
ListRank.MF 0.656 0.553 0.579 0.623 0.658 0.553 0.577 0.617

Latent OSM 0.694 0.611 0.628 0.666 0.714 0.638 0.648 0.680

Table 3: Model comparison on the Netflix data for rank completion (K = 50).

2004). However, most existing work has focused on representing preferences and computing
the optimal set under preference constraints (Binshtok et al., 2007). These differ from our
goals to model a distribution over all possible set orderings and to learn from example
orderings. Learning from expressed preferences has been studied intensively in AI and
machine learning, but they are often limited to pairwise preferences or complete ordering
(Cohen et al., 1999; Weimer et al., 2008).

On the other hand, there has been very little work on learning from ordered sets (Yue
and Joachims, 2008; Wagstaff et al., 2010). The most recent and closest to our is the
PMOP which models ordered sets as a locally normalised high-order Markov chain (Truyen
et al., 2011). This contrasts with our setting which involves a globally normalised log-linear
solution. Note that since the high-order Markov chain involves all previously ranked subsets,
while our OSM involves pairwise comparisons, the former is not a special case of ours. Our
additional contribution is that we model the space of partitioning and ordering directly and
offer sampling tools to explore the space. This ease of inference is not readily available for
the PMOP. Finally, our solution easily leads to the introduction of latent variables, while
their approach lacks that capacity.

Our split-and-merge sampling procedure bears some similarity to the one proposed in
(Jain and Neal, 2004) for mixture assignment. The main difference is that we need to handle
the extra orderings between partitions, while it is assumed to be exchangeable in (Jain and
Neal, 2004). This causes a subtle difference in generating proposal moves. Likewise, a
similar method is employed in (Ranganathan et al., 2006) for mapping a set of observations
into a set of landmarks, but again, ranking is not considered.

440

Learning From Ordered Sets

With respect to collaborative ranking, there has been work focusing on producing a set
of items instead of just ranking individual ones (Price and Messinger, 2005). These can be
considered as a special case of OSM where there are only two subsets (those selected and
the rest).

6. Conclusion and Future Work

We have introduced a latent variable approach to modelling ranked groups. Our main
contribution is an efficient split-and-merge MCMC inference procedure that can effectively
explore the hyper-exponential state-space. We demonstrate how the proposed model can
be useful in collaborative filtering. The empirical results suggest that proposed model is
competitive against state-of-the-art rivals on a number of large-scale collaborative filtering
datasets.

References

S. Barberà, W. Bossert, and P.K. Pattanaik. Ranking sets of objects. Handbook of Utility Theory:
Extensions, 2:893, 2004.

M. Binshtok, R.I. Brafman, S.E. Shimony, A. Martin, and C. Boutilier. Computing optimal subsets.
In Proceedings of the National Conference on Artificial Intelligence, volume 22, page 1231. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

R.I. Brafman, C. Domshlak, S.E. Shimony, and Y. Silver. Preferences over sets. In Proceedings
of the National Conference on Artificial Intelligence, volume 21, page 1101. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.

O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan. Expected reciprocal rank for graded relevance.
In CIKM, pages 621–630. ACM, 2009.

W.W. Cohen, R.E. Schapire, and Y. Singer. Learning to order things. J Artif Intell Res, 10:243–270,
1999.

R.R. Davidson. On extending the Bradley-Terry model to accommodate ties in paired comparison
experiments. Journal of the American Statistical Association, 65(329):317–328, 1970.

O. Dekel, C. Manning, and Y. Singer. Log-linear models for label ranking. Advances in Neural
Information Processing Systems, 16, 2003.

S. Jain and R.M. Neal. A split-merge Markov chain Monte Carlo procedure for the Dirichlet process
mixture model. Journal of Computational and Graphical Statistics, 13(1):158–182, 2004.

K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM Transac-
tions on Information Systems (TOIS), 20(4):446, 2002.

N.N. Liu, M. Zhao, and Q. Yang. Probabilistic latent preference analysis for collaborative filtering.
In CIKM, pages 759–766. ACM, 2009.

M. Mureşan. A concrete approach to classical analysis. Springer Verlag, 2008.

R.M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139, 2001.

R. Price and P.R. Messinger. Optimal recommendation sets: Covering uncertainty over user prefer-
ences. In Proceedings of the National Conference on Artificial Intelligence, volume 20, page 541.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.

441

Tran Phung Venkatesh

A. Ranganathan, E. Menegatti, and F. Dellaert. Bayesian inference in the space of topological maps.
Robotics, IEEE Transactions on, 22(1):92–107, 2006.

R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. Advances in neural information
processing systems, 20:1257–1264, 2008.

R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. In Proceedings
of the 25th international conference on Machine learning, pages 872–879. ACM, 2008.

Y. Shi, M. Larson, and A. Hanjalic. List-wise learning to rank with matrix factorization for collab-
orative filtering. In ACM RecSys, pages 269–272. ACM, 2010.

P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. Par-
allel distributed processing: Explorations in the microstructure of cognition, 1:194–281, 1986.

T. Truyen, D.Q Phung, and S. Venkatesh. Probabilistic models over ordered partitions with appli-
cations in document ranking and collaborative filtering. In Proc. of SIAM Conference on Data
Mining (SDM), Mesa, Arizona, USA, 2011. SIAM.

J.H. van Lint and R.M. Wilson. A course in combinatorics. Cambridge Univ Pr, 1992.

S. Vembu and T. Gärtner. Label ranking algorithms: A survey. Preference Learning, page 45, 2010.

K.L. Wagstaff, Marie desJardins, and E. Eaton. Modelling and learning user preferences over sets.
Journal of Experimental & Theoretical Artificial Intelligence, 22(3):237–268, 2010.

M. Weimer, A. Karatzoglou, Q. Le, and A. Smola. CoFiRANK -maximum margin matrix factorization
for collaborative ranking. Advances in neural information processing systems, 20:1593–1600, 2008.

M. Welling, M. Rosen-Zvi, and G. Hinton. Exponential family harmoniums with an application to
information retrieval. In Advances in NIPS, volume 17, pages 1481–1488. 2005.

L. Younes. Parametric inference for imperfectly observed Gibbsian fields. Probability Theory and
Related Fields, 82(4):625–645, 1989.

Y. Yue and T. Joachims. Predicting diverse subsets using structural SVMs. In Proceedings of the
25th international conference on Machine learning, pages 1224–1231. ACM, 2008.

442

	Introduction
	Ordered Set Log-linear Models
	General Description
	Problem Description
	Model Specification
	Split-and-Merge MCMC Inference
	Split Operator
	Merge Operator

	Estimating Partition Function
	Log-linear Parameterisation and Learning

	Introducing Latent Variables to OSMs
	Model Specification
	Inference
	Parameter Specification and Learning

	Application in Collaborative Filtering
	Rank Reconstruction and Completion
	Models Implementation
	Results

	Related Work
	Conclusion and Future Work

