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Abstract

Background: For the clinical care of patients with well-established diseases, randomized trials, literature, and research are
supplemented with clinical judgment to understand disease prognosis and inform treatment choices. In the void created by a lack
of clinical experience with COVID-19, artificial intelligence (AI) may be an important tool to bolster clinical judgment and
decision making. However, a lack of clinical data restricts the design and development of such AI tools, particularly in preparation
for an impending crisis or pandemic.

Objective: This study aimed to develop and test the feasibility of a “patients-like-me” framework to predict the deterioration
of patients with COVID-19 using a retrospective cohort of patients with similar respiratory diseases.

Methods: Our framework used COVID-19–like cohorts to design and train AI models that were then validated on the COVID-19
population. The COVID-19–like cohorts included patients diagnosed with bacterial pneumonia, viral pneumonia, unspecified
pneumonia, influenza, and acute respiratory distress syndrome (ARDS) at an academic medical center from 2008 to 2019. In
total, 15 training cohorts were created using different combinations of the COVID-19–like cohorts with the ARDS cohort for
exploratory purposes. In this study, two machine learning models were developed: one to predict invasive mechanical ventilation
(IMV) within 48 hours for each hospitalized day, and one to predict all-cause mortality at the time of admission. Model performance
was assessed using the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive
value, and negative predictive value. We established model interpretability by calculating SHapley Additive exPlanations (SHAP)
scores to identify important features.

Results: Compared to the COVID-19–like cohorts (n=16,509), the patients hospitalized with COVID-19 (n=159) were significantly
younger, with a higher proportion of patients of Hispanic ethnicity, a lower proportion of patients with smoking history, and
fewer patients with comorbidities (P<.001). Patients with COVID-19 had a lower IMV rate (15.1 versus 23.2, P=.02) and shorter
time to IMV (2.9 versus 4.1 days, P<.001) compared to the COVID-19–like patients. In the COVID-19–like training data, the
top models achieved excellent performance (AUROC>0.90). Validating in the COVID-19 cohort, the top-performing model for
predicting IMV was the XGBoost model (AUROC=0.826) trained on the viral pneumonia cohort. Similarly, the XGBoost model
trained on all 4 COVID-19–like cohorts without ARDS achieved the best performance (AUROC=0.928) in predicting mortality.
Important predictors included demographic information (age), vital signs (oxygen saturation), and laboratory values (white blood
cell count, cardiac troponin, albumin, etc). Our models had class imbalance, which resulted in high negative predictive values
and low positive predictive values.
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Conclusions: We provided a feasible framework for modeling patient deterioration using existing data and AI technology to
address data limitations during the onset of a novel, rapidly changing pandemic.

(J Med Internet Res 2021;23(2):e23026) doi: 10.2196/23026
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Introduction

The SARS-CoV-2 virus, which causes the disease COVID-19,
has infected almost 107 million people worldwide and is
responsible for more than 2.3 million deaths [1]. Around the
globe, patients with COVID-19 have a broad range of symptoms
and disease severities. However, patients with COVID-19
demonstrate several symptoms that are striking in their
commonality and nonspecificity to other well-known respiratory
infections, such as pneumonia, influenza, and acute respiratory
distress syndrome (ARDS) [2-5]. In fact, initial reporting of the
disease indicated that most patients present with pneumonia-
or influenza-like illnesses [6,7].

COVID-19 shares symptoms with other respiratory illnesses;
from these diseases, we can learn about the clinical progression
of patients, including the progression of patients presenting with
severe hypoxemia followed by rapid deterioration, which often
requires advanced life support such as invasive mechanical
ventilation (IMV). Worldwide, the pandemic has left health
systems struggling with capacity limits, especially regarding
intensive care units (ICU) and mechanical ventilators [8,9].
Patients with COVID-19 remain on mechanical ventilation for
an average of 10 to 20 days, further limiting the availability of
this scarce resource [10,11]. Furthermore, an earlier study
showed a high mortality rate of up to about 60% among critically
ill patients [12]. The severity of cases has put great pressure on
health systems, leading to a shortage of intensive care resources.
Thus, understanding who will become critically ill and consume
scarce resources as a result of this emerging disease can improve
resource, hospital, and societal planning, and increase the
number of lives saved.

However, given the novelty of COVID-19 and lack of clinical
experience, the health care community is grappling for robust
clinical data to learn about the disease. Under the appropriate
assumptions, artificial intelligence (AI) may help with the
planning of COVID-19 responses and guide clinical decisions
in this time of uncertainty. Given the number of patients that
may become infected with COVID-19, it is essential to
understand who will be more likely to develop severe illness
and need scarce resources at the time of presentation to the
health care system, and AI can help with this determination.
Indeed, AI technologies related to COVID-19 outcomes are
emerging, as indicated in a recent published systematic review,
with a majority of these studies conducted in China [13].
Predictive models using rule-based scoring tools and machine
learning approaches have been applied to predict clinical
deterioration in hospitalized patients and support health care
providers in triaging patients when resources are limited [14-19].
However, there are many concerns and barriers to making this

a reality [20], including uncertainty in the risk factors associated
with disease progression, a limited number of patients whose
data can be used to train and test models, and no public data
sets available to test and validate models outside of a single
health care setting. Of the COVID-19 AI studies published thus
far, many have been designed and developed retrospectively on
a small number of patient cases, limiting their validity and
generalizability to other populations [15,21,22].

To help guide clinical decisions during the COVID-19
pandemic, we developed a framework to bootstrap AI models
for outcomes of patients with COVID-19 using COVID-19–like
cohorts to develop and train AI models to predict IMV within
48 hours and mortality using features associated with outcomes
of patients with COVID-19. The COVID-19–like cohorts
included patients diagnosed with bacterial pneumonia, influenza,
viral pneumonia, and ARDS between 2008-2019. We tested the
models’performances on hospitalized patients with COVID-19.
This framework may be particularly important in a novel and
accelerated outbreak where clinicians and health care systems
are forced to make difficult decisions without past experience
of the specific disease at hand. In the void created by a lack of
clinical experience with COVID-19, AI trained with data from
COVID-19–like disorders may be an important way to bolster
clinical judgment and decision making.

Methods

Study Design and Data Source
This retrospective study used data from electronic health records
(EHRs) of patients admitted to the Stanford Healthcare Alliance
(SHA) from January 1, 2008, to July 11, 2019. SHA is an
integrated health system that includes an academic hospital, a
community hospital, and a primary/specialty health care alliance.
This study received approval from the institute’s Institutional
Review Board (IRB). All source codes for this work are
available at the Stanford Digital Repository [23].

Study Cohorts
This study included two retrospective cohorts: a COVID-19–like
cohort (n=16,509) and a COVID-19 cohort (n=159).

COVID-19–like Cohort
The COVID-19–like cohort used for model training included
patients hospitalized with a diagnosis of bacterial pneumonia,
influenza, viral pneumonia, unspecified pneumonia, or ARDS,
using International Classification of Diseases codes (ICD-9 and
ICD-10; Table S1 in Multimedia Appendix 1), between January
1, 2008, and July 11, 2019. These diseases were selected because
of their similarity to COVID-19 in clinical manifestation,
histological features, and disease progression [4,7,24]. Patients
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with complete missing lab data were excluded from the study
(n=1712, 10.4%). For patients with multiple ICD codes for
different conditions, the following rule was applied for disease
categorization: influenza → viral pneumonia → bacterial
pneumonia → unspecified pneumonia. Among these
COVID-19–like cohorts, those who developed ARDS formed
a separate COVID-19–like cohort.

COVID-19 Cohort
We included adults with a confirmed COVID-19 diagnosis who
were hospitalized between March 1, 2020, and July 11, 2020.
A confirmed COVID-19 diagnosis was defined as either a
positive SARS-CoV-2 RNA detection test or a diagnosis code
for COVID-19 (Table S1 in Multimedia Appendix 1). All
patients were observed throughout their hospital encounter.

Data Collection
Patient demographics and clinical information were captured
from EHRs. We selected the most relevant features identified
from the literature [2,3,5], including demographics, existing
comorbid conditions, smoking history, symptoms at initial
presentation, coinfection with other respiratory pathogens, and
laboratory values (Textboxes 1-3). The patient's existing
comorbidities, including cardiovascular disease, diabetes, cancer,
hypertension, chronic respiratory disease, respiratory failure,
and kidney disease, were determined over a 3-year period prior
to hospital admission for the retrospective cohort. Laboratory
values 2 weeks prior to and during the hospital stay were
extracted for the retrospective and COVID-19 cohorts.
Laboratory values on the day of IMV were excluded to ensure
the values were not taken after IMV.
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Textbox 1. Features included in the invasive mechanical ventilation and mortality model development (demographics and clinical characteristics).

Demographics and clinical characteristics

• Age at admission (years)

• Gender

• Race/ethnicity

• Ever smoked (all life before admission)

Comorbidity present (3 years before admission)

• Cancer

• Chronic respiratory disease

• Cardiovascular disease

• Hypertension

• Type 2 diabetes

• Respiratory failure

• Kidney disease

• Alzheimer disease

• Cirrhosis

Symptoms (15 days before admission)

• Cough

• Dyspnea

• Tachypnea (respiratory rate >20)

• Hypoxemia (oxygen saturation ≤90%)

• Rhinorrhea

• Nose congestion

• Fever (temperature >37 C/98.6 F)

• Sputum

• Pharyngitis (sore throat)

• Headache

• Fatigue

• Conjunctivitis

• Diarrhea

• Anosmia

• Myalgias
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Textbox 2. Features included in the invasive mechanical ventilation and mortality model development (laboratory findings).

Laboratory findings

• White blood cell count, K/μL

• Lymphocyte count, K/μL

• Alanine aminotransferase, U/L

• Aspartate aminotransferase, U/L

• Creatinine, mg/dL

• Lactate dehydrogenase, U/L

• Creatine kinase, U/L

• Cardiac troponin, ng/mL

• D-dimer, ng/mL

• Prothrombin time, seconds

• Serum ferritin, ng/mL

• Procalcitonin, ng/mL

• Platelet count, K/μL

• C-reactive protein, mg/dL

• Total bilirubin, mg/dL

• Blood urea nitrogen, mg/dL

• Albumin, g/dL

• Oxygen saturation, mm Hg

• Fraction of inspired oxygen, %

• Sodium, mmol/L

• Potassium, mmol/L

Textbox 3. Features included in the invasive mechanical ventilation and mortality model development (coinfections).

Coinfection (15 days before admission)

• Adenovirus

• Chlamydia pneumoniae

• Coronavirus

• Influenza A

• Influenza B

• Metapneumovirus

• Mycoplasma pneumonia

• Parainfluenza 1

• Parainfluenza 2

• Parainfluenza 3

• Parainfluenza 4

• Rhinovirus/enterovirus

• Respiratory syncytial virus

Outcome
The outcome of interest was IMV in the next 48 hours and
all-cause mortality. In the COVID-19–like cohort, the need for
IMV in 48 hours was identified from the EHRs using the

presence of IMV date and time. This time point was selected
due to the rapid deterioration of disease conditions observed in
patients with COVID-19. Deceased individuals who did not
receive IMV during their hospital stay were considered
nonintubated patients. All-cause mortality was identified using
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the death date recorded in the EHRs, including those who died
during their hospital stay and within two weeks of hospital
discharge.

Artificial Intelligence Framework
We developed a three-step framework to bootstrap machine
learning models to predict IMV and mortality among
hospitalized patients with COVID-19. Figure 1 illustrates the
study design framework, including training data generation,
model development, and model evaluation.

Figure 1. The methodological framework for selecting training data cohort, model development, and model evaluation for predicting intubation and
mortality.

Training Data Generation
To determine the most appropriate COVID-19–like cohort for
the prediction task, we explored different combinations of the
4 COVID-19–like cohorts (influenza, bacterial pneumonia, viral
pneumonia, and unspecified pneumonia), including any single
disease, any two diseases, any three diseases, and all four
diseases combined to construct 15 training cohorts. Due to the
differences between patients with COVID-19 and patients with
ARDS, these COVID-19–like patients who developed ARDS
were considered as an additional exploratory cohort to examine
whether or not it could contribute to better prediction for the

patients with COVID-19. Since we selected the best-performing
machine learning model from each COVID-19–like cohort, 16
models were developed from the 16 COVID-19–like cohorts.

Model Development

Data Preprocessing

Features with missing values in the training set were imputed
as –1. Due to the unbalanced data in training cohorts (Table S2
in Multimedia Appendix 1), oversampling approaches were
used to generate synthetic samples for the minority class and
to balance the positive and negative training set. These
approaches included synthetic minority oversampling technique
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(SMOTE), borderline SMOTE, support vector machine (SVM)
SMOTE, and random undersampling methods. Random
undersampling was initially applied to trim the number of
examples in the majority class to twice that of the minority
group (positive cases), then the oversampling method was used
to synthesize the minority class to balance the class distribution
[25].

Model Training

Each of the 16 preprocessed COVID-19–like cohorts were split
into 70% training and 30% validation sets with stratified random
sampling. We derived four machine learning algorithms,
including SVM and three tree-based ensemble algorithms
(decision tree, AdaBoost, and XGBoost). We selected three
decision tree–based algorithms because they have previously
been applied to predict clinical events in patients with respiratory
diseases based on EHR data [16,26,27]. We included models
that were frequently applied for clinical prediction of severe
patient outcomes [16,26,28]. In total, two steps were involved
in model training: (1) using the training data set, a 10-fold
cross-validation strategy was used to train the machine learning
models, while grid search technique was used to search all
combinations of hyperparameters and determine the best
hyperparameters, and (2) using all training data, the models
were retrained with the best hyperparameters (obtained in step
1). The validation data were used to monitor the performance
of the model to avoid overfitting in training data. The final
model was derived when the performance of the model on the
validation data set did not improve after 20 training iterations.
The detailed processes of model training are presented in Figure
S1 in Multimedia Appendix 1.

Model Evaluation

COVID-19–like Cohorts

The performance of the models on the training cohorts was
compared using the area under the receiver operating
characteristic curve (AUROC). The default threshold of 0.5 was
selected for interpreting probabilities to class labels. For IMV,
to be a true positive, the model had to predict the need for IMV
within 48 hours with a risk score of ≥0.5, and the patient had
to receive IMV within this time interval. If the risk score was
≥0.5 and the patient did not receive IMV in 48 hours, the patient
was treated as a false positive. The inverse strategy was applied
for true negative and false negative cases. For mortality, patients
who died during the hospital course or within two weeks after
discharge with a risk score of ≥0.5 were considered as true
positives. The inverse strategy was applied for the true negative
and false negative mortality cases. To interpret the model,
feature importance for predicting IMV and mortality were
presented using SHapley Additive exPlanations (SHAP) values
[29].

COVID-19 Cohort

The best training cohort was selected based on model
performance (ie, AUROC) on the COVID-19 cohort. To
determine the feasibility of models trained on COVID-19–like
cohorts to identify patients at high risk of IMV within 48 hours
and all-cause mortality, we calculated the AUROC, sensitivity,
specificity, positive predictive value (PPV), and negative
predictive value (NPV) for patients with COVID-19.

Statistical Analysis
Descriptive statistics were used to compare the characteristics
of the COVID-19–like and COVID-19 populations. An
independent t test or Mann-Whitney U test were used wherever
appropriate for comparing continuous features. The Pearson
chi-square test was used for categorical features, and the Fisher
exact test was used when the number in the cell was <5.
Algorithms were developed using the training cohort and
assessed on the independent validation cohort, which played
no role in model development, by calculating the PPV and
AUROC. Algorithms were further tested on the independent
COVID-19 cohort. A threshold of 0.50 was set for each model,
and PPV and all other threshold-dependent performance metrics
were derived at this alert rate. As the PPV is threshold
dependent, AUROC was also compared among models. We
chose to present AUROC values because they are a
threshold-independent measure of discrimination. Statistical
significance for primary analysis was set at P<.05. All tests
were two-tailed.

Results

Cohort Description
There were a total of 16,509 patients in the COVID-19–like
cohorts, and 159 patients in the COVID-19 cohort (Table 1).
Compared to the COVID-19–like cohorts with pneumonia and/or
influenza, patients with COVID-19 were significantly younger
(mean 56.9 [SD 20.3] years versus mean 65.8 [SD 19.3] years,
P<.001), less often White (27% versus 58.2%, P<.001), and
more often Hispanic (46.5% versus 13.6%, P<.001). In addition,
patients with COVID-19 had a significantly smaller proportion
of ever-smokers (29.6% versus 41.3%, P=.003) and fewer
patients with COVID-19 had comorbidities (37.1% versus
67.1%, P<.001). There were significant differences in IMV rate
and time to IMV between the COVID-19–like patients and
patients with COVID-19; the patients with COVID-19 had a
lower IMV rate (15.1% versus 23.2%, P=.02) and shorter time
to IMV (2.9 [SD 3.9] days versus 4.1 [SD 7.3] days, P<.001).
Additionally, we observed a significantly lower mortality rate
in patients with COVID-19 compared to the COVID-19–like
cohorts (P<.001).
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Table 1. Comparison of patient demographics in COVID-19–like and COVID-19 cohortsa.

P valuebCOVID-19
cohort
(n=159)

COVID-19–like cohort (n=16,509)Characteristics

TotalAcute respira-
tory distress
syndrome

Unspecified
pneumonia

Viral pneumo-
nia

Bacterial pneumo-
nia

Influenza

15916,5091665 (10.1)10,308 (62.4)681 (4.1)2779 (16.8)1076 (6.5)Total, n (%)

<.00156.9 (20.3)65.8 (19.3)62.3 (18.8)67.2 (18.9)63.8 (19.7)63.9 (19.5)63.9 (20.7)Age (years), mean
(SD)

.08Gender, n (%)

85 (53.5)7668 (46.4)730 (43.8)4823 (46.8)346 (50.8)1212 (43.6)557 (51.8)Female

74 (46.5)8839 (53.5)933 (56.0)5485 (53.2)335 (49.2)1567 (56.4)519 (48.2)Male

<.001Race, n (%)

43 (27.0)9603 (58.2)872 (52.4)6096 (59.1)376 (55.2)1674 (60.2)585 (54.4)White

23 (14.5)2654 (16.1)284 (17.1)1640 (15.9)123 (18.1)429 (15.4)178 (16.5)Asian

<10 (<6.3)948 (5.7)110 (6.6)598 (5.8)38 (5.6)130 (4.7)72 (6.7)Black

76 (47.8)3304 (20.0)399 (24.0)1974 (19.2)144 (21.2)546 (19.6)241 (22.4)Other

<.001Ethnicity, n (%)

81 (50.9)13,908 (84.2)1335 (80.2)8786 (85.2)568 (83.4)2321 (83.5)898 (83.5)Non-Hispanic

74 (46.5)2248 (13.6)267 (16.0)1325 (12.9)106 (15.6)380 (13.7)170 (15.8)Hispanic

<.001Insurance, n (%)

32 (20.1)3618 (21.9)414 (24.9)2160 (21.0)176 (25.8)605 (21.8)263 (24.4)Private

101 (63.5)11,804 (71.5)1129 (67.8)7447 (72.5)477 (70.0)1974 (71.0)747 (69.4)Public

26 (16.4)1087 (6.6)122 (7.4)671 (6.5)28 (4.1)200 (7.2)66 (6.2)Other

.00347 (29.6)6823 (41.3)635 (38.1)4375 (42.4)283 (41.6)1128 (40.6)402 (37.4)Ever smoked, n (%)

<.00159 (37.1)11,084 (67.1)997 (59.9)7000 (67.9)571 (83.8)1745 (62.8)771 (71.7)At least one comorbid-

ityc

.0224 (15.1)3825 (23.2)797 (47.9)1811 (17.6)95 (14.0)1031 (37.1)91 (8.5)Invasive mechanical
ventilation, n (%)

<.0012.9 (3.9)4.1 (7.3)4.3 (7.4)4.0 (7.2)6.9 (12.9)3.8 (6.7)4.4 (7.2)Time to invasive me-
chanical ventilation
(days), mean (SD)

<.001<10 (<6.3)2789 (16.9)541 (32.5)1586 (15.4)82 (12.0)513 (18.5)62 (5.8)All-cause mortality, n
(%)

aPercentages may not add up to 100 due to missing values.
bThe P value was calculated between the total of 4 retrospective COVID-19–like cohorts and the COVID-19 cohort.
cComorbidities include cardiovascular disease, diabetes, cancer, hypertension, chronic respiratory disease, respiratory failure, kidney disease, Alzheimer
disease, and cirrhosis.

Tables 2 and 3 compare symptoms at presentation and laboratory
results during a hospital course between the COVID-19–like
cohort and patients with COVID-19. Patients with COVID-19
experience a wider range and greater number of symptoms
compared to the COVID-19–like cohort with pneumonia and
influenza (P<.05). The average clinical laboratory results during
hospitalization were also different (Table 3). The median
laboratory values of D-dimer, lactate dehydrogenase, and ferritin

elevated in hospitalized patients with COVID-19. Compared to
the retrospective cohort of hospitalized patients with pneumonia
and influenza, patients with COVID-19 had significantly higher
values for lymphocyte count, platelet count, aspartate
aminotransferase, albumin, lactate dehydrogenase, and ferritin,
and lower values for white blood cell count, bilirubin, blood
urea nitrogen, D-dimer, procalcitonin, creatinine, and
prothrombin time.
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Table 2. Comparison of symptoms at admission of the COVID-19–like cohort and patients with COVID-19.

P valueCOVID-19 cohort (n=159), n (%)COVID-19–like cohort (n=16,509), n (%)Symptoms at admission

<.001116 (73.0)2643 (16.0)Cough

<.001119 (74.8.)6087 (36.9)Dyspnea

<.001103 (64.8)3147 (19.1)Fever

<.00167 (42.1)2046 (12.4)Fatigue

<.00152 (32.7)243 (1.5)Myalgias

.0151 (32.1)3910 (23.7)Hypoxemia

<.00128 (17.6)638 (3.9)Headache

.00329 (18.2)1784 (10.8)Diarrhea

<.00157 (35.8)821 (5.0)Tachypnea

<.00128 (17.6)53 (0.3)Pharyngitis (sore throat)

N/A26 (16.4)0 (0.0)Sputum

N/A6 (3.8)0 (0.0)Rhinorrhea

<.00110 (6.3)62 (0.4)Nasal congestion

N/A20 (12.6)8 (0.0)Anosmia

Table 3. Comparison of laboratory values of the COVID-19–like cohort and patients with COVID-19.

P valueMedian (IQR)Values missing, n (%)Median (IQR)Values missing, n (%)Laboratory values

<.0016.8 (3.5)0 (0.0)8.9 (5.7)2767 (16.8)White blood cell count, K/μL

.0081.1 (0.7)2 (1.3)1.0 (0.8)3386 (20.5)Lymphocyte count, K/μL

<.001240.9 (110.7)0 (0.0)197.3 (134.5)2768 (16.8)Platelet count, K/μL

.6533.2 (39.7)1 (0.6)32.0 (25.5)3977 (24.1)Alanine aminotransferase, units/L

<.00140.9 (28.6)1 (0.6)29.0 (24.9)3803 (23.0)Aspartate aminotransferase, units/L

<.0010.4 (0.3)2 (1.3)0.6 (0.5)5125 (31.0)Total bilirubin, mg/dL

<.0013.4 (0.5)1 (0.6)2.8 (1.0)3744 (22.7)Albumin, g/dL

<.00113.5 (10.3)0 (0.0)19.0 (16.5)2818 (17.1)Blood urea nitrogen, mg/dL

.820.05 (0.14)135 (84.9)0.06 (0.18)12,026 (72.8)Troponin I, ng/mL

.0011125.5 (976)141 (88.7)2311.8 (2646.5)14,717 (89.1)D-dimer, ng/mL

<.001369.0 (188.0)56 (35.2)293.0 (259.8)13,793 (83.5)Lactate dehydrogenase, units/L

<.001788.5 (875.8)55 (34.6)355.0 (819.2)14,763 (89.4)Ferritin, ng/mL

<.0010.1 (0.2)52 (32.7)0.5 (1.4)13,965 (84.6)Procalcitonin, ng/mL

.307.2 (10.2)71 (44.7)8.7 (13.7)15,225 (92.2)C-reactive protein, mg/dL

.6181.5 (161.1)93 (58.5)76.0 (143.5)13,668 (82.8)Creatine kinase, units/L

.56137.0 (4.3)0 (0.0)136.9 (4.8)2751 (16.7)Sodium, mmol/L

.974.0 (0.5)0 (0.0)4.0 (0.5)2750 (16.7)Potassium, mmol/L

<.0010.8 (0.3)0 (0.0)1.0 (0.6)2757 (16.7)Creatinine, mg/dL

<.00113.6 (1.5)43 (27.0)15.2 (3.2)6322 (38.3)Prothrombin time, s

.1095.9 (2.4)0 (0.0)96.0 (2.5)7107 (43.0)Oxygen saturation, %

.4427.7 (13.4)35 (22.0)28.5 (10.0)8125 (49.2)Fraction of inspired oxygen, %

Model Performance: Predicting 48-Hour IMV
The AUROCs of all models for predicting 48-hour IMV risk
are illustrated in Figure 2. Algorithm discrimination and other
performance metrics for the COVID-19–like cohorts are

presented for each model in Table S3 in Multimedia Appendix
1. At the prespecified threshold of 0.5, the XGBoost classifiers
achieved the highest AUROCs (range 0.772-0.905) compared
to other machine learning classifiers in each of the 16 training
cohorts for prediction of 48-hour risk for IMV. The best PPVs
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ranged between 0.583 and 0.767, and all models had an accuracy
of 0.724 or higher and specificity of 0.786 or higher. The model
trained with the influenza cohort was one of the

worst-performing models, with an AUROC of 0.772 and PPV
of 0.583 for IMV.

Figure 2. Receiver operating characteristic curves for model performance on predicting 48-hour invasive mechanical ventilation risk in the COVID-19
cohort, stratified by COVID-19–like cohorts. ARDS: acute respiratory distress syndrome; ROC: receiver operating characteristic.

The pretrained models for 48-hour IMV prediction performed
worse on the COVID-19 cohort than on the COVID-19–like
cohorts. The model with the best performance on the new
COVID-19 cohort was the XGBoost model trained on the viral
pneumonia cohort (AUROC=0.826). The accuracy, precision,
and sensitivity of the best model were 0.948, 0.423, and 0.289,
respectively. Performance metrics for each model are presented
in Table S4 in Multimedia Appendix 1. For negative cases at
the patient-day level, the mean risk score was 0.09 (SD 0.124),
with a minimum of 0.002 and a maximum of 0.859. For positive
cases, the mean risk score was 0.31 (SD 0.23), with a minimum
of 0.012 and a maximum of 0.823. At the patient level, the
best-performing model was able to predict IMV in 48 hours for
7 of the 24 intubated patients with COVID-19. The model failed

to predict the need for IMV in 48 hours for 17 patients (71%).
Among the non-IMV patients, two were predicted to be at high
risk of requiring IMV, although they were never intubated
during hospitalization. Further details of the model
hyperparameter optimization for predicting IMV can be found
in Tables S5 and S6 in Multimedia Appendix 1.

Model Performance: Predicting All-Cause Mortality
Figure 3 and Table S7 in Multimedia Appendix 1 present
detailed results of model performance for mortality prediction
on the COVID-19–like cohorts. The XGBoost classifiers
outperformed other machine learning classifiers in each of the
16 training cohorts for all-cause mortality prediction, with
AUROC values ranging from 0.679 to 0.748.
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Figure 3. Receiver operating characteristic curves for model performance on predicting inpatient mortality in the COVID-19 cohort, stratified by
COVID-19–like cohorts. ARDS: acute respiratory distress syndrome; ROC: receiver operating characteristic.

Mortality prediction was better when testing on the COVID-19
cohort, with AUROC values ranging from 0.687 to 0.928. The
best-performing model for the COVID-19 cohort was the
XGBoost model trained on all 4 COVID-19–like cohorts
(AUROC=0.928). The accuracy, precision, and sensitivity of
the best model were 0.925, 0.286, and 0.222, respectively. The
worst-performing model for the COVID-19 cohort was trained
by using the pneumonia cohort, and achieved an AUROC of
0.687. Other results are presented in Table S8 in Multimedia
Appendix 1. For all-cause mortality prediction at the patient
level, the best-performing model predicted 22% of the deaths
at the time of hospital admission. Further, our model predicted
5 deaths among the 109 patients discharged alive at the time of
hospital admission.

Manual Chart Review
Manual chart review of 24 false positive and false negative
cases was performed by author HC. Among the seven false
positive cases for IMV prediction, one patient received IMV;
however, this was not entered as structured data in the EHRs,
therefore it was marked as a false positive for the model.
Furthermore, two patients were extremely ill and close to
receiving IMV. In the 17 false negative cases, 6 patients
experienced rapid clinical deterioration in less than 24 hours or

sometimes within 12 hours, and another 6 patients received
scores that were close to the threshold. Additionally, our model
incorrectly predicted the risk of death in 12 patients, including
5 false positive and 7 false negative cases. Based on the chart
review, we confirmed that 3 of the 5 false positives were true
false positives, while for the other two, the patients’ conditions
were severe and they were identified by the clinician as having
a higher risk of death.

Algorithm Variable Importance
To identify the most salient features driving model prediction,
we calculated SHAP values for the best-performing model.
Among the top features, elevated fraction of inspired oxygen,
total bilirubin, white blood cell count, lymphocyte count,
D-dimer, and cardiac troponin, and lower albumin, oxygen
saturation, and platelet count favored the classifier to predict
an IMV event. Other important features from the best prediction
model are in Figure 4. For mortality, being older and having
higher blood urea nitrogen, potassium, and high-sensitivity
cardiac troponin, and low albumin, oxygen saturation, and
platelet count were the most influential factors in driving
mortality prediction. Other important features associated with
increased mortality risk included elevated total bilirubin and
lower platelet count (Figure 5).
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Figure 4. SHapley Additive exPlanations (SHAP) scores for identifying important features for prediction of invasive mechanical ventilation, including
demographic information, vital values, and laboratory values. The color indicates whether the value of the feature is high (red) or low (blue).

Figure 5. SHapley Additive exPlanations (SHAP) scores of the mortality prediction model. The color indicates whether the value of the feature is high
(red) or low (blue).

Discussion

Principal Findings
In the clinical care of well-established diseases, literature and
research are supplemented by the clinical judgment that is
formed and refined through repeated episodes of care. Given
the novelty of COVID-19, there is a lack of research evidence
and clinical experience to inform clinical practice and guide
care decisions. AI-enabled clinical decision support tools are
promising to fill this gap and bolster clinical decision making.
Early studies suggest that the disease manifestation, symptoms,
and clinical course of COVID-19 resemble that of other
respiratory infections, particularly pneumonia, influenza, and
ARDS [5,30-32]. Due to the lack of robust, unbiased,

representative data to train an AI model, we designed a
framework to bootstrap existing retrospective data from
COVID-19–like cohorts to predict IMV and all-cause mortality.

Our findings regarding the study cohort are consistent with
previous international studies comparing patients with
COVID-19 with patients previously hospitalized with other
respiratory illnesses. The patients hospitalized with COVID-19
in our health system were younger and had fewer comorbidities
than the COVID-19–like patients [33]. Patients with COVID-19
were less likely to have ever smoked compared to the
COVID-19–like cohort. In addition, racial and ethnic minorities
have been disproportionately affected by the disease, and we
show similar trends in our health care system [32,34]. In addition
to the variations in demographics and clinical outcomes, we
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observed differences in symptoms at admission and laboratory
values during the hospital stay. Importantly, significant
differences were observed in IMV rates, time to IMV, and
mortality rates between the two cohorts, with lower IMV and
mortality rates in the patients with COVID-19 than in the
COVID-19–like cohort, yet faster deterioration, as indicated by
a shorter duration from admission to IMV.

The models, in general, performed well in the COVID-19–like
cohorts, but less optimally in the COVID-19 cohort. Although
the AUROC values of the best IMV and mortality prediction
models in the COVID-19 cohort were good, the PPVs of both
models were low, although the NPVs were high. Overall, the
two models underestimated risk scores in patients with
COVID-19. This can be explained by several factors. First,
symptoms, laboratory values, and the proportions of missing
data were different between COVID-19–like patients and
patients with COVID-19, despite them sharing similar clinical
manifestations and symptoms. Second, unlike the
COVID-19–like cohorts, patients with COVID-19 had a broad
spectrum of clinical manifestations, with critical courses that
may involve fast deterioration and the need for IMV within 24
hours; thus, patients may have had limited signs of severe
disease progression 48 hours prior to IMV. On the other hand,
several clinical circumstances may affect clinical decisions.
Clinicians may be reluctant to put patients on a ventilator due
to the complexity of and complications associated with this
invasive procedure. Patients or family members might also be
hesitant to consent to the procedure out of fear of losing control
[35]. Sometimes, patients have a Do Not Intubate code status,
indicating they do not want to receive IMV in the event of a
life-threatening situation. All these factors challenge the
performance of our model, particularly the PPV. The model
made a positive prediction for patients who require IMV, yet
patients may not receive it in the end due to the factors
mentioned above, and these are therefore considered false
positives.

Traditional machine learning evaluation criteria, such as
AUROC and PPV, were used to assess the performance of
predicting the risk of IMV and all-cause mortality at the
patient-day level; however, there is a lack of standard criteria
to evaluate the model at the patient level when there are also
multiple day-level data. When reporting the patient-level
prediction results, a “strict” criterion was selected: the model
correctly predicted the case only when the alarm occurred at 48
hours before IMV. If the prediction occurred too early or too
close to IMV, it was considered wrong for that patient. If correct
cases were determined as at least one alarm before IMV for
those who were finally intubated and no alarm for non-IMV
patients, the model performance would be greatly improved.
The use of different standards for analyzing patient-level results
can have clinical significance. For example, if a patient is
predicted to be intubated during hospitalization, the provider
needs to be reminded to pay more attention to avoid the rapid
deterioration of the patient’s condition. Therefore, our
framework provides important insight into the deterioration of
patients with COVID-19 and the timing of that deterioration.
Further studies are needed to explore evaluation criteria for this
novel, emerging disease.

The performances of our COVID-19–like models suggest that
the deterioration in the COVID-19 population in our health
system is more similar to viral pneumonia than other respiratory
illnesses. These results support our evolving understanding of
the clinical characteristics of this disease state and support
evidence that patients with COVID-19 are less like ARDS
patients than was originally believed [36]. Although the
scientific community has been shifting practices of treating the
ventilation needs of patients with COVID-19 away from
mimicking ARDS treatment, this work may be the first
indication that there is a detectable demographic and
pathophysiologic difference in the presenting characteristics of
COVID-19 as well as the response to therapy.

This work has several clinical applications. It is notable that
this model could make for an excellent screening tool for clinical
deterioration in the inpatient setting because the model has a
high positive likelihood ratio and high specificity. This indicates
that a positive result truly indicates an increased probability of
clinical respiratory decline for those admitted to hospital with
COVID-19, even if the individual PPV for that “patient-day”
is low. The implementation of this model would allow for
enhanced monitoring of patients likely to require advanced
respiratory support, especially during surge settings when there
is a strain on staffing with advanced infectious disease or
pulmonary training.

Although there is lower ability to predict patients in need of
IMV within 48 hours or all-cause mortality at the “patient-day”
level with great precision, this work can also be used to identify
patients who are not at risk of clinical escalation. This means
that this model can be used as a screening tool in our population,
offering providers some confidence in the current level of care
being appropriate rather than using valuable hospital resources
on enhanced monitoring for patients who are less likely to need
advanced medical management for respiratory failure. Such
information can help with resource allocation and help providers
triage patients who are less likely to become critically ill. Given
the extreme stress and burden the COVID-19 pandemic has
placed on the health care system, particularly on frontline
workers, identifying patients who may need less focused
attention may reduce some of the burden for health care systems
that are already stretched thin. We anticipate that this work
could be implemented across health care systems and therefore
provide all codes and software needed to deploy these models.
The external validation of our framework across systems could
help in elucidating the clinical course of COVID-19 by refining
the model in populations over time.

Limitations
While we envision many possible applications of our framework,
we also recognize several limitations. First, our data come from
a single health care system, and the results may not generalize
to other health care systems that may have a different patient
population or clinical practice. External validation would be
required to reinforce our conclusions. Second, the sample sizes
of the COVID-19–like and COVID-19 cohorts are different,
which may bias our comparison in terms of demographics and
clinical characteristics. However, despite this difference, these
patients share similar clinical manifestations, histological
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features, and disease progression. Third, our data set contained
a relatively small number of deaths, and the model performance
on the COVID-19 cohort could be unstable based on the limited
number of patients. Future work is needed to validate the
mortality prediction in other settings. Finally, the prediction of
the risk of mortality used data from admission, limiting the
performance of the model. Despite these limitations, important
lessons have been learned from our experience of using
pretrained machine learning models for disease severity
prediction. It is feasible to pretrain a model using an unseen
disease-like cohort but this requires special caution. First,
selecting the most appropriate cohort, one which is similar to
the clinical manifestation, pathological features, and disease
progression of the targeted disease population, is essential for
developing a successful machine learning model. Second, based
on the nature of the disease and the type of data that are
available, determining the right time frame for your machine
learning model is crucial. We failed to predict whether or not
a patient with COVID-19 would need IMV during their hospital
stay using data obtained at hospital admission. Predictions may
be hampered by the rapid deterioration seen in some patients
with COVID-19 and changes in laboratory results.

Conclusions
In conclusion, our work demonstrates the feasibility of using
existing data infrastructure and AI technology to guide critical
care resource allocation in the early stages of a disease outbreak
when not many cases have been observed and there is a lack of
training data. Although the spread of COVID-19 has been
exponential worldwide, most individual health care systems do
not have a comprehensive, diverse, readily available data set of
patients with COVID-19, which is necessary to develop, train,
and validate essential AI models that may be used to guide
clinical care. To date, many COVID-19–related AI models
distributed through the scientific community have been trained
and “validated” on only a handful of patients. However, given
the lack of knowledge related to COVID-19, there is an urgent
need to learn as much as possible about the disease, even if from
small nonrepresentative populations. The framework we describe
provides a strategy to mitigate this lack of data by identifying
how and what we can learn from other COVID-19–like diseases.
As we will likely deal with another wave of COVID-19 cases
and other pandemics in the future, having a framework to rapidly
design and train predictive models will have eminent value.
Although using these COVID-19–like cohorts to learn about
and predict outcomes of patients with COVID-19 may not be
ideal, they provide an unbiased pathway to help guide clinical
decisions when faced with this novel disease.
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