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Abstract— The deployment of advanced metering 

infrastructure has already started in many countries around the 

world in order to facilitate the transition towards low-carbon 

economies, to improve electricity billing, to decrease distribution 

network operational costs, and to empower householders. In 

addition, the adoption of photovoltaic panels, electric vehicles 

and smart appliances, already being encouraged by governments, 

will change the way households consume and generate electricity. 

However, in order to adequately assess the impacts from these 

low-carbon technologies it is required a much better 

understanding of how electricity is currently consumed. This 

work firstly studies the effects of load characterization on the 

optimal selection of the conductors from the planning perspective 

based on a high granularity model for UK residential consumers 

that mimics data that could eventually be available through 

smart meters. Then, from the operational point of view, the 

benefits of load shifting (i.e., demand side management) to reduce 

peak demand are also investigated. The latter study is applied to 

a real LV network the North West of England. Results clearly 

indicate the potential benefits on LV network planning from high 

granularity data, as well as the important insights that could be 

gained from modeling load shifting schemes using such a data. 

 
Index Terms— LV networks, demand characterization, smart 

appliances, demand side management, circuit design. 

I.  INTRODUCTION 

EDUCTION of carbon emissions is currently a major 

topic in the agendas of many countries around the world. 

This challenge of moving towards a low carbon economy 

requires profound changes in the way the electricity is 

generated, transported and consumed. 

On the one hand, the deployment of advanced metering 

infrastructure (or smart metering infrastructure) has already 

started in many countries around the world in order to 

facilitate the transition towards low-carbon economies, to 

improve electricity billing, to decrease distribution network 

operational costs, and to empower householders. On the other 

hand, the adoption of low-carbon technologies such as 

photovoltaic panels, electric vehicles and smart appliances is 

also being encouraged by governments. In Latin America, for 

example, the Chilean government approved the “Net Metering 

Law” [1], giving the legal framework to allow the energy 
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injection and the payments for that energy at domestic scales. 

In the UK, feed-in tariffs have been implemented where small-

scale generation (mainly photovoltaic) and corresponding 

exports to the grid are paid premium prices (per kWh) fixed 

for a number of years [2]. Incentives for electric heat pumps 

and electric vehicles are also in place. 

If the adoption of such low-carbon technologies proves to 

be significant in the next few years, distribution networks are 

expected to experience a range of issues such as increased 

voltage drop, voltage rise, voltage unbalance, thermal 

overloads of conductors and transformers, harmonics, etc. 

However, due to the (very) short-term variations in demand 

and generation (e.g., photovoltaic panels), to assess the 

corresponding impacts on the low voltage (LV) distribution 

networks it is crucial to first a have a good understanding of 

the time-series electrical behavior of current domestic 

consumers. In addition, such models can also be used to 

investigate the extent to which demand side management 

approaches can help diminishing the impacts of future peak 

load scenarios. 

Based on a high granularity (i.e., minute by minute) model 

for UK residential consumers developed in [3] that mimics 

data that could eventually be available through smart meters, 

this work first studies the effects of load characterization on 

the optimal selection of the conductors from the planning 

perspective. Then, from the operational point of view, the 

benefits of load shifting (i.e., demand side management) to 

reduce peak demand are also investigated [11]-[13]. 

This work is structured as follows: section II explains the 

main characteristics of the adopted residential load model. 

Section III presents the impacts on planning in terms of 

conductor selection when there is a better knowledge about 

residential loads. The importance of knowing the load 

behavior to carry out demand side management schemes at a 

residential level is discussed in section IV. In particular, a load 

shifting process is proposed to show the potential that similar 

schemes might have in decreasing peak demand. Section V 

shows the corresponding application of the proposed load 

shifting technique on a real LV distribution network with five 

feeders and 334 customers in the North West of England. 

Finally, conclusions are drawn in section VI. 

II.  HIGH GRANULARITY LOAD MODEL 

To understand the real behavior of the distribution network, 

particularly LV feeders, domestic loads must be modeled in a 

way that their (very) short-term variations during the day are  
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Fig. 1.  Example of a minute-by-minute profile of a single UK household. 

 

 
Fig. 2.  Load aggregation of 100 households. 

 

considered. Consequently, throughout this work one minute 

resolution models developed in [3] for UK households will be 

adopted - mimicking data that could eventually be available 

through smart meters. This model takes into account the 

number of occupants, the type of day (weekday or weekend), 

the month, and the uses of the appliances. With such a model 

it is possible to have a usage breakdown of appliances. Given 

that the focus is on the analysis of data, for simplicity only a 

single day will be considered throughout this work. Fig. 1 

shows the residential profile of a single household with two 

occupants considering a weekday in August (UK summer). 

Given that the model produces a profile according to the 

specified characteristics of a household, it is possible to create 

random profiles based on a pre-defined set of main 

characteristics. Thus, the number of people at home was 

randomly allocated between 1 and 5; the available appliances 

are also randomly allocated in each home. 

Here, all types of consumers were randomly specified to 

create a pool of 1000 different load profiles to be used in the 

impact analysis. Each of them was created using the same 

generic weekday and month (August). The corresponding 

information is then stored in a single matrix where the position  represents the consumption during the time  of the 

appliance  in the house/profile .                         1  

Thus,  represents the load consumption of the  appliances in the house  during the time  (Fig. 1) and  

represents the load aggregation for  houses during the time  

(Fig. 2, aggregation example for 100 houses). 

III.  IMPROVING LV NETWORK PLANNING 

The typical approach in expansion planning of distribution  
 

 
Fig. 3.  Coincidence Factor 

 

 
Fig. 4.  Load Factor 

 

networks is the utilization of factors to represent the behavior 

of the load. This is mainly because it is not computationally 

efficient to carry out extensive simulations to take the 

corresponding investment decisions. For example, if applying 

a loss-based circuit design approach in order to replace 

network conductors, typically the distribution planner does not 

solve detailed power flows during the expected life time of the 

conductor to calculate the corresponding energy losses. The 

planner calculates the losses taking into account the loss load 

factor, which depends on the load factor [4]-[8]. 

The residential models described in the previous section 

give us the opportunity to calculate the coincidence factor and 

the load factor for different groups of loads. In this way, the 

coincidence factor and the load factor curves can be produced. 

The latter is particularly important to determine the optimal 

selection of conductors. 

A.  Granularity of Data 

First, it is interesting to explore the effect of data 

granularity in the calculation of the coincidence and load 

factors. As mentioned previously, the adopted load model has 

a granularity of one minute. This means that each generated 

daily profile has a  value for each period , with  between 

1 and 1440 (24 60). 

To analyze the granularity effect, the average power each 

five, ten, fifteen, thirty and sixty minutes is calculated in order 

to produce load models with the corresponding sample rate. 

Then, for each set of data with different granularity, the 

average load factor and the average coincidence factor are 

obtained for groups comprised by one to 500 households. The 

corresponding results are shown in Fig. 3 and Fig. 4. 

These figures show the importance of the granularity or 

sample rate when assessing actual measurements. For 

instance, the models with 30 and 60 minute resolution 

converge (with 500 households) to a coincidence factor bigger 
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than 0.3 whereas with one minute resolution it goes down to 

0.2. A similar effect can be observed in the case of the load 

factor. Also, it is important to note that the differences in the 

results are not necessarily that significant when the resolution 

(or sample rate) is 5 minutes instead of 1 minute. This is a 

valuable finding that should be explored in more detail with 

real measurements in order to understand the importance of 

high sample rates when monitoring LV networks, particularly 

in the presence of new types of loads and distributed 

generators. 

B.  Conductor Selection 

When a new LV feeder is designed, there are various 

techniques to design the corresponding conductors [14]. 

Eventually, the circuits will have to be able to withstand the 

peak load of the loads being fed, also considering voltage drop 

constraints as well as economic and in case environmental 

aspects. 

Here, a selection algorithm is used to choose the cheapest 

conductor among a set of feasible conductors, i.e., those with 

minimum total cost that satisfy the thermal limits. The total 

cost can be estimated through the annuity cost, i.e., the annual 

payment required every year during the life span of the 

conductor (to pay the total investment cost) plus the energy 

cost (energy losses). This can be formulated as follows [5], 

[6]:    11 1         2  

where  is the annuity of the total cost of the conductor,  

is the total investment cost of the conductor,  is the energy 

cost,  are the overall annual energy losses of the 

conductor,  is the expectance life of conductor, and  is the 

internal rate of return. For the sake of simplicity and since the 

focus is on comparing the impact of different load factors, this 

model assumes no load growth (although the model could be 

generalized to include it). 

The common approach to calculate the energy losses is by 

using the Loss Load Factor ( ); this factor represents the 

relationship between the average losses and the losses at the 

maximum demand. ⁄                   3  

This expression is typically used in distribution planning 

because the losses are only calculated (through simulations 

and/or estimations) at peak demand. Thus, the energy losses 

during period  are the product of the , the losses at peak 

demand and the length of period . 

Theoretically, the value of the  is between the load 

factor squared and the load factor ( ). A complete 

demonstration of this relationship is developed in [7]. One of 

the most common expressions to estimate the  is shown 

below [8]. 0.3 0.7           4  

Consequently, if the peak power losses (or corresponding 

peak current) of a circuit and the load factor are known 

(calculated or estimated), then it is possible to determine the 

Annuity Cost. 

 
Fig. 5.  Cable Selection – Load Factor equal to 0.48 

 
Fig. 6.  Cable Selection – Load Factor equal to 0.20 

 

Here, two different cases are analyzed to obtain the 

Annuity Cost. The first one considers just one value for the 

load factor, which corresponds to the typical approach in 

distribution planning [4]-[6]. The second case uses the load 

factor curve calculated in the previous section (Fig. 4). The 

corresponding data required to calculate the Annuity Cost for 

each conductor is presented in the Appendix. 

    1)  Constant Load Factor 

Distribution Network Operators (DNOs) often use the load 

factor of medium voltage (e.g., 33kV/11kV and above) 

distribution substation because energy and power demand 

measurements are commonly available. 

Let us assume that our typical 11kV/0.4kV distribution 

transformers have in average four main (underground) feeders, 

each of them with 100 consumers. Hence, the average number 

of customers fed by each distribution transformer is 400. In 

this case, using the load factor curve for five minute resolution 

(Fig. 4), the corresponding value would be 0.48. Using this 

load factor and the annuity cost equation, it is possible to 

determine the annuity cost curve for each conductor under 

analysis (six types of conductors – see Appendix). The 

corresponding curves are shown in Fig. 5 for different peak 

currents (a proxy of energy losses). 

From Fig. 5 is it possible to choose the cheapest conductor 
for a given peak current. For example, if the current through 
the line is 200 A, then the 300 mm2 conductor must be 
selected. However, it is important to highlight that this result 
is sensitive to the load factor. Indeed, if the load factor is 0.2 
(Fig. 6), for the same 200 A, the optimal conductor would be  
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Fig. 7.  Optimal Surface Selection 

 
185 mm2. Therefore, considering a more realistic load factor 
based on load profiles and actual number of customers would 
lead to true optimal solution, i.e., the most cost-effective 
conductor. 
    2)  Load Factor Curve 

A load factor curve is important in the conductor selection 
process because each feeder (or section) supplies different 
numbers of customers. Consequently, each feeder has a 
different load factor. Hence, the corresponding annuity cost 
depends on the number of customers supplied by the feeder 
and its peak current. Because of this, the annuity cost for each 
conductor can be represented as a surface rather than a bi-
dimensional curve. 

Fig. 7 shows the annuity cost surface for each of the 

conductors considered and indicates the relationship among 

cost, current and number of customers (the  depends on 

the  and this in turn depends on the number of customers). 

For example, in the zone between 400 A and 500 A, the 

cheapest surface is the surface cost of 300 mm2 (blue surface) 

only if the number of customers is lower than 100. However, 

if the number is higher, then the surface cost of 2x185 mm2 

(light blue surface) will be the cheapest one. Thus, a better 

conductor selection is done when the load factor curve is taken 

into account. 

These results may encourage DNOs to carry out 

measurement campaigns in order to get a better understanding 

of their LV electricity consumption and with that potentially 

improve investment decisions. 

IV.  IMPROVING LV NETWORK OPERATION 

A better understanding of residential load profiles is not 

only important for planning purposes. In order to implement 

demand side management (DSM) schemes, as part of the 

transition towards Smart Distribution Networks, such an 

understanding is also fundamental. In liberalized, fully 

unbundled electricity markets such as in the UK, DSM 

schemes could in the future be used by DNOs to defer new 

infrastructure investment due to load growth (e.g., due to 

electric heat pumps and electric vehicles), ultimately bringing 

reduced tariffs to consumers. 

In particular, the amount of aggregated power (from  
 

 
Fig. 8.  Demand profile of each appliance group – single household. 

 
Fig. 9.  Demand profile of each appliance group – 100 households. 

 

common household appliances) able to be ‘easily’ shifted 

thorough the day in order to decrease the peak demand at the 

distribution transformer (also known as peak shaving) will be 

investigated. 

It is important to highlight that the actual implementation 

of a DSM scheme where household appliances are actively 

managed for peak shaving purposes will certainly require 

(among many aspects) the corresponding communication 

infrastructure, adequate control algorithms, and suitable value 

propositions for consumers to engage. This is not the focus of 

this section. This section aims at highlighting the potential that 

certain loads might have in similar future schemes as part of 

the Smart Grid vision. 

A.  Power Available from Household Appliances 

In order to estimate the aggregated power that could be 

used for peak shaving purposes it is necessary to identify the 

different types of appliances in the dwellings. The appliances 

already incorporated in the adopted load model can be 

classified in the following groups: 

• Fridge: chest freezer, fridge freezer, upright freezer. 

• Cooking: hob, oven, microwave, kettle, small 

cooking appliance. 

• Washing: dish washer, tumble dryer, washing 

machine, washer/dryer. 

• Other Appliance: CD player, phone, iron, vacuum, 

fax, PC, printer, TV, receiver, etc. 

Using the daily profiles already produced for section II 

(that includes a breakdown of loads), it is possible to show the 

aggregated behavior of the appliance groups for a single (Fig. 

8) and 100 households (Fig. 9). 
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Fig. 10.  Electrical consumption for different fridge loads. 

 
Fig. 11.  Load Factor and Coincidence Factor for Fridge load and total load 

 

Two important characteristics can be observed from the 

aggregated demand of 100 households (Fig. 9). Firstly, the 

fridge group is almost constant in comparison with the other 

loads. Secondly, the washing group has an important presence 

along the day, especially during peak hours for the distribution 

transformer. These two characteristics could be exploited by 

the DNOs in a potential DSM scheme given that correspond to 

household appliances that do not significantly affect the 

comfort level of the occupants if externally managed. 

B.  Potential of the Fridge Group 

Each fridge load has a cycle consumption pattern through 

the day; the duration and the amplitude of each period depend 

mostly on the temperature inside of the fridge. If the fridge 

door is closed the duration and amplitude of each period is 

almost the same. However, when the door is open the inside 

temperature starts to increase and therefore the electrical 

consumption is higher. Fig. 10 shows the electrical 

consumption of different fridges (one minute resolution) from 

the adopted load model. 

From Fig. 10 it can be observed that these loads are present 

almost during the whole day. Indeed, if we compare the load 

factor and the coincidence factor calculated in section III with 

those for the fridge loads only (Fig. 11), it is clear that the 

values are respectively much higher and lower than for the 

total load. 

It is worth noting that, similarly to opening and closing 

fridges’ doors, reducing their temperature or cutting them off 
 

 
Fig. 12.  Shifting process for a washing machine. 

 

as part of a potential DSM scheme, means that once back to 

normal operation, more power will be required (for them to 

restore their specified temperatures). Consequently, the 

thermal behavior of the load needs to be understood in order to 

really apply fridge load control in peak demand reduction. 

Although measurements are required to actually understand 

the real potential and behavior of fridge loads in a given 

region, the high load factor of these particular appliances is an 

indication of their potential for DNOs. Because of the fact 

fridges are common is most households around the world, 

most of the research has been focused on system-level 

frequency demand response [10]. 

C.  Potential of the Washing Group 

The washing group corresponds to what can be called 

passive loads, i.e., loads that can be shifted without disturbing 

the normal behavior of the household occupants. In this work, 

it is considered that the use of this group of appliances can be 

moved through the day through a DSM scheme in order to 

decrease the peak demand. 

Fig. 12 shows an example of the potential shifting process 

for one washing machine from the original period (red color) 

to a new period (blue color). 

Assuming that the DNO is able to control the washing 

group appliances and can also forecast the aggregated load 

profile for a particular number of customers, it is possible to 

propose an algorithm to minimize the peak demand. The 

problem to solve is formulated as follows: minimize              5  

The minimization is achieved by shifting the washing 

appliances in each home. To solve this problem a heuristic 

methodology is presented in [11] using 30 houses. Also a 

linear programming (LP) solution is presented in [12], solving 

the general problem (different appliances to be shifted) for 10 

users, and the extension of [12] to integer LP is presented in 

[13] using four dwellings. These works show the potential in 

peak demand reduction using different appliances; however, 

they do not show the implications in real LV distribution 

systems (nearly 100 loads per feeder). Thus, different group of 

loads with different available appliances (not everyone has 

washing requirements the same day) have different impacts on 

peak demand reduction and on the LV distribution system. 
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Fig. 13.  Original demand and demand after the shifting process. 
 

 
Fig. 14.  Histogram of peak shaving benefits 

 

To exemplify the potential impact of load shifting on LV 

network operation and planning, in this paper a basic 

procedure is developed. The washing appliances are shifted 

randomly and the peak demand is calculated, the process is 

repeated thousands of times and the final solution will be the 

one corresponding to the lowest peak. The procedure to 

appreciate the peak reduction is: 

• Creation of N profiles using the load model. 

• Identification of the washing appliances in each of 

the N houses. 

• Re-allocation of the washing appliance in order to 

decrease the peak demand by using the basic 

heuristic. 

This process was first applied to a feeder with 100 

households and resulted in a 15% reduction of the peak 

demand as shown in Fig. 13. It can also be observed that a 

significant part of the washing load was shifted to early hours 

of the day. 

Each household profile is different, so the peak shaving for 

one feeder with 100 houses could be different from another 

equal in size – each household uses the washing appliances 

differently (this is captured in the load model). 

In order to understand how the peak shaving benefits vary 

for different groups of households, the proposed shifting 

algorithm is applied to 100 different groups each with 100 

households. 

The maximum reduction found in this analysis was 32%, 

corresponding to a group with many washing appliances 

available. The minimum reduction was 2% and the average  
 

TABLE I 
PERCENTAGE OF PEAK REDUCTION CONSIDERING BANNED TIMES 

 

Temporal 

Constraint 

Percentile 

5th 

Percentile 

50th 
Mean Std Dev 

Base Case 3.55 11.30 12.13 5.52 

(1-6) 1.68 9.16 9.58 4.95 

(0-6) 1.50 9.42 9.46 4.94 

(0-8) 1.45 8.83 9.01 4.51 

(18-20) 5.61 12.85 13.32 5.44 

 

reduction was 12 %. This particular case study provides a very 

interesting insight to the DNO: in 50% of the cases the peak is 

shaved by more than 11.4 %, and in 95% of the cases this 

reduction is bigger than 3.6 %. By understanding the potential 

contribution from these particular loads, DNOs can decide on 

whether to go ahead with a DSM scheme based solely on them 

or in combination with other appliances or loads. 

In addition, if washing appliances are capable of 

communicating to the DNO (or the DSM scheme itself) their 

availability (i.e., a customer is ‘requesting’ use of the 

appliance), then the DNO could apply the shifting algorithm 

and have more certainty on the expected reduction of the peak. 

It is important to note that the above proposed algorithm is 

considering the whole day to allocate the new washing process 

(i.e., the use of the appliance can be shifted to times that could 

disturb household occupants or neighbors). Thus, some 

periods of the day could be banned. To model that effect the 

following banned times are defined: 

• (1-6) no washing between 1 and 6 am. 

• (0-6) no washing between 0 and 6 am. 

• (0-8) no washing between 0 and 6 am. 

• (18-20) no washing between 6 and 8 pm. 

The adapted shifting algorithm is applied again for 100 

different groups each with 100 households. The results for 

each case are presented in Table I. 

The best solution is found when the peak time period is 

banned. It is also possible to appreciate that the % of reduction 

decreases when the number of hours during the off-peak 

period are increased. 

V.  REAL LV NETWORK APPLICATION 

The shifting algorithm with the peak time period banned is 

applied on a real low voltage distribution network from the 

North West of England, owned and operated by Electricity 

North West Limited (ENWL). This network has five low 

voltage feeders, 334 costumers and 8 km (Fig. 15). 

In order to understand the effect of the number of 

customers, the methodology is applied to each feeder 

separately. First of all, one profile is created for each 

costumer; the aggregation of these profiles produces the 

demand profile of the feeder. After that, the shifting algorithm 

is applied; this creates modifications in some costumer 

profiles (those with washing appliances) and therefore it 

produces a new demand profile of the feeder. The difference 

between the old and new demand profile peak is the peak 

reduction. To observe the impact of that peak reduction in 

each segment of the real network, two time series power flow 
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Fig. 15.  ENWL Low Voltage Distribution Network 

 

simulations are carried out for each feeder, one for the profiles 

before the methodology application and one after the shifting 

process. 

The power flow simulation takes into account the network 

topology, the conductor information and the location of the 

loads; it is important to remark that the load behavior is 

coming from the load model presented in Section II, which 

represents just residential loads, and therefore it is not the 

actual behavior of the corresponding ENWL customers. 

However, this is a suitable approach to test the potential 

benefit of the proposed load shifting technique. 

Another important feature of the power flow simulation is 

the capability to solve the problem for one whole day with 5 

minutes resolution (288 periods during the day). With this it is 

possible to observe the current through each line for each 

period of time. As an example, Fig. 16 and Fig. 17 show the 

currents through the feeder 1 (blue line in Fig. 15) before and 

after the shifting algorithm, respectively. 

In Fig. 16 and Fig. 17, the lines are sorted from the 

transformer to the last line. For that reason, the current 

circulation is bigger in the first lines (main feeder) and 

decreases till the last lines (connection lines for the 

customers). Obviously, this aggregation effect happens 

because of the radial structure of the LV feeders. 

Fig. 16 shows that the morning peak current is about 65 A 

and the afternoon one is about 70 A. Also, it is possible to 

observe that the consumption during the night time is small 

and the aggregation effect in the first lines is not significant 

during the night time. On the other hand, Fig. 17 shows a 

decrease in the peak demand. In fact, the morning peak current 

is about 55 A and the afternoon peak current is 60 A, which 

means a reduction of 14% in the maximum peak demand. 

The change in the current profiles because of the load 

shifting algorithm can be observed in Fig. 17; the consumption 

is moved to the off peak period by shifting part of the passive 

loads to the night time period. Indeed, the aggregated effect in 

the first lines during the night period is twice the same effect 

before the algorithm application. The same features described 

in this section can be observed for the rest of the feeders. 

It is important to recall that the previous result corresponds 

to one particular population of loads with certain amount of  
 

 
Fig. 16.  Currents considering business as usual operation – Feeder 1. 

 
Fig. 17.  Currents after applying the load shifting algorithm – Feeder 1. 

 
TABLE II 

PERCENTAGE OF PEAK REDUCTION PER FEEDER 
 

 
Customers 

Percentile 

5th 

Percentile 

50th 

Feeder 1 63 2.43 12.05 

Feeder 2 113 5.21 12.49 

Feeder 3 28 0.64 12.54 

Feeder 4 98 4.57 12.38 

Feeder 5 24 0.41 12.98 

 

passive loads able to be shifted. Therefore, to have a more 

accurate assessment of the potential benefits from the 

proposed load shifting algorithm considering different load 

populations, a Monte Carlo analysis is carried out. 1000 

populations are simulated for each feeder. The main outcomes 

are shown in Table II. 

Table II indicates that independently of the load number, in 

50% of the cases the peak decreases by more than 12%. 

However, the percentage of peak reduction in the 5th percentile 

(5% of the cases) increases if the number of load increases; 

this is an expected result because the probability to have 

passive loads available increases with the number of 

customers. 

With this analysis the DNO is able to know the most likely 

peak reduction (about 12%) and also the lowest contribution 

according to the number of customers per feeder. 

Consequently, this analysis can inform operational decisions 
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when implementing similar DSM schemes. 

VI.  CONCLUSIONS 

This work presented a set of potential (positive) impacts in 

LV network planning and operation considering the 

availability of high granularity consumer demand data (data 

that could eventually be available through smart meters). 

From the planning perspective, in terms of the effects of the 

data granularity level on the load factor and coincidence 

factor, it was found that hourly ‘sampling rates’ produces an 

overestimation of those factors. On the other hand, 1 and 5 

min data do not show significant differences. This is crucial in 

determining the right level of data to be monitored or stored 

for similar purposes. In terms of optimal conductor selection, 

it was also demonstrated that taking historical values for the 

load factor rather than those based on measurements could 

lead to suboptimal investments. 

From the operational perspective, it was shown through the 

coincidence and load factor curves that the fridge loads are 

above those for the total loads, making them a feasible load to 

be controlled. However, considering only the washing 

appliances, a load shifting algorithm was proposed to assess 

the potential peak reduction from demand side management 

strategies. Results using a real LV network showed that it is 

possible to estimate the most likely peak reduction as well as 

the lowest contribution according to the number of customers 

per feeder. This analysis can inform operational decisions 

when implementing similar demand side management 

schemes. 
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VIII.  APPENDIX 

The installation cost for every underground cable is 

140,000 ₤/km. The cost of energy losses cost is 45.3 ₤/MWh. 

The internal rate of return is 7%. The life expectancy is 30 

years. 

 
TABLE III 

CONDUCTOR PARAMETERS 
 

Size 

(mm
2
) 

Capacity 

(A) 

R 

(ohm/km) 

X 

(ohm/km) 

Cost per km 

(£k) 

95 220 0.3200 0.0690 10.5 

185 320 0.1640 0.0685 18.0 

300 420 0.1000 0.0675 25.5 

2x185 576 0.0820 0.0343 36.0 

2x300 756 0.0500 0.0338 51.0 

3x300 1071 0.0333 0.0225 76.5 
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