
Prog Artif Intell (2012) 1:89–101
DOI 10.1007/s13748-011-0008-0

REVIEW

Learning from streaming data with concept drift and imbalance:
an overview

T. Ryan Hoens · Robi Polikar · Nitesh V. Chawla

Received: 1 October 2011 / Accepted: 30 November 2011 / Published online: 13 January 2012
© Springer-Verlag 2011

Abstract The primary focus of machine learning has tradi-
tionally been on learning from data assumed to be sufficient
and representative of the underlying fixed, yet unknown, dis-
tribution. Such restrictions on the problem domain paved
the way for development of elegant algorithms with theo-
retically provable performance guarantees. As is often the
case, however, real-world problems rarely fit neatly into such
restricted models. For instance class distributions are often
skewed, resulting in the “class imbalance” problem. Data
drawn from non-stationary distributions is also common in
real-world applications, resulting in the “concept drift” or
“non-stationary learning” problem which is often associ-
ated with streaming data scenarios. Recently, these problems
have independently experienced increased research attention,
however, the combined problem of addressing all of the above
mentioned issues has enjoyed relatively little research. If the
ultimate goal of intelligent machine learning algorithms is to
be able to address a wide spectrum of real-world scenarios,
then the need for a general framework for learning from, and
adapting to, a non-stationary environment that may introduce
imbalanced data can be hardly overstated. In this paper, we
first present an overview of each of these challenging areas,
followed by a comprehensive review of recent research for
developing such a general framework.

Keywords Class imbalance · Concept drift · Data streams ·
Classification

T. R. Hoens (B) · N. V. Chawla
Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN 46556, USA
e-mail: thoens@cse.nd.edu

R. Polikar
Electrical and Computer Engineering, Rowan University,
Glassboro, NJ 08028, USA

1 Introduction

Classification is one of the most widely studied problems in
the data mining and machine learning communities. Tradi-
tionally, the classification problem consists of attempting to
learn concepts from a static dataset, the instances of which
belong to an underlying distribution defined by a generat-
ing function. This dataset is therefore assumed to contain all
information necessary to learn the relevant concepts pertain-
ing to the underlying generating function.

This model, however, has proven unrealistic for many real-
world scenarios, e.g., intrusion detection, spam detection,
fraud detection, loan recommendation, climate data analysis,
long term epidemiological studies, etc. Instead of all training
data being available from the start, data is often received over
time in streams of instances or batches. Such data tradition-
ally arrives in one of two different ways (shown in Fig. 1),
either incrementally (e.g., hourly temperature readings as in
Fig. 1a), or in batches (e.g., daily internet usage dumps as in
Fig. 1b). The challenge is then to use all the information up
to a specific time step t to predict new instances arriving at
time step t + 1.

Learning under such conditions is known as incremen-
tal learning. While a variety of definitions for incremental
learning exist in the literature, we propose a general defini-
tion due to Muhlbaier et al. [67], outlined by several authors
[32,37,55,56]. Namely, a learning algorithm is incremental
if, for a sequence of training instances (potentially batches
of instances), it satisfies the following criteria:

1. it produces a sequence of hypotheses such that the cur-
rent hypothesis describes all data seen thus far.

2. it only depends on the current training data and a limited
number of previous hypotheses.

123

90 Prog Artif Intell (2012) 1:89–101

(a)

(b)

(c)

Fig. 1 Graphical representation of the three different types of datasets, where each rectangle represents an instance, and the color of the instance
represents the class. Data arrives at each of the tick marks, and instances outlined in gray denote a “batch” of instances all arriving simultaneously

Given this definition, learning from such data streams
requires a classifier that can be updated incrementally in
order to leverage the newly available data, while simulta-
neously maintaining the performance of the classifier on old
data. The competing motivations of this goal give rise to the
stability–plasticity dilemma [38], which asks how a learning
system can be designed to remain stable and unchanged to
irrelevant events (e.g., outliers), while plastic (i.e., adaptive)
to new, important data (e.g., changes in concepts).

Therefore, the stability–plasticity dilemma represents a
continuum on which incremental learning classifiers can
exist. On the stability end of the continuum are the tradi-
tional, batch learning algorithms (i.e., algorithms trained on
a single batch of data, or non-stream based learners). Batch
learners ignore all new data, instead focusing entirely on
previously learned concepts. On the other end of the con-
tinuum are online learning [72] algorithms, where the model
is adapted immediately upon seeing the new instance, and
the instance is then immediately discarded.

While batch learners exist at one end of the continuum of
the stability–plasticity dilemma, they are not, by definition,
incremental learners. This is due to the fact that batch learners
are incapable of describing any new instances once they have
been learned, and thus fail criterion [1]. When used as incre-
mental learning algorithms, this limitation is often mitigated
by creating ensembles of batch learners, where new batch
learners can be learned on the new data, and then combined
through a voting mechanism.

1.1 Contributions

In addition to the stability–plasticity dilemma, presenting the
data in a stream can lead to new challenges that must be
addressed. We begin by defining these challenges (Sect. 2),
and demonstrating how they affect learning in data streams.

We also aim to provide a comprehensive overview of the
work done to combat the class imbalance problem in data
streams (defined more formally in Sect. 2.2) which exhibit
concept drift (defined in Sect. 2.1). We also hope to spur
research in this field, as we will demonstrate that there is a
distinct lack of research into the problem.

Finally, this work aims to be a complement to the work
by Moreno-Torres and Herrera [63], focusing mainly on the
underlying concept drift problem, and highlighting research
which pays special attention to the class imbalance problem.

2 Challenges of learning in data streams

One of the main assumptions of traditional data mining is
that each dataset is generated from a single, static, hidden
function. That is, the function generating data for training
is the same as that used for testing. In the streaming data
model this need not be true, i.e., the function which gen-
erates instances at time step t need not be the same func-
tion as the one that which generates instances at time step
t + 1. This (potential) variation in the underlying function is

123

Prog Artif Intell (2012) 1:89–101 91

known as concept drift, whose formal definition is provided
below.

The major assumption with concept drift is that the (hid-
den) generating function of the new data is unknown to the
learner, and hence the concept drift is unpredictable. If the
generating function for the drifting concepts was known, one
could merely learn an appropriate classifier for each rele-
vant concept, and apply the correct classifier for all new data
(which is known as the multitask learning problem). In the
absence of such knowledge, then, we must design a unified
classifier that can handle such changes in concepts over time.

Another challenge arises when it is assumed that the
prevalence of each class in the dataset is, and will remain,
equivalent. While class prevalence in traditional data mining
problems remains constant, such an assumption is partic-
ularly impractical in streaming data applications, where the
class distributions can become severely imbalanced. Thus the
positive (rare) events, which are already underrepresented
in a static dataset, can become even more severely under-
represented in streaming data. Hence, when combined with
potential concept drift, class imbalance poses a significant
challenge that needs to be addressed by any algorithm that
proposes to deal with learning from streaming data.

2.1 Concept drift

When learning from data streams, we assume that at time step
t the learning algorithm L is presented with a set of labeled
instances {X0, . . . , Xt }, where Xi is a p-dimensional feature
vector and each instance has a corresponding class label yi .

Given an unlabeled instance Xt+1, the learning algorithm
provides a (potentially probabilistic) class label for Xt+1.

Once the label is predicted, we assume that the true label
yt+1 and a new testing instance Xt+2 become available for
testing. Furthermore, we write the hidden function f gener-
ating the instance at time t as ft .

Concept drift is said to occur when the underlying func-
tion (f) changes over time. There are multiple ways in which
this change can occur. Consider classifying Xt+1: in order to
optimally classify Xt+1, we need to know two pieces of infor-
mation. First, the prior probability of observing each class,
p(ci), and second, the conditional probability of observ-
ing Xt+1 given each class, p(Xt+1|ci). Bayes’ theorem then
allows us to compute the probability that Xt+1 is an instance
of class ci as:

p(ci |Xt+1) = p(ci)p(Xt+1|ci)

p(Xt+1)
, (1)

where p(Xt+1) is the probability of observing Xt+1. Note,
however, that p(Xt+1) is constant for all classes ci , and can
thus be ignored.

As noted by Kelly et al. [47], concept drift can then occur
with respect to any of the three major variables in Bayes’
theorem:

1. p(ci) may change (i.e., class priors).
2. p(Xt+1|c) may change (i.e., the distributions of the

classes).
3. p(c|Xt+1) may change (i.e., the posterior distributions

of class membership).

While Kelly, Hand, and Adams claim that it is only the
change in posterior probability that is important, we do not
distinguish between the various forms of concept drift, which
are depicted in the cartoon representation shown in Fig. 2.

In Fig. 2a, the prior probability of the circle class instances
increases after concept drift. This models the change in p(ci);
the first type of concept drift. Such concept drift can be
problematic, as the change in class priors can cause well
calibrated classifiers to become miscalibrated. Furthermore,
severe changes in the class priors can lead to the imbalance
problem, which we study further in Sect. 2.2.

The second type of concept drift is demonstrated in Fig. 2b,
i.e., a change in p(Xt+1|c). The drift results in the boundary
for the circle class instances to become altered.

Finally, in Fig. 2c the posterior probability of an instance
belonging to a particular class changes after concept drift, as
modeled by the shifting dashed class boundary. The added
uncertainty, due to a change in p(c|Xt+1), is the most severe
form of concept drift, because it directly affects the perfor-
mance of a classifier, as the distribution of the features, with
respect to the class, has changed.

Note that while we have given a brief overview of con-
cept drift in particular, Moreno-Torres et al. [64] provide a
more focused overview of different forms of “dataset drift”,
as well as their causes.

2.1.1 Real drift versus virtual drift

In addition to classifying drift based on the changes in prob-
abilities, the different forms of concept drift can be further
classified as either real concept drift, or virtual concept drift
[79,85]. In virtual concept drift, while the distribution of
instances may change (corresponding to a change in the
class priors or the distribution of the classes), the underly-
ing concept (i.e., the posterior distribution) does not. This
may cause problems for the learner, as such changes in the
probability distribution may change the error of the learned
model, even if the concept did not change. Additionally,
while previously portions of the target concept may have
gone unseen by the learner, due to a change in the distribution
such instances may become more prevalent. Since the learner
was never presented with such data, it could not learn the
concept and therefore must be retrained. This type of virtual

123

92 Prog Artif Intell (2012) 1:89–101

Fig. 2 Graphical representation
of the three different drift types
detailed in Sect. 2.1

(a) (b) (c)

drift is especially relevant when the data stream exhibits class
imbalance, which we discuss in the next section.

Alternatively, real concept drift is defined as a change in
the class boundary (or, more formally, a change in the poster-
ior distribution). While such a change in the posterior distri-
bution indicates a more fundamental change in the generating
function, we do not distinguish between the two forms of drift
in practice. This is due to the fact that while real concept drift
requires a change in the model, virtual concept drift does as
well. Since the result is the same, regardless of what type of
concept drift is detected, no distinction is made between the
two forms in this paper.

2.1.2 Speed of drift

In addition to classifying the different types of concept drift
as being real or virtual, it is often common to classify drift
based on its speed. In the next section, we discuss the vari-
ous speeds with which concept drift can occur, and discuss
its relative effects.

When detecting concept drift, one must be conscientious
of the various rates at which concept drift which may be
present. In particular, the speed can occur in two main ways:
sudden and gradual. For this section we assume that f gen-
erates the original concept, and g generates the new concept.

In sudden concept drift (depicted in Fig. 3), there is a def-
inite time period t at which f ceases to be used to generate
the concepts; at this point g is used instead. This is the sim-
plest case of concept drift. Since sudden concept drift—also
referred to as concept change—is defined as having a sharp
boundary between generating functions, it is often the eas-
iest to detect, as future data no longer resembles the past
data.

In contrast to sudden drift, gradual concept drift (depicted
in Fig. 3b) occurs when there is a (relatively) smooth transi-
tion from sampling from f to sampling from g. The smoother
the transition from f to g, the more gradual the concept drift.
The difficulty of detecting this type of concept drift is further
exacerbated by the fact that f and g can be different in minor
(but important) ways. In such cases, the existence of a very
gradual shift may go unnoticed, increasing the likelihood of
it being missed by the classifier.

As concepts change over time, there may be instances
where a concept will reoccur (shown in Fig. 3c). A concept
can reoccur either suddenly, or gradually. A concept also need
not reoccur at regular intervals or in the same manner, instead
reoccurring at (seemingly) random times in (seemingly) ran-
dom ways. Such reoccurring concepts can be exploited by
learning algorithm to improve the performance with limited
data, as the classifier can retain knowledge of the previous
concept, e.g., by keeping models trained on the old data.

123

Prog Artif Intell (2012) 1:89–101 93

Fig. 3 Graphical representation
of the various speeds of concept
drift

(a)

(b)

(c)

2.2 Class imbalance

Class imbalance is a common problem faced in the data
mining community with a rich history [16,18,19]. Class
imbalance arises when one of the classes (typically the more
important, or positive, class) is severely underrepresented in
the dataset. Unlike the concept drift problem, the class imbal-
ance problem can also appear in static datasets. In addition to
instilling bias in the learning algorithm towards the majority
class, class imbalance also causes challenges with interpre-
tation, as the standard evaluation metric (i.e., accuracy, or its
complement, error) becomes meaningless. After all, under
such a metric, indiscriminately choosing the majority class
becomes the optimal decision (e.g., with a class ratio of 99:1,
99% accuracy is achievable by always predicting the major-
ity class).

The problem of class imbalance is further exacerbated
when learning from data streams, as the duration between
consecutive positive class examples can become arbitrarily
large, which in turn may seriously impair the learner’s abil-
ity to learn the positive class. Consider, for example, the case
where a sensor is polled once a day in a dataset which has a
class ratio of 100:1. In such instances, it is likely that there
will be no positive class instances seen for months at a time.
The paucity of data makes the positive class boundary very
hard to learn in practice.

2.3 Concept drifting data streams with class imbalance

Combining class imbalance with concept drift, we see that the
two problems together provide confounding effects. Namely,
in an imbalanced data stream undergoing concept drift, the

time until the concept drift is detected can be arbitrarily long.
This is due to so few positive examples appearing in the
stream, which in turn makes it difficult to infer the source of
the error for the positive class. In some cases, the misclassi-
fied positive class instance can merely be a result of noise in
the data stream. In other cases, however, such a misclassifi-
cation can signify a drift in concept that must be handled by
the algorithm.

In addition to being a challenging problem, there is also a
distinct lack of research in such scenarios (as seen in Sect. 7).
Therefore, we recommend further research into the field, as
it provides a challenging frontier, one that combines two of
the difficult challenges present in data mining.

3 Overcoming concept drift

In order to learn in the presence of concept drift, algorithm
designers must deal with two main problems. The first prob-
lem is detecting concept drift present in the stream. This is
also referred to as change detection or anomaly detection in
related literature. Once concept drift has been detected, one
must then determine how to best proceed to make the most
appropriate predictions on the new data.

Techniques developed to overcome concept drift can be
broken down into three main categories:

• adaptive base learners
• learners which modify the training set
• ensemble techniques

In the following sections we discuss each of the categories,
and classifiers in the categories, in more detail.

123

94 Prog Artif Intell (2012) 1:89–101

4 Adaptive base learners

Adaptive base learners are the conceptually simplest way of
addressing concept drift. Such learners are able to dynam-
ically adapt to new training data that contradicts a learned
concept. Depending on the base learner employed, this adap-
tation can take on many forms, but usually relies on restricting
(or expanding) the data that the classifier uses to predict new
instances in some region of the feature space. In this section
we explore the various adaptive base learners developed by
the community.

4.1 Decision tree based methods

One base learner that has been heavily studied in the con-
text of concept drift is the decision tree; of which the most
common variant is C4.5 [73]. The original extension to the
decision tree learning algorithm, called very fast decision
tree (VFDT) proposed by Domingos and Hulten [25], dealt
with building decision trees from streaming data. In VFDT,
Hoeffding bounds [41,60] are used to grow decision trees in
streaming data. The authors show that in the case of stream-
ing data, applying Hoeffding bounds to a subset of the data
can, with high confidence, choose the same split attribute as
using all of the data. This observation allows for trees to be
grown from streaming data that are nearly equivalent to those
built on all of the data.

In particular, Hoeffding bounds (or additive Chernoff
bounds) are a statistical method for obtaining confidence
bounds on the mean of a distribution. Specifically, given n
independent observations of random variable x with range r,
observed mean of μo, the Hoeffding bound states that with
probability 1 − δ, the true mean of the variable is μo − ε,

where:

ε =
√

r2 ln(1/δ)

2n
. (2)

Note that the Hoeffding bound holds irrespective of the dis-
tribution. This is an attractive quality for building decision
trees, as given a desired confidence level, one can compute
how many instances one must see before they are sure that
the observed distribution has the same mean as the actual
distribution. As Domingos and Hulten demonstrate [43], this
result enables the building of decision trees. To accomplish
this, they define G(Xi) as the splitting criterion, G(Xi) be
the estimate for G after n instances, Xa as the best attribute
for splitting, and Xb as the second best attribute. They then
define �G = G(Xa)−G(Xb) ≥ 0 be the difference between
the observed splitting criterion values. The Hoeffding bound
then guarantees that Xa is the optimal attribute to split on
with probability 1 − δ if, after n instances, �G > ε.

Many modifications of VFDT were made for streams
which undergo concept drift. The first of which is due to
Hulten et al. [43], who adapted VFDT to create the con-
cept-adapting very fast decision tree (CVFDT). In CVFDT,
a sliding window of instances is retained in short term mem-
ory. After a fixed number of new instances arrive, the rele-
vant statistics at each of the nodes are updated (old instances
removed, new instances added), and the Hoeffding bounds
are recomputed. If a better splitting attribute is found, the
(sub)tree determines concept drift may have occurred and
a new (sub)tree is learned. The algorithm then waits for
more instances and if the new instances confirm that the new
(sub)tree learned is of higher quality than the original, the
original is replaced.

Since the development of CVFDT, a number of modi-
fications have been proposed [42,7]. Hoeglinger and Pears
proposed an alternative to CVFDT which is based on a con-
cept-based window, as opposed to the fixed window in
CVFDT. In their approach, instead of updating with respect
to time, the window is updated with respect to concepts.
To accomplish this, trees are only grown from the leaves.
Instances are then retained until the window becomes full,
when underused leaves become “recombined” with their par-
ent nodes, and all instances associated with the leaf are dis-
carded. Leaves are chosen to be recombined by minimizing
the overall loss of information for the tree. With the reclaimed
window space, new instances can be accepted and the tree
can continue to grow.

More recently, Bifet and Gavaldà [7] proposed two new
methods: the Hoeffding window tree (HWT), and the Hoe-
ffding adaptive tree (HAT). HWT is similar to CVFDT with
two major differences. First, HWT creates alternative
(sub)trees immediately without waiting for a fixed number
of instances, which enables the algorithm to more quickly
respond to concept drift. Second, HWT does not wait for a
fixed number of instances to update a (sub)tree, instead pre-
ferring to update as soon as there is evidence to support the
improvements of the new (sub)tree. Not having to wait a fixed
number of instances gives HWT a distinct advantage over
CVFDT, as concept drift can be more automatically detected,
with fewer user-defined parameters. Bifet and Gavaldà also
propose HAT, which aims to fix the other major deficiency of
CVFDT, namely the fixed-size sliding window. Thus, instead
of using a fixed window to detect change, HAT use an adap-
tive window at each internal tree node. The adaptive win-
dow allows HAT to more quickly and accurately respond to
concept drift, as it is no longer bound to a parameterized
window size. Another improvement that HAT brings over
CVFDT is that of a concrete performance guarantee. Namely,
HAT, under appropriate assumptions and after concept drift
has been detected, guarantee to converge to the tree that
VFDT would have built seeing only the instances in the new
concept.

123

Prog Artif Intell (2012) 1:89–101 95

As an extension to standard decision trees, Buntine [12]
introduced option trees, which were further explored by Koh-
avi and Kunz [49]. In standard decision trees, there is only one
possible path from the root to a leaf node, where predictions
are made. In option trees, however, a new type of node—
known as an option node—is added to the tree, which splits
the path along multiple split nodes. Pfahringer, Holmes, and
Kirby combined the concept of Hoeffding trees and option
trees to create Hoeffding option trees (HOTs) [69]. Pfah-
ringer et al. combine these two methods by altering a stan-
dard Hoeffding tree so that, as data arrives, if a new split
is found to be better than the current split at a point in the
tree, an option node is added and both splits are kept. Bifet
et al. extend HOTs further in adaptive Hoeffding option trees
(AHOTs) [8]. In AHOTs, each leaf is provided with an expo-
nential weighted moving average estimator, where the decay
is fixed at 0.2. The weight of each leaf is then proportional
to the square of the inverse of the error.

An alternative to CVFDT is the CD3 algorithm proposed
by Black and Hickey [9], where the authors propose learning
decision trees with an additional time-stamp feature for each
instance. Once learned, the algorithm can detect concept drift
by following each of the paths to the leaves, and determin-
ing if the time-stamp was an important attribute in the newly
built tree. If the time-stamp was important, and denoted the
most recent time period, the rule is said to be good and the
data is kept. If, however, the time-stamp is found to be from
a previous time period, the rule is said to be invalid and the
old instances are removed. Finally, if the time-stamp feature
was not used, the rule is kept as valid.

4.2 k-nearest neighbors based methods

Another heavily studied learning algorithm that has been
adapted for concept drift is the k-nearest neighbors (kNN)
algorithm. Alippi and Roveri [2,3] demonstrate how to mod-
ify the kNN algorithm for use in the streaming case. First,
they demonstrate how to appropriately choose k in a data
stream which does not exhibit concept drift based on theo-
retical results from Fukunga [33]. With this framework, they
describe how to update the kNN classifier when no concept
drift is detected (add new instances to the knowledge base),
and when concept drift is detected (remove obsolete exam-
ples from the knowledge base).

4.3 Fuzzy ARTMAP based methods

Finally, another popular technique for learning under concept
drift is fuzzy ARTMAP by Carpenter et al. [13], an extension
of ARTMAP (adaptive resonance theory map) due to Carpen-
ter et al. [14]. ARTMAP attempts to generate a new “cluster”
for each pattern that it finds in the dataset, and then maps the
cluster to a class. If a new pattern is found that is sufficiently

different (defined via a vigilance parameter), then the new
pattern is added with its corresponding class. Fuzzy ART-
MAP extends this by adding fuzzy logic to ARTMAP. This
is accomplished by incorporating two fuzzy ART modules,
namely, fuzzy ARTa and fuzzy ARTb, connected via an inter-
ART module. The inter-ART module Fab, called a map field,
associates categories in ARTa to categories in ARTb. If Fab

detects a mismatch in categories, the vigilance parameter is
increased by the minimum amount needed such that the sys-
tem searches for, or if necessary creates, a new category such
that the predictions once again match. Note that ARTMAP
(and by extension fuzzy ARTMAP) are incremental learners
who trivially adapt to concept drift through their ability to
dynamically create new concepts on the fly.

One extension to fuzzy ARTMAP is due to Andrés-Andrés
et al. [4], who propose an incremental rule pruning strat-
egy for fuzzy ARTMAP. They accomplish this by extending
the work of Carpenter and Tan [15], who propose a pruning
strategy based on the confidence, usage, and accuracy of a
given rule. The drawback of the proposal from Carpenter and
Tan, however, is that it requires remembering all instances
in order to update the relevant statistics. Andrés-Andrés,
Gómez-Sánchez, and Bote-Lorenzo modify this strategy to
enable instances to be forgotten once they have been used to
update the model. Instances can be forgotten by slightly mod-
ifying the confidence, usage, and accuracy equations such
that instances only contribute to these factors when they are
learned, and therefore the equations are not modified with
old instances when rules are added or removed.

5 Modifying the training set

Another popular approach of addressing concept drift is by
modifying the training set seen by the classification algo-
rithm. The most common approaches employed are window-
ing (i.e., where only a subset of previously seen instances
are used), and instance weighting. One of the strengths of
the modification approaches over the adaptive base learners
approach is that the modification strategies are often clas-
sifier agnostic. Indeed, much of the research into modifying
the training set deals not with building an entire classification
algorithm, but merely with how to select or weight instances
which are used to build a classifier. We now discuss train-
ing set modification strategies, making note of those which
are full learning algorithms, and which are merely detection
strategies.

5.1 Windowing techniques

When modifying the training set by way of windowing, the
naïve algorithm is to merely keep a fixed number of the new-
est instances (i.e., a “window” over the newest instances in

123

96 Prog Artif Intell (2012) 1:89–101

the data stream) [62]. This naïve approach suffers from many
drawbacks, the most important of which is that it is impos-
sible to, a priori, determine the appropriate window size for
any given problem.

In order to overcome these shortcomings, many alterna-
tive approaches have been presented. One of the original
windowing methods is due to Kubat and Widmer [85,86]
in FLORA3. FLORA3 is an extension of FLORA [53], and
FLORA2 by [84]. FLORA originated as learning algorithms
aimed at learning from streaming data. FLORA is built from
sets of disjunctive normal form (DNF) expressions represent-
ing the positive examples in the window (ADES), the neg-
ative examples in the window (NDES) and potential DNF
which covers both positive and negative examples (PDES).
FLORA keeps the ADES and NDES sets maximally gen-
eral, while the PDES set is kept maximally specific. FLORA3
introduces an adaptive window which attempts to vary its size
to fit the current concept. That is, based on the coverage of
the ADES set and the performance of the learning algorithm,
the window is either grown or shrunk. Specifically, for low
coverages and/or poor predictive performance, the window is
aggressively shrunk (by 20%). For extremely high coverage,
the window is conservatively shrunk (by size 1). If the cover-
age is high, but the predictive accuracy is good, the window
size remains the same. Otherwise the window is grown by 1.

Subsequently, a plethora of windowing algorithms have
been proposed. Klinkenberg and Joachims [48] propose a
method based on support vector machines (SVMs). They
proposed the use of a ξα-estimator (discussed more formally
in [44]) to compute a bound on the error rate of the SVM.
Specifically, assuming t batches, they use the ξα-estimator
to compute t error bounds. The first error bound corresponds
to learning the classifier on just the newest batch, the second
bound corresponds to learning on the newest two batches,
etc. They then choose the window size corresponding to the
minimum estimated error.

Gama et al. [34] proposed a method based on the learner’s
error rate over time. Assume that each new instance repre-
sents a random Bernoulli trial. They then compute the prob-
ability of observing a “false” for instance i (pi), and the
standard deviation (si = √

pi (1 − pi)/ i), arguing that a sig-
nificant increase in the error rate denotes a concept drift.
Their algorithm issues a warning if pi + si ≥ pmin + 2smin,

and drift is detected if pi + si ≥ pmin + 3smin.

In contrast, Bifet and Gevaldà [6] proposed two
methods that determine the window size by ensuring that all
sub-windows of the current window represent the same distri-
bution. Their first method, named adaptive window
(ADWIN), compares the means of two “large enough” sub-
windows, and if they are “distinct enough”, concept drift
is said to have occurred. The definition of “large enough”
and “distinct enough” are given by the statistical test chosen.
The main drawback is its computational and spacial inef-

ficiency, specifically it: (1) requires keeping a large num-
ber of instances (to find two large enough sub-windows);
and (2) requires testing all pairs of “large enough” sub-win-
dows. To combat these issues, the authors propose ADWIN2.
ADWIN2 introduces a memory-efficient data structure that
is able to store a sliding window of length w in logarithmic
memory and process the window in logarithmic update time.
Using this data structure, the algorithm is able to efficiently
update and store a large number of windows. Then, instead
of checking all possible sub-windows, evaluates a subset of
the possible windows to check for concept drift.

Lazarescu et al. [58] propose using multiple windows to
handle concept drift. Instead of a single window, they pro-
pose using two windows (named small and medium), where
the small window has fixed size S, and the medium window
has a minimum size of 2S. The algorithm then constantly
updates the small window with new instances as they arrive.
The medium window, on the other hand, is updated depend-
ing on the detection of concept drift. Once concept drift is
detected over a sufficient number of samples, the medium
window is set to size 2S in order to capture the new concept.
Once the concept has stabilized, the medium window can
then grow to a maximum size M.

A final strategy, based on FLORA2, is due to Last [57].
In this strategy, the performance of the learning algorithm is
evaluated on the training and a validation set. If a statistically
significant difference is detected in the performance of the
algorithm over the two datasets, concept drift is considered
to be detected, and the window size is updated based on an
update rule.

5.2 Weighting techniques

In addition to windowing techniques, weighting techniques
are also commonly used where the relative importance of
each instance is used during classification. Instance weight-
ing provides a benefit over windowing techniques, as it allows
the learning algorithm to have more precise control over how
instances are incorporated into the model than simply “pres-
ent” or “not present”.

Alippi and Roveri’s work extending their kNN based
method to work under slow, gradual drift in adaptive weighted
kNN [1] is a notable example of weighting approaches. In
their previous work [2,3], they recommended the removal of
all instances that belong to the “old” knowledge base, and
keeping all of the instances in the “new” knowledge base.
Implicitly, this means they recommend giving a weight of
0 to instances from the old concept and a weight of 1 to
instances in the new concept. In adaptive weighted kNN, the
authors recommend to weight all instances based on how
likely they are to be from the current concept. Slow concept
drift can then be tracked initially as the old examples are still
present in the training data with a high weight. As the concept

123

Prog Artif Intell (2012) 1:89–101 97

continues to drift, however, these examples are given smaller
weights, thereby contributing less to the new model.

6 Ensemble techniques

The use of ensemble methods is popular in the data mining
community due in part to their empirical effectiveness. This
effectiveness is derived from combining multiple (usually
weak) classifiers trained on similar datasets to provide accu-
rate and robust predictions for future instances. The use of
slightly different datasets and/or base learners is important
to ensemble methods so as to ensure that the ensemble is
sufficiently diverse, as diversity in ensembles directly leads
to better, more accurate, ensembles [54]. Some examples of
traditional ensemble methods are bagging [10], AdaBoost
[30], random forest [11], and random subspaces [40]. Over-
views of ensemble based decision making can be found in
the literature [22,70,71].

This popularity of ensemble based approaches in for devel-
oping traditional data mining algorithms has carried over into
the concept drift algorithms. This is due to several advantages
that ensembles provide over single base learners.

One important advantage of ensemble techniques in
streaming data is their ability to deal with reoccurring con-
cepts. Since ensembles (often) contain models built from past
data, such models can be reused to classify new instances
if they are drawn from a reoccurring concept. This is an
important advantage over the previous techniques, as other
approaches often discard historical data in order to learn the
new concepts.

Another important advantage of ensemble methods is the
ability to leverage traditional classification algorithms in the
concept drifting community. As mentioned previously, tradi-
tional batch learners themselves cannot be considered incre-
mental learning algorithms. When combined in an ensemble,
however, the multiple batch learners can be trained on dif-
ferent subsets of the data to create an incremental learner.

These advantages combine to create accurate classifiers
for overcoming concept drift. In the following sections we
discuss various ensemble techniques for overcoming concept
drift, based on their various approaches to synthesizing and
building the ensembles.

6.1 Accuracy weighted ensembles

One of the earliest ensemble based approaches for concept
drift is streaming ensemble algorithm (SEA) due to Street and
Kim [77]. In SEA, the stream is broken into a series of con-
secutive, non-overlapping windows. For each new window,
a new model is learned on all of the instances. If the cur-
rent ensemble is not full (i.e., there are not more than some
predetermined number of classifiers in the ensemble), the

new model is added to the ensemble. Otherwise, the model
is tested against all other models currently in the ensemble,
and the “worst” one is pruned. In order to determine which
classifier to prune, Street and Kim recommend a classifier
replacement strategy based on instances that were “nearly
undecidable”. Specifically, if all (or most) classifiers agree
on the label of a test instance, that instance did not signif-
icantly effect the importance of the classifier in the ensem-
ble. If the votes of the ensemble members are split relatively
evenly among class labels, then such an instance would have
a much higher impact on the retention (or removal) of this
classifier. This approach rewards classifiers that perform well
on the “hard” instances (i.e., those correctly classified by
only half of the classifiers), while simultaneously ignoring
the classifier’s performance on “impossible” instances (i.e.,
those misclassified by all or most of the ensemble members),
thereby making the ensemble more robust to noise.

While choosing a pruning strategy is one important con-
sideration in ensemble learning, Wang et al. [82] demon-
strate the effectiveness of also weighting each classifier in
the ensemble when performing voting. They prove that an
ensemble in which each classifier is weighted inversely pro-
portional to its expected error will always perform at least as
well as a single classifier learned on the same data. Given this,
and the inability to exactly compute a classifier’s expected
error, they propose a weight estimation procedure based on
the classifier’s performance on the previous batch. Two other
approaches to weighting are due to Kolter and Maloof
[50–52] and Becker and Arias [5]. In their weighting
schemes, classifiers have their weights updated based on a
constant multiplicative factor.

A particularly important ensemble method, called
dynamic weighted majority (DWM) proposed by Kolter and
Maloof [50–52], is the current state of the art method in the
literature. In DWM a weighted ensemble of classifiers (whose
weights are initially set to 1) is built such that both the overall
ensemble performance, combined with the performance of
each of the individual classifiers, are combined to overcome
concept drift. Specifically, if the ensemble (collectively) mis-
classifies an instance, a new base learner is added to the
ensemble with weight 1. Additionally, if a member of the
ensemble misclassifies an instance, then its weight is reduced.
If, over time, a base learner’s weight drops below a threshold,
the classifier is removed from the ensemble entirely. Since
DWM only has a method for reducing weights, after updat-
ing each classifier’s weights, the classifier weights are nor-
malized such that the maximum weight among all classifiers
is 1.

6.2 Bagging and boosting based methods

Bagging [10] and boosting [30] are two popular methods
for building ensembles of classifiers with a rich history of

123

98 Prog Artif Intell (2012) 1:89–101

extensions [17,31,39,61,74,78]. In this section we outline
various approaches which have been taken to make bagging
and boosting methods overcome concept drift.

Another popular ensemble based technique is due to Pol-
ikar et al. [72] called Learn++. Learn++ was developed as
an incremental learning algorithm for learning neural net-
work classifiers in streaming data and is loosely based on
AdaBoost [30]. The underlying principle of Learn++ is that
weak learners are generated on the current batch of instances,
and then voted together using a weighted average according
to the current normalized error of the classifier.

In addition to Learn++, other methods based on boosting
are due to Chu and Zaniolo [21] and Scholz and Klinken-
berg [75]. Chu and Zaniolo propose an adaptive boosting
ensemble (ABE) which performs boosting given only a sin-
gle pass through the data. It then uses very simple base mod-
els (depth-limited decision trees) to exploit the performance
characteristics of boosting. In order to handle concept drift,
ABE employs a concept drift detection algorithm that noti-
fies the ensemble when concept drift has occurred. When
detected, ABE discards the current ensemble, and relearns
from scratch.

Elwell, Muhlbaier, and Polikar [28,65,66] propose
Learn++.NSE as an extension of Learn++ which is applica-
ble to drifting environments (further experimental verifica-
tion of the effectiveness of Learn++.NSE are due to Karnick,
Muhlbaier, and Polikar [45,46]). The novelty of
Learn++.NSE is in determining its voting weights, based
on each classifier’s time-adjusted accuracy on current and
past environments, which gives a higher voting weight to
those classifiers—new or old—that perform well in the cur-
rent environment. Time adjustment comes from weighting
performances with respect to time using a sigmoidal weight-
ing function. Thus, any classifier containing relevant knowl-
edge about the current environment, regardless of its age, can
receive a high voting weight. Classifier age itself has no direct
effect on voting weight, but rather it is the classifier’s per-
formance on recent environments that determine its “time
adjusted” voting weight. Such a weighting strategy allows
ensemble members to contribute to the ensemble decision
if a former concept becomes relevant after long periods
(i.e., reoccurring concepts).

Note that the Learn++.NSE does not ever explicitly dis-
card any classifiers in order to ensure that the algorithm can
recall reoccurring concepts. In order to investigate the impact
of retaining all ensemble members, Elwell and Polikar [26]
investigate the effects of pruning the ensemble under vari-
ous forms of concept drift, various pruning strategies, vary-
ing rates of concept drift, and the ability of the algorithm
to deal with new classes/removal of classes [27]. Based on
their experimentation, they note that error based pruning is
always preferable to age-based pruning, even in the presence
of sudden concept drift. They also note, however, that neither

pruning strategy effectively dealt with situations of reoccur-
ring concepts. This is obvious, as one cannot, a priori, deter-
mine which concepts are going to reoccur, and thus which
classifiers to retain. Additionally, the authors also determine
that Learn++.NSE is robust even in such cases where classes
are added/removed from the data stream. In light of this, the
authors recommend retaining as many models as possible if
reoccurring concepts are likely.

In contrast to these boosting techniques, Bifet et al. [8]
propose a technique based on bagging called ADWIN bag-
ging, that employs adaptive classifiers in the ensemble (sim-
ilar to concept drift committee (CDC) [76]). Unlike CDC,
however, each tree in the ensemble can only grow to a prede-
fined maximum height to ensure the diversity of the ensemble
is maintained.

6.3 Concept locality based approaches

While the previous strategies focused on global concept drift,
concept drift need not occur on a global scale. As a result,
multiple techniques which use more discriminative methods
to select past instance for use have been developed.

Tsymbal et al. propose a strategy based on local concept
drift [80,81]. They argue that many real-world scenarios of
concept drift are in fact local phenomenon, relegated to a
specific region of the feature space. As such, they recom-
mend a dynamic integration of the classifiers in the ensem-
ble based on the local accuracy of each classifier. The authors
demonstrate the effectiveness of weighting the classifiers in
the ensemble based on the accuracy in the neighborhood
(as defined by a relevant distance metric) of the given test
instance. Of potential concern in this approach, however, is
that the necessity of determining the weights for each classi-
fier may be cost-prohibitive if prediction is time sensitive.

Wang et al. [83] have proposed a similar strategy, where
they assume the feature space has been partitioned. Using
these partitions and a forgetting parameter, they are then
able to classify a new instance by assigning a weight to each
instance in its partition (neighborhood). By controlling how
fast old instances are forgotten, this strategy enables the algo-
rithm to trivially handle concept drift, as old concepts are
forgotten along with the old instances.

Nishida et al. [68] propose an alternate hybrid approach,
called adaptive classifier ensemble (ACE) that mimics the
short and long term memory capabilities of the brain. In
ACE, the authors combine batch learners (for long term mem-
ory) with an online learner (for short term memory), and a
drift detection mechanism. By combining the drift detection
method with the online learner, ACE is able to rapidly react
to suddenly drifting concepts. Since ACE also employs an
ensemble, however, it is also robust to stationary and slowly
drifting concepts, making it a more robust technique than
those previously mentioned.

123

Prog Artif Intell (2012) 1:89–101 99

An alternate approach for building an ensemble on vary-
ing window sizes rather than fixed ones is due to Stanley [76].
Stanley proposed a method of building an ensemble based on
incremental learners called CDC [76]. In CDC, a series of n
incremental classifiers is learned, such that, initially, classi-
fier i sees all instances j where j ≥ i. A classifier is said
to be “mature” if it has seen at least as many instances as
there are classifiers in the ensemble; an “immature” classi-
fier is not used for classification of new instances. Once a
classifier has matured, it begins classifying new instances. If
its performance falls below some threshold t, the classifier
is removed from the ensemble and a new classifier is learned
starting with the current instance.

While the previously mentioned approaches have all
assumed that using all past data is advantageous, Fan [29]
argues that indiscriminately using old data when building
models is only helpful if the concept is constant. When expe-
riencing concept drift, however, instance selection becomes
an important problem which must be carefully addressed.
Therefore, Fan suggests an approach whereby one uses cross-
validation to build a multitude of models, and then “let the
data speak for themselves” to choose the models that result
in the best performance.

7 Overcoming class imbalance in concept drifting data
streams

In the previous sections we focused on strategies for over-
coming concept drift in balanced class distributions. While
this research is valuable, a large number of concept drifting
data sources also suffer from class imbalance (e.g., credit card
fraud, network intrusion detection, etc.). In this section we
outline various methods which seek to overcome both issues
simultaneously, and note the relative paucity of research into
such methods.

In addition to being the most commonly applied technique
when dealing only with concept drift, ensemble methods have
also been the de facto standard for combating class imbal-
ance. Gao et al. [35,36] proposed a framework based on col-
lecting positive class examples. In their ensemble algorithm,
they break each incoming chunk into a set of positive (P)
and negative (Q) class instances. One then selects all seen
positive class instances (AP), and a subset of the negative
class instances (O) which is determined randomly based on
a distribution ratio. These two sets are then combined to form
a complete dataset to train the new ensemble classifier Ci .

By accumulating all positive class instances, this approach
implicitly assumes, however, that the minority class is not
drifting.

Building on this concept, Chen and He [20] propose
SERA, which is similar to the proposal of Gao et al., however,
instead of using all past instances, the algorithm selects the

“best” n minority class instances as defined by the
Mahalanobis distance. Given these instances, the algorithm
then uses all majority class instances and uses bagging to
build an ensemble of classifiers. Thus SERA suffers from a
similar, albeit less severe, concern as the method proposed
by Gao et al., as the algorithm may not be able to track drift
in minority instances depending on the parameter n.

Similarly, Lichtenwalter and Chawla [59] propose an
extension of Gao et al.’s work where instead of propagating
all minority class examples, they also propagate misclassi-
fied majority class instances. In this way, they seek to better
define the boundary between the classes, thereby increas-
ing the performance of the ensemble members. Addition-
ally, they propose to use a combination of Hellinger distance
and information gain to measure the similarity of the cur-
rent batch to the batch that each ensemble member was built
on. The more similar the batches, the more likely that they
describe the same concept. Thus each ensemble member’s
probability estimate is weighted by the similarity measure in
order to obtain a more accurate prediction.

Finally, Ditzler and Polikar [23,24] outline a method for
extending their Learn++.NSE algorithm for the case of class
imbalance. In these papers, the authors propose Learn++.NIE
(for learning in non-stationary and imbalanced environments).
In Learn++.NIE, the authors apply the logic of the
Learn++.NSE algorithm, with an additional step of using
bagging instead of a single base classifier. In this way, the
authors claim they can both reduce error via bagging, and,
more importantly, learn on a less imbalanced dataset by
under-sampling the majority class when creating each bag.

8 Concluding remarks and future work

In this paper, we discuss the leading areas of research in min-
ing data streams that exhibit concept drift and class imbal-
ance. We structured our discussion in terms of the three main
areas of research in concept drift: adaptive base learners,
modifying the training set, and ensemble techniques.

Despite the growing number of efforts, there is still much
work to be done in data streams that exhibit both concept
drift and class imbalance. We note that two of the main meth-
ods of overcoming of concept drift—adaptive base learners
and modifying the training set—have not yet been applied
to the class imbalance problem. Additionally, while there
has been preliminary work on the use of ensembles to solve
the problem of concept drift and class imbalance, the work
is sparse, and has not been thoroughly evaluated o n large
scale, real-world problems. Hence, we propose future work
be directed towards overcoming many of the shortcomings
of the current body of research by also rigorously evaluating
these approaches on large scale, real-world applications.

123

100 Prog Artif Intell (2012) 1:89–101

Acknowledgments Work is supported in part by the NSF Grant
ECCS-0926170, NSF Grant ECCS-092159, and the Notebaert Premier
Fellowship.

References

1. Alippi, C., Boracchi, G., Roveri, M.: Just in time classifiers: man-
aging the slow drift case. In: IJCNN, pp. 114–120. IEEE, New York
(2009). doi:10.1109/IJCNN.2009.5178799

2. Alippi, C., Roveri, M.: Just-in-time adaptive classifiers in non-sta-
tionary conditions. In: IJCNN, pp. 1014–1019. IEEE, New York
(2007)

3. Alippi, C., Roveri, M.: Just-in-time adaptive classifierspart ii:
designing the classifier. TNN 19(12), 2053–2064 (2008)

4. Andres-Andres, A., Gomez-Sanchez, E., Bote-Lorenzo, M.: Incre-
mental rule pruning for fuzzy artmap neural network. In: ICANN,
pp. 655–660 (2005)

5. Becker, H., Arias, M.: Real-time ranking with concept drift using
expert advice. In: KDD, pp. 86–94. ACM, New York (2007)

6. Bifet, A., Gavalda, R.: Learning from time-changing data with
adaptive windowing. In: SDM, pp. 443–448 (Citeseer) (2007)

7. Bifet, A., Gavalda, R.: Adaptive learning from evolving data
streams. In: IDA, pp. 249–260 (2009)

8. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavaldà, R.:
New ensemble methods for evolving data streams. In: KDD,
pp. 139–148. ACM, New York (2009)

9. Black, M., Hickey, R.: Learning classification rules for telecom
customer call data under concept drift. Soft Comput. Fusion Found.
Methodol. Appl. 8(2), 102–108 (2003)

10. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140
(1996). doi:10.1023/A:1018054314350

11. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).
doi:10.1023/A:1010933404324

12. Buntine, W.: Learning classification trees. Stat. Comput. 2(2),
63–73 (1992)

13. Carpenter, G., Grossberg, S., Markuzon, N., Reynolds, J.,
Rosen, D.: Fuzzy artmap: a neural network architecture for
incremental supervised learning of analog multidimensional
maps. TNN 3(5), 698–713 (1992)

14. Carpenter, G., Grossberg, S., Reynolds, J.: Artmap: supervised
real-time learning and classification of nonstationary data by a self-
organizing neural network. Neural Netw. 4(5), 565–588 (1991)

15. Carpenter, G., Tan, A.: Rule extraction: from neural architecture to
symbolic representation. Connect. Sci. 7(1), 3–27 (1995)

16. Chawla, N., Japkowicz, N., Kotcz, A.: Editorial: special issue
on learning from imbalanced data sets. ACM SIGKDD Explor.
Newsl. 6(1), 1–6 (2004)

17. Chawla, N., Lazarevic, A., Hall, L., Bowyer, K.: Smoteboost:
improving prediction of the minority class in boosting. In: PKDD,
pp. 107–119 (2003)

18. Chawla, N.V.: Data mining for imbalanced datasets: an overview.
In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge
Discovery Handbook, pp. 875–886. Springer, Berlin (2010)

19. Chawla, N.V., Cieslak, D.A., Hall, L.O., Joshi, A.: Automat-
ically countering imbalance and its empirical relationship to
cost. DMKD 17(2), 225–252 (2008)

20. Chen, S., He, H.: Sera: selectively recursive approach towards non-
stationary imbalanced stream data mining. In: IJCNN, pp. 522–529.
IEEE, New York (2009)

21. Chu, F., Zaniolo, C.: Fast and light boosting for adaptive mining of
data streams. In: PAKDD, pp. 282–292 (2004)

22. Dietterich, T.: Ensemble methods in machine learning. In: MCS,
pp. 1–15 (2000)

23. Ditzler, G., Polikar, R.: An incremental learning framework for
concept drift and class imbalance. In: IJCNN. IEEE, New York
(2010)

24. Ditzler, G., Polikar, R., Chawla, N.V.: An incremental learning
algorithm for nonstationary environments and class imbalance. In:
ICPR. IEEE, New York (2010)

25. Domingos, P., Hulten, G.: Mining high-speed data streams. In:
KDD, pp. 71–80. ACM, New York (2000)

26. Elwell, R., Polikar, R.: Incremental learning in nonstationary envi-
ronments with controlled forgetting. In: IJCNN, pp. 771–778.
IEEE, New York (2009)

27. Elwell, R., Polikar, R.: Incremental learning of variable rate con-
cept drift. In: MCS, pp. 142–151 (2009)

28. Elwell, R., Polikar, R.: Incremental learning of concept drift in
nonstationary environments. TNN 22(10), 1517–1531 (2011)

29. Fan, W.: Systematic data selection to mine concept-drifting data
streams. In: KDD, pp. 128–137. ACM, New York (2004)

30. Freund, Y., Schapire, R.: Experiments with a new boosting algo-
rithm. In: ICML (1996). doi:10.1007/3-540-59119-2_166

31. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regres-
sion: a statistical view of boosting (with discussion and a rejoinder
by the authors). Ann Stat. 28(2), 337–407 (2000)

32. Fu, L.: Incremental knowledge acquisition in supervised learning
networks. SMC Part A 26(6), 801–809 (2002)

33. Fukunaga, K., Hostetler, L.: Optimization of k nearest neighbor
density estimates. Inf. Theory 19(3), 320–326 (2002)

34. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift
detection. In: AAI, pp. 66–112 (2004)

35. Gao, J., Ding, B., Fan, W., Han, J., Yu, P.: Classifying data streams
with skewed class distributions and concept drifts. Internet Com-
put. 12(6), 37–49 (2008)

36. Gao, J., Fan, W., Han, J., Yu, P.: A general framework for mining
concept-drifting data streams with skewed distributions. In: SDM,
pp. 3–14 (Citeseer) (2007)

37. Giraud-Carrier, C.: A note on the utility of incremental learning. AI
Commun. 13(4), 215–223 (2000)

38. Grossberg, S.: Nonlinear neural networks: principles, mechanisms,
and architectures. Neural Netw. 1(1), 17–61 (1988)

39. Guo, H., Viktor, H.L.: Learning from imbalanced data sets with
boosting and data generation: the databoost-im approach. SIGKDD
Explor. Newsl. 6, 30–39 (2004). doi:10.1145/1007730.1007736

40. Ho, T.: The random subspace method for constructing decision
forests. PAMI 20(8), 832–844 (1998)

41. Hoeffding, W.: Probability inequalities for sums of bounded ran-
dom variables. JASA 58(301), 13–30 (1963)

42. Hoeglinger, S., Pears, R.: Use of hoeffding trees in concept based
data stream mining. In: ICIAFS, pp. 57–62 (2007). doi:10.1109/
ICIAFS.2007.4544780

43. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data
streams. In: KDD, pp. 97–106. ACM, New York (2001)

44. Joachims, T.: Estimating the generalization performance of an svm
efficiently. In: ICML, p. 431. Morgan Kaufmann, Menlo Park
(2000)

45. Karnick, M., Ahiskali, M., Muhlbaier, M., Polikar, R.: Learning
concept drift in nonstationary environments using an ensemble
of classifiers based approach. In: IJCNN, pp. 3455–3462. IEEE,
New York (2008)

46. Karnick, M., Muhlbaier, M., Polikar, R.: Incremental learning in
non-stationary environments with concept drift using a multiple
classifier based approach. In: ICPR, pp. 1–4. IEEE, New York
(2009)

47. Kelly, M., Hand, D., Adams, N.: The impact of changing popula-
tions on classifier performance. In: KDD, pp. 367–371. ACM, New
York (1999)

48. Klinkenberg, R., Joachims, T.: Detecting concept drift with support
vector machines. In: ICML (Citeseer) (2000)

123

http://dx.doi.org/10.1109/IJCNN.2009.5178799
http://dx.doi.org/10.1023/A:1018054314350
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/3-540-59119-2_166
http://dx.doi.org/10.1145/1007730.1007736
http://dx.doi.org/10.1109/ICIAFS.2007.4544780
http://dx.doi.org/10.1109/ICIAFS.2007.4544780

Prog Artif Intell (2012) 1:89–101 101

49. Kohavi, R., Kunz, C.: Option decision trees with majority votes.
In: ICML, pp. 161–169. Morgan Kaufmann, Menlo Park (1997)

50. Kolter, J., Maloof, M.: Dynamic weighted majority: a new ensem-
ble method for tracking concept drift. In: ICDM, pp. 123–130.
IEEE, New York (2003)

51. Kolter, J., Maloof, M.: Using additive expert ensembles to cope
with concept drift. In: ICML, pp. 449–456. ACM, New York (2005)

52. Kolter, J., Maloof, M.: Dynamic weighted majority: an ensemble
method for drifting concepts. JMLR 8, 2755–2790 (2007)

53. Kubat, M.: Floating approximation in time-varying knowledge
bases. PRL 10(4), 223–227 (1989)

54. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier
ensembles. Mach. Learn. 51, 181–207 (2003)

55. Lange, S., Grieser, G.: On the power of incremental learn-
ing. TCS 288(2), 277–307 (2002)

56. Lange S., Zilles, S.: Formal models of incremental learning and
their analysis. In: IJCNN, vol. 4, pp. 2691–2696. IEEE, New York
(2003)

57. Last, M.: Online classification of nonstationary data streams.
IDA 6(2), 129–147 (2002)

58. Lazarescu, M., Venkatesh, S., Bui, H.: Using multiple windows to
track concept drift. IDA 8(1), 29–59 (2004)

59. Lichtenwalter, R., Chawla, N.V.: Adaptive methods for classi-
fication in arbitrarily imbalanced and drifting data streams. In:
New Frontiers in Applied Data Mining. Lecture Notes in Com-
puter Science, vol. 5669, pp. 53–75. Springer, Berlin (2010)

60. Maron, O., Moore, A.W.: Hoeffding races: accelerating model
selection search for classification and function approximation. In:
NIPS, pp. 59–66 (1993)

61. Masnadi-Shirazi, H., Vasconcelos, N.: Cost-sensitive boost-
ing. PAMI 33(2), 294–309 (2011). doi:10.1109/TPAMI.2010.71

62. Mitchell, T., Caruana, R., Freitag, D., McDermott, J., Zabowski, D.:
Experience with a learning personal assistant. Commun. ACM
37(7), 80–91 (1994)

63. Moreno-Torres, J., Herrera, F.: A preliminary study on overlapping
and data fracture in imbalanced domains by means of genetic pro-
gramming-based feature extraction. In: ISDA, pp. 501 –506 (2010).
doi:10.1109/ISDA.2010.5687214

64. Moreno-Torres, J., Raeder, T., Alaiz-Rodríguez, R., Chawla, N.V.,
Herrera, F.: A unifying view on dataset shift in classification. Pat-
tern Recognit. 45, 521–530 (2011)

65. Muhlbaier, M., Polikar, R.: An ensemble approach for incremen-
tal learning in nonstationary environments. In: MCS, pp. 490–500
(2007)

66. Muhlbaier, M., Polikar, R.: Multiple classifiers based incremental
learning algorithm for learning in nonstationary environments. In:
ICMLC, vol. 6, pp. 3618–3623. IEEE, New York (2007)

67. Muhlbaier, M., Topalis, A., Polikar, R.: Learn++. nc: combining
ensemble of classifiers with dynamically weighted consult-
and-vote for efficient incremental learning of new clas-
ses. TNN 20(1), 152–168 (2009). doi:10.1109/TNN.2008.2008326

68. Nishida, K., Yamauchi, K., Omori, T.: Ace: adaptive classifi-
ers-ensemble system for concept-drifting environments. In: MCS,
pp. 176–185 (2005)

69. Pfahringer, B., Holmes, G., Kirkby, R.: New options for hoeffding
trees. In: AAI, pp. 90–99 (2007)

70. Polikar, R.: Ensemble based systems in decision making. Circuits
Syst. Mag. 6(3), 21–45 (2006)

71. Polikar, R.: Bootstrap-inspired techniques in computation intelli-
gence. Signal Process. Mag. 24(4), 59–72 (2007)

72. Polikar, R., Upda, L., Upda, S.S., Honavar, V.: Learn++: an incre-
mental learning algorithm for supervised neural networks. In: SMC
Part C, pp. 497–508 (2001)

73. Quinlan, J.: C4.5: Programs For Machine Learning. Morgan Ka-
ufmann, Menlo Park (1993)

74. Schapire, R., Singer, Y.: Improved boosting algorithms using con-
fidence-rated predictions. Mach. Learn. 37(3), 297–336 (1999)

75. Scholz, M., Klinkenberg, R.: Boosting classifiers for drifting con-
cepts. IDA 11(1), 3–28 (2007)

76. Stanley, K.: Learning concept drift with a committee of decision
trees. Technical Report AI-03-302, Computer Science Department,
University of Texas-Austin (2003)

77. Street, W., Kim, Y.: A streaming ensemble algorithm (SEA) for
large-scale classification. In: KDD, pp. 377–382. ACM, New York
(2001)

78. Ting, K.: A comparative study of cost-sensitive boosting algo-
rithms. In: ICML (Citeseer) (2000)

79. Tsymbal, A.: The problem of concept drift: definitions and
related work. Technical Report TCD-CS-2004-15, Departament of
Computer Science, Trinity College (2004). https://www.cs.tcd.ie/
publications/techreports/reports

80. Tsymbal, A., Pechenizkiy, M., Cunningham, P., Puuronen, S.:
Handling local concept drift with dynamic integration of classi-
fiers: domain of antibiotic resistance in nosocomial infections. In:
CBMS, pp. 679 –684 (2006). doi:10.1109/CBMS.2006.94

81. Tsymbal, A., Pechenizkiy, M., Cunningham, P., Puuronen, S.:
Dynamic integration of classifiers for handling concept drift. Inf.
Fusion 9(1), 56–68 (2008)

82. Wang, H., Fan, W., Yu, P., Han, J.: Mining concept-drifting data
streams using ensemble classifiers. In: KDD, pp. 226–235. ACM,
New York (2003)

83. Wang, H., Yin, J., Pei, J., Yu, P., Yu, J.: Suppressing model
overfitting in mining concept-drifting data streams. In: KDD,
pp. 736–741. ACM, New York (2006)

84. Widmer, G., Kubat, M.: Learning flexible concepts from streams
of examples: Flora2. In: ECAI, p. 467. Wiley, New York (1992)

85. Widmer, G., Kubat, M.: Effective learning in dynamic environ-
ments by explicit context tracking. In: ECML, pp. 227–243.
Springer, Berlin (1993)

86. Widmer, G., Kubat, M.: Learning in the presence of concept drift
and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)

123

http://dx.doi.org/10.1109/TPAMI.2010.71
http://dx.doi.org/10.1109/ISDA.2010.5687214
http://dx.doi.org/10.1109/TNN.2008.2008326
https://www.cs.tcd.ie/publications/techreports/reports
https://www.cs.tcd.ie/publications/techreports/reports
http://dx.doi.org/10.1109/CBMS.2006.94

	Learning from streaming data with concept drift and imbalance: an overview
	Abstract
	1 Introduction
	1.1 Contributions

	2 Challenges of learning in data streams
	2.1 Concept drift
	2.1.1 Real drift versus virtual drift
	2.1.2 Speed of drift

	2.2 Class imbalance
	2.3 Concept drifting data streams with class imbalance

	3 Overcoming concept drift
	4 Adaptive base learners
	4.1 Decision tree based methods
	4.2 k-nearest neighbors based methods
	4.3 Fuzzy ARTMAP based methods

	5 Modifying the training set
	5.1 Windowing techniques
	5.2 Weighting techniques

	6 Ensemble techniques
	6.1 Accuracy weighted ensembles
	6.2 Bagging and boosting based methods
	6.3 Concept locality based approaches

	7 Overcoming class imbalance in concept drifting data streams
	8 Concluding remarks and future work
	Acknowledgments
	References

