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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

One of the “ grand challenges for machine learning”  is 

the problem of learning from textbooks. This paper 
addresses the problem of learning from texts includ- 

ing omissions and inconsistencies that are clarified by 

illustrative examples. To avoid problems in natural 
language understanding, we consider a simplification 

of this problem in which the text has been manually 

translated into a logical theory. This learning prob- 

lem is solvable by a technique that we call analogical 

abductive explanation based learning (ANA-EBL). For- 

mal evidence and experimental results in the domain 
of contract bridge show that the learning technique is 

both efficient and effective. 

Introduction 

One of the “ grand challenges for machine learning”  
that Dietterich suggested in his address at the 1989 

Machine Learning Conference is the problem of learn- 

ing from textbooks. A great deal of knowledge from a 

huge variety of domains has been codified in textbook 

form; however, this knowledge is not directly usable by 
computer programs. 

Some of the problems involved in learning from text- 
books are natural language understanding problems. 

However, these are not the only problems, and perhaps 

not even the major problems. The information in even 
a well-written textbook contains inconsistencies and 

omissions that would make it useless if transcribed di- 

rectly into logic. Learning from textbook knowledge 

is thus an important and challenging machine learning 

problem. 

The text on contract bridge used in this experiment 

[Sheinwold, 19641 illustrates some of the specific techni- 
cal problems involved in learning from textbook knowl- 

edge. The first three chapters of the book were man- 

ually translated into Horn clause logic, and found to 

contain several undefined terms, and many pieces of 

advice that are contradictory. However, the popular- 

ity of this text (which has sold millions of copies, and 
is still in print after 23 years) shows that these logical 

shortcomings are not problematic to human readers. 

Many of the inconsistencies and ambiguities in the 
text are clarified by illustrative examples. For instance, 

in discussing rules for bidding two-suited hands [Shein- 
wold, 1964, page 161, Sheinwold says “ The general 

rule is, if your suits are unequal in length, bid the 

longer one; if your suits are equal in length, bid the 
higher one.”  1 but immediately adds that “ You have 

to disregard this general rule on some hands” . After 

a short digression into what defines a “ biddable suit” , 

he presents fifteen examples that clarify this general 

rule. Such passages make it clear that the bidding 

rules presented are over-general, and that understand- 
ing the examples is necessary to fully understand the 

concept being taught. This should not be surprising 
- common sense tells us that understanding examples 

and working exercises is a crucial part of learning from 

textbooks. 

To summarize, the problem addressed in this paper 

is learning by understanding examples from a textbook. 

Unlike previous work (e.g., [Van Lehn, 1987]), we as- 
sume that the textbook knowledge is imperfect, and 

that examples are used to clarify flaws in the knowl- 

edge; the problem of learning from textbook knowledge 
will thus be treated as a a special instance of the more 

general problem of learning from understanding exam- 

ples using an approximate theory. 

Description of the problem 

In this case study, the first three chapters of a text 

on the game of contract bridge [Sheinwold, 19641 were 

manually translated into Horn clause logic. These 
three chapters taught opening bids, a small but reason- 

ably interesting part of the game of bridge; Sheinwold 

devotes 34 pages to this subject. 

Most of the rules required to understand the ex- 

amples of the first three chapters are clearly and ex- 

plicitly presented, which made transcription into logic 

straightforward. However, the direct transcription into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

‘Terminology from the bridge domain will be used in 

this paper only in presentation of examples. Hence famil- 

iarity with contract bridge, while helpful to the reader, is 

not strictly necessary. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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logic resulted in a theory that had several flaws. 

e Certain key properties (for example, whether a hand 

had “ good length in the major suitsn) were not de- 

fined. 

e Several of the rules in the theory were over-general, 

and clearly not intended to be used in all the situa- 

tions in which they were applicable. 

Augmenting the theory with commonsense knowledge 

partially solved the first problem. For each undefined 

property, it was possible to restrict the number of pos- 
sible definitions to a small number of reasonable can- 

didates. For example, the definition of “ good length 

in the majors suits”  could be inferred to be “ having 

length in the major suits greater than L”  for some un- 
known minimal length L. Completing the theory could 

thus be reduced to the problem of choosing the correct 

definition of each undefined term. 

Apart from the incompleteness of the theory, the 

over-general rules also caused the theory to be inac- 
curate, as measured by a sample test also taken from 

[Sheinwold, 19641. Because of the over-general rules, 
no completion could achieve a score of better than 12 

out of a possible 16 problems: on the remaining 4 prob- 

lems, the theory suggested multiple bids, some of which 

were incorrect .2 

We concluded that: in order to complete and correct 

the theory, additional information was needed. The ob- 
vious source of additional information is the examples 

that accompany the text. How can the information in 

these examples be extracted? 

One possibility is to incorporate into the theory all 

possible completions of the undefined predicates. The 

result is a theory that is complete but over-general. 

The problem of incorporating the examples now be- 
comes a theory specialization problem [Flann and Di- 

etterich, 19891: 

Given: 1) an over-general theory Ti, 

2) a set of examples of correct uses of Ti, 
Find: a theory Td that specializes Ti, and that 

only leads to correct predictions. 

The specialization Td of the initial theory Ti will be 
called the target theory. In learning from textbooks, Td 

is the concept being taught (in this case, opening bids) 
expressed as a set of Horn clauses, and Ti includes all 

of the definitions of terms (such as “ major suit” ), all 

possible definitions of undefined terms (such as “ length 
in majors” ) and whatever rules are given in the text- 

book (such as the bidding rules given in [Sheinwold, 

19641). 

In the context of learning from textbooks, the theory 

specialization problem ideally should be solved without 

using any knowledge from o&side the textbook (e.g., 

21t is possible for a hand to have more than one correct 

bid in Sheinwold’s bidding system. 

generalization hierarchies, etc) other than common- 
sense knowledge. Showing that this constraint is satis- 

fied in a learning system that is not purely automatic 
can be difficult. In our experiments, for example, one 

insidious source of additional knowledge is the repre- 
sentational choices made in transcribing the text into 

logic. Efforts were made to make these choices in a 

consistent and natural manner, and also to avoid intro- 

ducing additional knowledge not explicitly present in 

the textbook; the latter policy was followed even at the 

cost of omitting some information that could (perhaps) 

be inferred by an intelligent reader. Nevertheless, some 
representational choices that affect learning needed to 

be made; thus the skeptical reader may wish to view 

this work as learning from a synthetic theory that is 

believed (by the authors) to be prototypical of the sort 

of theories that could be automatically derived from a 

textbook. See [Cohen, 19891 for a detailed description 
of the transcription process. 

The following problems make theory specialization 

difficult in this domain. 

1. The initial theory Ti can produce multiple inconsis- 
tent explanations of an example; i.e., it suffers from 

the multiple explanation problem [Rajamoney and 

DeJong, 19881. 

2. The target theory Td is disjunctive; i.e., no single 
rule is sufficient to describe all correct opening bids. 

3. The initial theory Ti and target theory T, are rela- 

tional, not propositional. 

Problems 1 and 2 rule out use of the mEBG and 

IOE techniques discussed in [Flann and Dietterich, 

19891; the fact that negative examples are also present 

also argues against the appropriateness of these tech- 

niques (with each hand, Sheinwold presents a list of 
correct bids; possible bids not on the list are thus 

by inference negative examples). Problem 2, and the 

lack of a generalization language, rules out use of the 

technique of incremental version-space merging [Hirsh, 

19891. Problem 3 rules out use of the MIRO algorithm 

[Drastal et al., 19891, which could also be considered a 
theory specialization technique. Finally, the presence 

of an almost-correct initial theory suggests that tradi- 

tional inductive learning techniques, which cannot use 
this information directly, are not appropriate. 

The techniques that seem most appropriate to this 

problem are the techniques described in [Pazzani, 19881 
and [Fawcett, 19891 for using explanation-based learn- 

ing (EBL) on a theory that generates multiple incon- 

sistent explanations. These researchers have identified 
heuristics for choosing between multiple inconsistent 

explanations. If heuristics could be found that make 
the correct choices, then a refinement theory T, could 

be formed by simply disjoining the results of perform- 

ing explanation based generalization (EBG) on the 

chosen explanations. 
In investigating such approaches, however, a final 

obstacle was uncovered: 
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4. No single fixed 
to learning. 

level of operationality iS appropriate 

Introduction of an operationality predicate is some- 

what problematic in any case: since no operationality 

predicate is explicitly given in the textbook, using any 

operationality predicate at all violates the principle of 

using no knowledge from outside the textbook. How- 
ever, in this context, an operationality predicate rep- 

resents knowledge about what features are relevant to 

the bidding problem; this knowledge could reasonably 

be inferred by a reader. For instance, the bidding rules 

given by Sheinwold are presented at a fairly high level; 

rules are typically given in terms of high level features 
of hands such as the number of high card points, the 

length of biddable suits, etc. It seems reasonable for 

a reader to assume that lower-level features are not 

relevant to bidding rules. This and similar arguments 

can be used to justify a choice of an operationality 

predicate.3 

However, the sample test from [Sheinwold, 19641 in- 
dicates that this level of operationality is too low for 

a standard explanation based learner to achieve good 

performance. In two of the sixteen test problems, the 

correct bid is supported by an explanation that was 

different (at the chosen level of operationality) from 

every explanation of every training example. A conse- 

quence of this is that no rule generated by performing 

EBG on some explanation of a training example would 

apply to these test cases. 

For both of these anomalous test case, although 

the correct explanation is not identical to the ex- 

planation of any of the training examples, the cor- 

rect explanation is very similar to the explanation 

of some training example; for example, the expla 

nation of the correct bid of 1 club for the test 

case 4 KJ642 0 A5 0 3 AQ732 differs in only 
one subproof from the e lanation used to jus- 
tify the bid of 1 c on the training example 

K&J75 0 5 0 62 AJ963. This particular prob- 
lem could be handled by marking the predicate open- 

ing-strength as operational. Unfortunately, if this were 

done, then in some other cases, every rule learnable 

from a training example would be over-general. 

Considerations such as these suggest that some 

sort of simple analogical reasoning strategy is needed, 

where bids can be accepted or rejected based on 

consideration of training examples with similar, but 

non-identical explanations. This in turn suggests 

that explanation-based analogical reasoning tech- 

niques such as those described in [Huhns and Acosta, 

1987; Kedar-Cabelli, 19871 could be combined with 

explanation-selection heuristics to solve the learning 
problem. These analogical reasoning techniques use 

EBG with a artificially high level of operationality 

to produce rules that match any potential analogies. 

., 19891 

for 
3Again, the interested reader is referred to [Cohen 
a more detailed description of our choice. 

These rules are over-general, in the sense that not all 
instances that match these rules should be treated the 

same as the training example from which the rule was 
formed. One can view such a rule as an explicit repre- 

sentation of the generalizations that would be implic- 

itly made by an analogical reasoner. 

In this research, a slightly different approach was 
taken to analogy. For each training example, instead 

of generating a single very general rule, a large number 
of somewhat general rules were produced, each corre- 

sponding to a class of analogical instances. What one 

would like to do is to pick general rules that only match 

instances that should be treated the same as the train- 

ing example. A key insight is that choosing the right 

generalization can be done with the same techniques 

used to solve the multiple explanation problem. 

The learning algorithm 

The learning algorithm used is shown in Figure 1. 

It takes as input a set of positive examples S+, a 

set of negative examples S”  , a theory T, an opera- 

tionality predicate 0, and an additional parameter Ic, 

which will be discussed shortly. The algorithm is called 
analogical abductive explanation based learning (ANA- 

EBL), since the theory can generate multiple incon- 

sistent explanations and hence is similar in character 
to the abductive theories described in [O’Rorke, 1988; 

Pazzani, 19881. The reader is referred to [Mitchell et 

al., 19861 for definitions of terms such as “ explanation 
structure” , and for an algorithm for explanation based 

generalization. 

The basic idea of the algorithm is simple. First, 
all possible generalizations of the positive training ex- 

amples are enumerated, where “ all possible generaliza- 

tions”  includes generalizations formed by first marking 
up to Ic internal nodes of some explanation structure 

for the example as “operational” . These extended gen- 

eralizations can be matched by a new problem with an 

explanation that differs from the training example in 

up to E subproofs. The parameter Ic is thus a constraint 

on how similar an new example must be to a training 

example in order to be treated analogously. Inconsis- 

tent generalizations (those that match some negative 

example) are then filtered out, and finally, a greedy 
set cover algorithm is used to find a minimal-sized dis- 

junction of the remaining candidates which covers all 

the positive examples. 

Unfortunately, space limitations make presentation 
of a detailed example of the algorithm impossible; the 

interested reader is referred to [Cohen, 19891. An ap- 
pendix to this paper containing an example and a short 

summary of some relevant formal results is also avail- 

able from the author on request. 

Note that with L = 0, no analogical reasoning takes 
place; in this case ANA-EBL simply uses the set cov- 

ering and size heuristics to choose between multiple 
explanations and find the set of EBG rules that best 

describes the data. 
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Algorithm ANA-EBL(S+, S-, Z’, 0, B): 

1. Compute the explanation structure of every proof 

of every example in S+. 

2. For each explanation structure found in step 1, find 

the set of candidate rules that can be formed by 

(a) marking up to k internal nodes of the explanation 

structure as uoperational”  

(b) applying the final stage of EBG to the resulting 

explanation structure. 

by removing 3. Filter the set of candidate rules 

that covers an element of S- . 

4. 

any rule 

Use 

that 

a greedy set cover 

accounts for all of 

to find a small set of rules 

the training examples: 

(a) Initially, let COV be the empty set. 

(b) Add to COV that candidate rule R that maximizes 

the ratio of the number of as-yet-uncovered examples 

explained by R to the sizea of R. 

(c) Repeat step 4b until all examples have been covered. 

5. Return the disjunction of the rules in COV. 

aThe size of R is defined to be the number of 

explanation structure from which R was formed. 

nodes in the 

Figure 1: The ANA-EBL Learning Algorithm 

It can be easily shown that this algorithm runs in 

time polynomial in the total size of the set of proofs 

for elements of S +, but exponential in L. Of course, 

the number of proofs can be very large or even infinite; 

ANA-EBL is only efficient when this is not the case. 

It can also be shown that ANA-EBL satisfies 

Valiant’s criterion of efficient learnability [Valiant, 

19841. 

Theorem 1 (From [Cohen, 19891) Let n be the min- 
imal size (over all samples) of any set of rules gen- 

erated by the procedure above that correctly define the 

target theory T,, and let ITi 1 be the number of Born 

clauses in the initial theory Ti. Then with probability 

at least I- 6, ANA-EBL will return a specialized the- 

ory that will have error (with respect to the probability 
distribution function D) less than E if it is given only 

m($, $,n) examples chosen stochastically according to 

D, where 

1 1 
m(- -94 

&'6 

= O(max(i log 2, 
1 nlQyY(log "'OfTil)Z)) 

Furthermore, there exists initiaZ theories Ti such that 

every algorithm that with probability at least 1 - 6 re- 

turns a specialized theory that has an error of less than 

e will require at least rni$, #, n) examples, where 

11 
m(- -,n) = Q(iln 

E’S 
;+s, 

Assuming that n is large and log ITi I is small, the 

upper and lower bounds on m can be simplified to 

O($(log E)2) and sZ($) respectively. So in learning 
from random examples, ANA-EBL is within a factor 

of (log $)”  from the optimum. 

Note also that as K increases, n (the optimal size of 
Tb) will decrease; the theory thus predicts that increas- 

ing X: will improve the convergence rate of ANA-EBL. 

Of course, in the context of learning from textbooks, 

training examples will be carefully chosen, not ran- 

domly selected; this is in fact one of the principle ad- 

vantages of learning from textbooks. However, this 

result is still important; it suggests that ANA-EBL 

is robust with respect to which training examples are 

chosen, and reinforces the claim that ANA-EBL is a 

general learning algorithm - in particular, that it is 

not specific to the contract bridge domain. 

Experimental results 

To further evaluate the ANA-EBL algorithm, a series 

of experiments were conducted. The first set of experi- 

ments used as an initial theory Ti a transcription of the 
first three chapters of [Sheinwold, 19641, and used as 

training data the forty-eight examples used by Shein- 

wold in the first three chapters, with no additions, and 
five omissions. The omitted examples dealt with open- 

ing in third- or fourth-hand position; they were omit- 

ted because eliminating position information greatly 

simplified our representation of the bidding problem. 
As test data we used the relevant portion of the sam- 

ple test in [Sheinwold, 19641; this consisted of sixteen 

bidding problems. 

The examples and test data taken from [Sheinwold, 

19641 are a fair test of the learner in two ways; they 
are representatives of a naturally-occurring concept of 

some complexity, and they were chosen without knowl- 

edge of the learning algorithm. It is not an ideal 

test, however, because of its small size. To circumvent 

this problem, a program was written that randomly 

generated bridge hands and then opened them using 

hand-coded bidding rules. The hand-coded rules are a 

reasonable implementation of the bidding system pre- 
sented in [Sheinwold, 19641; for instance, they bid all 

of the problem hands in the sample test correctly. By 
using this program as a classifier, unlimited amount of 

training and test data can be generated; however, this 

introduces another source of potential bias, because 

the data no longer consists of true representatives of 
Sheinwold’s opening-bid concept, but of representatives 
of our own interpretation of that concept. 

Experiments with textbook data 

The ANA-EBL algorithm was used to learn a bridge 

bidding strategy in two phases. First, the textbook 

theory was completed by adding all possible comple- 
tions (subject to common-sense constraints) of the un- 

defined predicates. The predicate opening-strength was 

then learned from the completed theory and the train- 

ing examples, using ANA-EBL with L = 0. All of 
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1 Theory I Accuracy ] 

Ti with learned* opening-strength 

~1 
Table 1: Learning opening-bid from textbook data 

the undefined predicates appear in the definition of 

opening-strength, and none of them appear anywhere 
else; hence learning this predicate is equivalent to si- 

multaneously learning definitions of all of the unde- 

fined predicates. Opening-strength is the least general 

predicate that has this property and that is also “ob- 

servable” , in the sense that one can look at a training 

example and readily determine whether the hand in 

question makes opening-strength true. 

The learned definition of opening-strength was then 

spliced into the original initial theory, and the predi- 

cate opening-bid was learned from the training exam- 

ples, using ANA-EBL with L = 0 and k: = 1. This 

predicate says which bids are correct opening bids for 

a given hand; teaching this is the main object of the 

first three chapters of the text. The learned predicates 

were then tested on the sample test. A problem was 
judged to be correct if no incorrect bids were suggested, 

and at least one correct bid was suggested. The results 

are shown in Table 1; for comparison, we also give the 

performance of the initial domain theory Ti, and of Ti 

with the learned version of the opening-strength pred- 
icate. 

It would be preferable to learn opening-bid directly, 

rather than first learning opening-strength in a sepa- 

rate pass. However, because there are many possible 

definitions for each of several undefined concepts, the 

original theory generates hundreds of alternative ex- 

planations of each openingstrength goal. Our imple- 

mentation can handle this degree of ambiguity, but 

only for extremely low values of h, so learning in a sin- 
gle pass would preclude experimentation with larger 

values of L. This issue is discussed more completely in 

[Cohen, 19891. 

Experiments with random data 

The experiments above show that the learning algo- 

rithm works well for a small set of carefully selected il- 

lustrative examples. Experiments were also performed 

with randomly selected data. The goals of these ex- 

periments were first, to measure the benefit of using 

“ textbook cases”  for examples, rather than randomly 
chosen examples; and second, to further test the hy- 

pothesis that analogical reasoning is necessary in this 

domain, but that limited analogical reasoning is suffi- 

cient to solve most problems. Some evidence for the 

latter hypothesis is given by the performance of the 

Figure 2: Learning opening-bid from random data 

learning algorithm on the sample test, since Ic = 1 

is sufficient to solve all but one of the test problems; 
however, because the sample test is so small, additional 

evidence is desirable. 

Experiments were done in learning opening-bid from 
the initial theory with a correct definition of open- 

ing-strength. A test set of 1000 hands was generated 

and classified by the generation program. Then a sep- 

arate training set of 300 hands was generated and clas- 

sified by the program. ANA-EBL, with X: = O,l, and 

2, was then given progressively larger subsets of the 

training set, and the accuracy of each TB was mea- 

sured by using it to classify the hands in the test set, 
and comparing the classifications to the correct ones. 

This experiment was repeated 10 times and the error 

rates were averaged, using the same test set in each 
trial. The result is the “ learning curve”  shown in Fig- 

ure 2 that plots the accuracy of the hypothesis against 

the number of training examples. 

The experiments show that the algorithm has good 

convergence properties, even on randomly selected 
data. In learning opening-bid, ANA-EBL with k: = 1 
learns substantially faster than ANA-EBL with L = 0, 

and only marginally slower than ANA-EBL with X: = 2. 

This substantiates the conjecture that some analogi- 

cal reasoning seems to be necessary, but that limited 

analogical reasoning is sufficient, and confirms the pre- 

diction made by the formal analysis that increasing Ic 
improves the rate of learning. It also shows that Shein- 

wold’s examples are much more informative than ran- 

domly selected ones: about 7 times as many examples 
are needed to achieve comparable levels of accuracy 

using random examples. 
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To summarize, we have identified a problem that arises 

in learning from the knowledge in textbooks: the 

problem of learning from knowledge including omis- 

sions and inconsistencies that are clarified by illustra- 

tive examples. This learning problem is solvable by a 

technique that we call analogical abductive explanation 

based learning (ANA-EBL). ANA-EBL actually solves 

the more general problem of learning from understand- 

ing examples using an approximate theory. It is an ex- 

planation based learning technique that combines tech- 
niques used to choose between multiple inconsistent ex- 

planations with explanation based analogical reasoning 

techniques along the lines of [Huhns and Acosta, 1987; 

Kedar-Cabelli, 19871. 

Learning from textbook knowledge is a hard prob- 

lem; even if the natural language problems are finessed 

by manually translating a theory into logic, the prob- 

lem of correcting and completing the resulting theory 

is difficult. The major contribution of this paper is 
isolation of some subproblems involved in the general 

problem of learning from textbooks, and presentation 

of techniques that address these subproblems. 

The techniques developed to solve this problem, 
however, are of independent interest. ANA-EBL is 

a theory specialization technique, like the techniques 

described in [Drastal et al., 1989; Flann and Diet- 
terich, 1989; Hirsh, 19891; however, ANA-EBL works 
even in situations in which the original theory is re- 

lational and/ or generates multiple inconsistent expla- 
nations, and in which the target theory is disjunc- 

tive. Experimental results indicate that the tech- 

nique is effective on randomly selected examples, as 
well as on well-chosen “ textbook”  examples. ANA- 
EBL also builds on techniques described in [Pazzani, 

19881 and [Fawcett, 19891 for solving the multiple ex- 

planation problem but extends these results by first, 

incorporating analogical reasoning techniques similar 
in flavor to those used in [Huhns and Acosta, 1987; 

Kedar-Cabelli, 19871; and second, giving a precise way 

of weighting the complexity of an explanation and the 

number of observations that it covers, and justifying 

this heuristic with a formal analysis. 

ANA-EBL is far from a complete solution to the 

problem of learning from textbook knowledge; how- 

ever, we feel that it addresses at least some of the issues 

that must be confronted. An important topic for fur- 

ther research would be to integrate ANA-EBL with an 

automatic text understanding system. This would ad- 

dress the major shortcoming of our evaluation of ANA- 

EBL: in the process of manually translating a text into 

Horn clause logic, representational choices that affect 

learning inevitably must be made. Because of this, the 

skeptical reader may wish to view this work as learning 

from a synthetic theory that is prototypical of the sort 
of theories that could be automatically derived from a 

textbook. 
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