
Machine Learning, 37, 241–275 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Learning Function-Free Horn Expressions

RONI KHARDON roni@dcs.ed.ac.uk
Division of Informatics,University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JZ, Scotland

Editors: Jonathan Baxter and Nicol`o Cesa-Bianchi

Abstract. The problem of learning universally quantified function free first order Horn expressions is studied.
Several models of learning from equivalence and membership queries are considered, including the model where
interpretations are examples (Learning from Interpretations), the model where clauses are examples (Learning
from Entailment), models where extensional or intentional background knowledge is given to the learner (as done
in Inductive Logic Programming), and the model where the reasoning performance of the learner rather than
identification is of interest (Learning to Reason). We present learning algorithms for all these tasks for the class of
universally quantified function free Horn expressions. The algorithms are polynomial in the number of predicate
symbols in the language and the number of clauses in the target Horn expression but exponential in the arity of
predicates and the number of universally quantified variables. We also provide lower bounds for these tasks by
way of characterising the VC-dimension of this class of expressions. The exponential dependence on the number
of variables is the main gap between the lower and upper bounds.

Keywords: computational learning theory, inductive logic programming, Horn expressions, direct products

1. Introduction

We study the problem of exactly identifying first-order Horn expressions using Angluin’s
(1988) model of exact learning. Much of the work in learning theory has dealt with learning
of Boolean expressions in propositional logic. Early treatments of relational expressions
were given by Valiant (1985) and Haussler (1989), but only recently more attention was
given to the subject in the framework of Inductive Logic Programming (see e.g. Muggleton
& De Raedt, 1994; Cohen, 1995a; Nienhuys-Cheng & De Wolf, 1997). It is clear that
the relational learning problem is harder than the propositional one and indeed except for
very restricted cases it is computationally hard (Cohen, 1995b). To tackle this issue in
the propositional domain various queries and oracles that allow for efficient learning have
been studied (Valiant, 1984; Angluin, 1988). In particular, propositional Horn expressions
are known to be learnable in polynomial time from equivalence and membership queries
(Angluin, Frazier, & Pitt, 1992), and from entailment queries (Frazier & Pitt, 1993). In the
relational domain, queries have been used in several systems (e.g. Shapiro, 1983; Sammut &
Banerji, 1986; De Raedt & Bruynooghe, 1992; Muggleton & Buntine, 1992) and results on
learnability in the limit were derived (Shapiro, 1991; De Raedt & Bruynooghe, 1992). More
recently progress has been made on the problem of learning first-order Horn expressions
from equivalence and membership queries. These results were obtained by using additional
constraints on the language (Page, 1993; Reddy & Tadepalli, 1997) and using additional

242 KHARDON

queries that help identify the syntactic form of the target expression (Arimura, 1997; Reddy
& Tadepalli, 1998; Rao & Sattar, 1998).

In this paper we show that function-free universally quantified Horn expressions are
exactly learnable in several models of learning from equivalence and membership queries.
One distinction between the learning models is concerned with the notion of examples. The
natural generalisation of the setup studied in propositional logic suggests that examples are
interpretations of the underlying language. That is, a positive example is a model of the
expression being learned. Another view suggests that a positive example is a sentence that
is logically implied by the expression, and in particular Horn clauses have been used as
examples. These two views have been calledlearning from interpretationsand learning
from entailmentrespectively (De Raedt, 1997) and were both studied before.

Another aspect of the learning models is the use of background knowledge in the process
of learning. This idea has been formalised inInductive Logic Programming(ILP) where
the background knowledge is given to the learner as a logical expression in the same lan-
guage as that of the target expression being learned (Muggleton & De Raedt, 1994). The
background knowledge may beextensional, that is a set of ground facts, orintentionalwhere
it may include arbitrary expressions in the language. Finally, the framework ofLearning
to Reason(Khardon & Roth, 1997) has been suggested for the study of systems that learn
their knowledge in order to reason with it. For example, such a system may learn domain
knowledge for a particular domain and then use it to reason about this domain. Instead
of finding an expression equivalent to the domain description, the learner is expected to
learn some representation with which it can perform the reasoning correctly, for reasoning
questions in a restricted class of expressions.

We present algorithms for all these tasks with respect to universally quantified function-
free Horn expressions. Our method follows closely the results from the propositional domain
(Angluin, Frazier, & Pitt, 1992; Frazier & Pitt, 1993) generalising these by finding appro-
priate first-order constructs. Thus one contribution of the paper is in lifting the results to the
first-order domain and developing the appropriate algorithms. Another contribution is in
developing techniques for converting learning algorithms from one model to another, thus
clarifying some of the relationships between the various models. Finally, we characterise the
VC-dimension of the class under consideration; this is a combinatorial parameter known
to provide a lower bound for the complexity of learning (Blumer et al., 1989; Maass &
Turán, 1992). For our case this induces a lower bound on the number of queries made by
any algorithm that learns function-free Horn expressions.

To illustrate the complexity of the algorithms consider the Horn expression (exact defi-
nitions for the various notions appear in the next sections):

[∀x1, x2, x3, (p1(x1, x2)p2(x1, x3)→ p1(x2, x1))]

∧ [∀x1, x3, (p3(x3, x1)p1(x3, x1)→ p4(x3))]. (1)

The language includes|P| =4 predicatesp1, . . . , p4 each of arity at mosta= 2, the num-
ber of clauses in the expression ism= 2 and the maximal number of universally quan-
tified variables in a clause isk= 3. Our algorithm learns this class of expressions with
query complexity bounded by 3m2|P|kank3k where n is the size (number of objects)

LEARNING HORN EXPRESSIONS 243

in the examples it sees, and time complexity polynomial in the above parameters and
nk. The lower bound for the number of queries following from the VC-dimension is
Ä(m|P|ka).

Our results are derived by first considering the case of learning from interpretations. We
describe two slightly different algorithms (with different proofs of correctness) that perform
this task. Algorithms for other tasks are then constructed from the solution of this task. One of
the main results of the paper is concerned with deriving one of the basic algorithms. In doing
that we use a variant of the standard semantics where each universally quantified variable
in an expression must be bound to a different element. We show that in this setting the
number of equivalence queries is polynomial ink (rather thankk) whereas the running time
and membership queries are as above. Our learning algorithm usespairingsof examples,
an operation that is a variant of direct products that have been used before for learning
(Horvath, Sloan, & Tur´an, 1997; Frazier & Pitt 1996). A similar modified semantics has
been considered before by Haussler (1989). In fact our result can also be seen as extending
Haussler’s positive result (that shows the learnability of a single clause) in having more than
one clause in the expression though restricting the clauses to be Horn. Another interesting
aspect of the modified semantics is that it can be used to derive a learning algorithm for a
more expressive language (under the normal semantics) allowing an arbitrary number of
equalities in the clauses, as in:

[∀x1, x2, x3, (p2(x1, x3)p3(x2, x1)→ p4(x2) ∨ (x1 = x2))]

thus going somewhat beyond the pure Horn case.
While this paper concentrates on function-free expressions, extending the results to more

expressive languages in clearly of interest. One such result for range restricted Horn expres-
sions (where the way function symbols are used in clauses is restricted) has been recently
developed using a reduction to the function-free case (Khardon, 1999a).

The rest of the paper is organised as follows. Section 2 gives preliminary definitions and
details. Section 3 presents some simple examples that motivate the construction developed
in Section 4 where the result on learning with the special semantics is proved. Section 5
extends this result for other learning models, and Section 6 characterises the VC dimension
of the class. Section 7 develops the second basic algorithm showing how the propositional
algorithm can be used more directly in the first-order domain. Finally Section 8 concludes
with a brief discussion.

2. Preliminaries

2.1. First-order Horn expressions

We consider a subset of the class of universally quantified expressions in first-order logic.
The learning problems under consideration assume a pre-fixed known and finite signature
of the language. Constants or other function symbols are not allowed in the language. That
is, the signature is a finite set of predicatesP each with its associated arity. In addition a
set of variablesx1, x2, x3, . . . is used to construct expressions.

244 KHARDON

Definitions of first-order languages can be found in standard texts (e.g. Chang & Keisler,
1990; Lloyd, 1987); here we briefly introduce the necessary constructs. A positive literal
is a predicate applied to a set of variables, that is,p(X) where p ∈ P and X is a set of
variables of an appropriate size (the arity ofp). A negative literal is obtained by adding the
negation symbol to a positive literal, e.g.p(X). A clause is a disjunction of literals where
all variables in the clause are (implicitly) universally quantified. A Horn clause has at most
one positive literal; a Horn clause is said to bedefiniteif it has precisely one positive literal.
A Horn expression is a conjunction of Horn clauses. Note that any clause can be written
asC = (∧n∈Negn) → (∨p∈Posp) where Neg and Pos are the sets of atoms that appear in
negative and positive literals ofC respectively. When doing so we will refer to(∧n∈Negn)
as theantecedentof C and to(∨p∈Posp) as theconsequentof C.

Definition 1. Let C= (∧n∈Negn)→ (∨p∈Posp) be a clause, thenC is range restricted1 if
every variable that appears in Pos also appears in Neg.

Definition 2. LetH(P) be the set of (function-free) Horn expressions over signatureP
andH(P)− the set of expressions inH(P) in which all clauses are range restricted.

For example,(p(x, y)→ q(x)∨q(y)) is range restricted but not Horn,(p(x, y)→ q(z))
andq(x) are inH(P) but not inH(P)−, (p(x, y)∨ p(y, z)) is inH(P)− but is not definite,
and(p(x, y)→ q(x)) is a definite clause inH(P)−.

Definition 3. LetH(P,=) be the languageH(P) extended so that clauses can have any
number of literals of the form(xi = xj), or (xi 6= xj)wherexi , xj are variables that appear
in relational literals in the clause.

The classH(P,=) goes somewhat beyond Horn expressions if equalities are considered
as positive literals. An example clause inH(P,=) appears in the introduction.

2.2. Examples

An example is an interpretationI of the predicates inP (Lloyd, 1987). It lists a set of
domain elements and the truth values of all instantiations of predicates on these elements.
Theextensionof a predicate inI is the set of positive instantiations of it that are true inI ;
thesizeof the extension is the size of this set. Thesizeof an interpretation is the sum of sizes
of extensions of predicates in it. If the arity of all predicates is bounded by a constanta then
the size of the extension of an example is polynomial in the number of domain elements.

Examples of this form have been used by Haussler (1989) and are motivated by the sce-
nario of acting in structural domains (e.g. Khardon, 1999b; Reddy, Tadepalli, & Roncagliolo,
1996). They are also used in the non-monotonic form of ILP (De Raedt & Dzeroski, 1994).
In structural domains, domain elements are objects in the world and an instantiation de-
scribes properties and relations of objects. We therefore refer to domain elements asobjects.
For convenience we assume a standard way of naming objects, as a list of natural numbers.

LEARNING HORN EXPRESSIONS 245

For example, for the language of Eq. (1),I may have the extension

{p1(1, 2), p1(2, 1), p1(3, 5), p2(1, 5), p4(2)} (2)

for the set of objects{1, 2, 3, 4, 5}. Notice that no positive atom holds inI for the object 4.

2.3. Semantics

Note that the classes of expressions were defined syntactically. We associate a concept to
each expression by defining appropriate semantics. Since the paper discusses two different
semantics, an expression may be mapped to two different concepts under these. When the
chosen semantics is not clear from the context we would specify which concept is meant.
For the meantime we define a single semantics, the standard one (Chang & Keisler, 1990;
Lloyd, 1987).

Let l (X) be a literal,I an interpretation andθ a mapping of the variables inX to objects in
I . Theground literal l(θ(X)) is obtained froml (X) by substituting variables in it according
to θ . A ground positive literalp(θ(X)) is true in I if and only if it is in the extension of
the relevant predicate inI . A ground equality literalθ(xi = xj) is true in I if and only if θ
mapsxi andxj to the same object. A ground negative literal is true inI if and only if its
negation is not.

A clauseC ∈ H(P) is true in an interpretationI if for all substitutionsθ of variables in
C to objects inI at least one of the literals inC(θ) is true inI . An expressionT ∈ H(P) is
true in I if all clausesC in T are true inI . The terms (1)T is true in I , (2) I is a positive
example forT , (3) I satisfiesT , (4) I is a model ofT , and (5) I |= T , have the same
meaning. LetT1, T2 ∈ H(P) thenT1 impliesT2, denotedT1 |= T2, if every model ofT1 is
also a model ofT2.

Using this terminology, the interpretation of Eq. (2) is a positive example of the expression
of Eq. (1), while{p1(1, 2), p1(3, 5), p2(1, 5), p4(2)} is a negative example.

2.4. Parametrising the concept class

The languages defined above can be further parametrised by restricting the number of
(universally quantified) variables in each clause. Denote the respective classes where the
number of variables is bounded byk, byHk(P),Hk(P)−, andHk(P,=).

For anyT ∈ Hk(P,=), one can test whetherI |= T by enumeration in timeO(|T |nk)

if I hasn objects. In general even evaluating a single clause on a single interpretation
is NP-Hard if k is not bounded, and recent results suggest that it is not likely to have
an algorithm polynomial inn even for small non-constant values ofk (Papadimitriou &
Yannakakis, 1997). We will thus assume thatk is constant whenever such evaluation needs
to be performed. Note that this restriction does not limit the size of clauses to be constant.
Long clauses can be constructed since variables can appear in more than one literal. Similar
restrictions have been previously used by Haussler (1989).

Other assumptions that ensure tractability, e.g. determinacy (Dzeroski, Muggleton, &
Russell, 1992), have been used before but we do not address such restrictions here.

246 KHARDON

2.5. The learning model

The learning model uses several forms of queries (Angluin, 1988; Frazier & Pitt, 1993). Let
H be a class under consideration. In the learning model a target expressionT ∈ H is fixed
and hidden from the learner. The learner interacts with the equivalence and membership
oracles and has to find an expressionH that is equivalent toT with respect to|=.

For Equivalence Queries(EQ) the learner presents a hypothesisH ∈ H and the oracle
returns “yes” ifH = T and otherwise it returns an interpretationI that is a counter example
(I |= T and I 6|= H or vice versa). ForMembership Queries(MQ) the learner presents an
interpretationI and the oracle returns “yes” iffI |= T .

We also study oracles based on entailment where clauses serve as examples. Intuitively,
for Entailment Membership Queries, the learner presentsC(θ(X)), a ground instance of a
clauseC ∈ H (i.e. all variable are substituted to objects) and the oracle returns “yes” iff
T |= C(θ(X)). However, in order to do this we must include object names as constants in
the underlying first-order language. Precise definitions for entailment oracles as well as the
ILP setting are given in Section 5.

2.6. Small interpretations

The following lemmas indicate that we may restrict our attention to small interpretations. Let
I be an interpretation, and letA be a subset of the objects inI . ThenI |A is the interpretation
induced fromI by deleting the objects not inA and all the instantiated predicates on these
objects. LetIk be the set of interpretations where the number of objects is at mostk.

Lemma 1. Let T ∈ Hk(P) and let I be any interpretation. If I6|= T then there is a set A
of objects of I such that
(1) |A| = k, and I|A 6|= T
(2) ∀B ⊃ A, I |B 6|= T .

Proof: This follows since to falsifyT a single substitutionθ is sufficient and sinceT has
at mostk variables it is sufficient to include inA the objects mentioned inθ . Clearly, any
supersetB of A can falsifyT using the sameθ . 2

Lemma 2. Let T ∈ H(P), and let I be any interpretation. If I|= T then for any set A of
objects of I, I |A |= T .

Proof: AssumeI |A 6|= T . Then there is a substitutionθ and a clauseC in T such thatC
is not true inI |A. ClearlyC is not true inI under the sameθ . 2

2.7. The algorithm Prop-Horn

For reference, we describe the propositional algorithm by Angluin, Frazier, and Pitt (1992)
which we refer to later as Prop-Horn. The description casts the algorithm in a relational
setting illustrating the relation to the first-order algorithms. In order to do this assume that

LEARNING HORN EXPRESSIONS 247

all interpretations use the objects 1,. . . , k for some fixedk. We use{1, . . . , k} as constants
so that ground atoms (in the relational domain) correspond to atomic propositions (in the
propositional domain).

We first define the basic operations of the algorithm. LetI be an interpretation, and let
prop-ant(I) be the conjunction of all positive ground literals true inI , andprop-neg(I) be
the set of all positive ground literals that are false inI . The setprop-cands(I) is the set of
clauses{prop-ant(I)→ A | A ∈ prop-neg(I)} ∪ {prop-ant(I)}. For a set of interpretations
S, prop-cands(S) = ∪s∈Sprop-cands(s).

For example, assume we have two unary predicatesp1(), p2(), and the interpretation
I with positive atoms{p1(1), p2(2)} over the domain{1, 2}. Thenprop-ant(I) = p1(1) ∧
p2(2), prop-neg(I) = {p1(2), p2(1)}, andprop-cands(I) includes three clauses:(p1(1) ∧
p2(2)→ p1(2)), (p1(1)∧ p2(2)→ p2(1)), and(p1(1)∨ p2(2)). Intuitively,prop-cands(I)
is a set of candidate clauses to be included in the hypothesis. All these clauses are falsified
by I .

Let I1, I2 be interpretations with the same set of objects. Theintersectionof I1, I2 is
defined to have the same objects as inI1, I2, and the extension of predicates in the intersection
is defined to be the intersection of the extensions of corresponding predicates inI1, I2. We
denote the intersection byI1 ∧ I2.

The algorithm is described in Table 1. The algorithm maintains an ordered set of “repre-
sentative” negative examples from which it builds its hypothesis by using theprop-cands()
operation that generates “candidate” clauses. A counter example either removes a wrong
clause, refines one of the current representative examples, or is otherwise added as a new
representative example. The correctness and efficiency of the algorithm follow by show-
ing that no two representative examples falsify the same clause in the representation for
the target expressionT , and that each refinement makes progress is some measurable way
(Angluin, Frazier, & Pitt, 1992).

3. Some illustrative examples

We discuss some simple examples in order to develop an intuition for the construction that
follows. The discussion here is informal and precise definitions appear in the sections that
follow.

Table 1. The algorithm Prop-Horn: learn propositional Horn expressions using EQ and MQ.

1. Maintain an ordered set of interpretationsS, initialised to∅ and letH = prop-cands(S).
2. Repeat untilH = T :
• Ask an equivalence query to get a counter example in caseH 6= T .
• On a positive counter exampleI (s.t. I |= T) remove wrong clauses (s.t.I 6|= C) from H .
• On a negative counter exampleI (s.t. I 6|= T):

For i = 1 tom (whereS= (s1, . . . , sm))
If J = si ∧ I is negative (use MQ to test whetherJ |= T),

and its size is smaller than that ofsi

then replacesi with J, and quit the For Loop.
If no si was replaced then addI as the last element ofS.
After each negative counter example, recomputeH asprop-cands(S).

248 KHARDON

Let the signature beP = {p1, . . . , p5} where all predicates are of arity 2. First recall
that our expressions are function-free and hence cannot refer to constants or object names.
Therefore these names are not important and we can abstract them away from examples.
Consider the case where the target expression is the single clause

T = [∀x, y, z, (p1(x, y) ∧ p2(y, z)→ p3(x, x))]

and the negative example (with domain{1, 2, 3})

I1 = {p1(1, 2), p2(2, 3), p4(2, 3)}.

In order to show thatI1 6|= T we can substitute 1/x, 2/y, 3/z and satisfy the antecedent
in I1 while not satisfying the consequent. Therefore, we can find an approximation of
the antecedent of the target clause simply by substituting each object inI1 with a distinct
variable. This yieldsp1(x, y)∧ p2(y, z)∧ p4(y, z). Notice that the literals in this antecedent
are a superset of the true set of literals inT . Assuming that we have a way of finding out
what the right consequent is (we will later simply try all possibilities) this process yields
the clause(p1(x, y) ∧ p2(y, z) ∧ p4(y, z) → p3(x, x)). Once this is done all we need to
do is somehow omit the extra literalp4(y, z) to get the correct clause.

This process may encounter a problem when used with

I2 = {p1(1, 2), p2(2, 2), p4(2, 3)}.

In this case, the resulting clause is(p1(x, y)∧ p2(y, y)∧ p4(y, z)→ p3(x, x)) and we see
that the variablesy, z in the original clause have been unified into a single variabley in the
resulting clause. The cause of this is the fact that the substitution 1/x, 2/y, 2/z showing
that I2 6|= T maps the same object to bothy andz.

These two problems, extra literals and unified variables, may be solved by using several
negative examples of the same clause and the direct product construction. Consider the two
negative examples

I3 = {p1(1, 2), p2(2, 2), p4(2, 3)}
I4 = {p1(a,a), p2(a, b), p5(b, c)}.

Each of these interpretations will generate an extra literal and both unify variables;I3 unifies
y, z and I4 unifiesx, y. The domain of the direct productI3 ⊗ I4 is the Cartesian product
of those ofI3 and I4, namely,{1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c}. An atom p(αβ, γ δ) is
true in the product if its projectionsp(α, γ) and p(β, δ) are true in the corresponding
interpretations. Thus the extension of predicates in the product is

I3⊗ I4 = {p1(1a, 2a), p2(2a, 2b)}.

When a clause is generated from this interpretation we get the target clause exactly.
A slightly modified example shows that products may also generate new extra literals.

LEARNING HORN EXPRESSIONS 249

Consider the two negative examples

I5 = {p1(1, 2), p1(1, 3), p2(2, 2), p4(2, 3)}
I6 = {p1(a,a), p1(a, b), p2(a, b), p5(b, c)}.

The product has the same domain as above and the extension of predicates is

I5⊗ I6 = {p1(1a, 2a), p1(1a, 2b), p1(1a, 3a), p1(1a, 3b), p2(2a, 2b)}.

Clearly, the size of the product may be as large as the product of the sizes of the original
interpretations. If using products several times the size may increase exponentially.

A final observation is that (even if the product is large) there is a small number of domain
elements in the product which are of interest. These are the elements participating in a
falsifying substitution for the clause. Namely, in the last product these are 1a, 2a, 2b. We
could in principle projectI to keep only information on objects of interest, as in:

(I5⊗ I6)|{1a,2a,2b} = {p1(1a, 2a), p1(1a, 2b), p2(2a, 2b)},

where some of the extra literals (but not all) are removed. Note that the two remainingp1()

atoms are versions ofthe sameatom in I5.
As illustrated in the next section, projection on its own does not suffice to make progress,

that is, remove literals relative to the original interpretations. However, we also show in the
next section that projection is guaranteed to be useful in case the original interpretations
did not unify variables. We call such a projectiona pairingof the interpretations. Consider
the two negative examples

I7 = {p1(1, 2), p1(1, 3), p2(2, 3), p4(2, 3)}
I8 = {p1(a, b), p1(a, c), p2(b, c), p5(b, c)}.

The product has the same domain as above and the extension of predicates is

I7⊗ I8 = {p1(1a, 2b), p1(1a, 2c), p1(1a, 3b), p1(1a, 3c), p2(2b, 3c)}.

We can project this interpretation on{1a, 2b, 3c} to get

(I7⊗ I8)|{1a,2b,3c} = {p1(1a, 2b), p1(1a, 3c), p2(2b, 3c)}.

The main difference from the previous example is that the projection set corresponds to a
1-1 matching of the domain elements ofI7, I8. This guarantees that none of the atoms gets
duplicated in the resulting projected product and its size is never larger than the original
interpretations—a fact that is used in proving that our algorithm converges.

In our learning algorithm, negative examples are used to generate clauses in the hypoth-
esis. If these clauses have extra literals then a negative example may be paired with another
negative example in order to remove them. This works correctly as long as examples do not
unify variables. Examples which do unify variables are harder to deal with since projections

250 KHARDON

of their products may increase the size of the interpretations. Our treatment below simply
rules out this situation by defining a new semantics where different variables in a clause
must be bound to different domain elements in interpretations. This in turn allows us to
design an algorithm for the task. Later we show that this is not too bad a restriction since
we can use the resulting algorithm to solve the original problem as well.

Finally, note that we only discussed the case of a single clause. A further level of complica-
tion arises when there is more than one clause. Intuitively, the algorithm below approximates
each clause in the target expression using negative examples for that clause. Naturally, the
algorithm also needs to find out which clause a negative example corresponds to, and make
sure that a single clause is not approximated several times by different examples. These
aspects are dealt with formally in the next section.

4. Unique substitution semantics

Motivated by the discussion above we define an alternative semantics forcing different
variables in a clause to be bound to different domain elements in interpretations. The
approach we take is similar to the one by Haussler (1989) where (translated to our setting)
it is shown that a single universally quantified clause is learnable from equivalence and
membership queries. The result that follows shows that in this model Horn expressions are
also learnable. Thus we extend the result in having more than one clause but restrict the
clauses to be Horn.

Definition 4. Let I be an interpretation andC ∈ H(P) be a clause with variables inX.
We say thatC is d-true in I (and I is ad-model ofC), and denote it byI |=d C if for all
1-1 substitutionsθ that map each variable to a distinct object inI , C(θ(X)) is true in I ,
where the semantics for ground clauses remains as before.

For T ∈ H(P) whereT is a conjunction of clauses,T is d-true in I if and only if all
clauses inT ared-true in I . Let T1, T2 ∈ H(P) thenT1 d-impliesT2, denotedT1 |=d T2, if
everyd-model ofT1 is also ad-model ofT2.

Notice that if the number of objects inI is smaller than the number of variables inC then
I |=d C. Caution must be taken with the use of standard inference rules when using this def-
inition because of the shift in semantics. For example, using Modus Ponens one can deduce
[∀y, t (y)] from T = [∀x, p(x)] ∧ [∀x, y, (p(x)→ q(x, y))] ∧ [∀x, y, (q(x, y)→ t (y))].
However,T 6|=d [∀y, t (y)] since I = {p(a)} is ad-model ofT . Another difference from
the standard semantics is that in|=d it is important that clauses are quantified separately; for
example forI = {q(a,a)} (over domain{a}) we haveI 6|=d [∀x, p(x)] ∧ [∀x, y, (p(x)→
q(x, y))] but if clauses share variables we haveI |=d [∀x, y, (p(x))∧ (p(x)→ q(x, y))].
For our purposes it suffices to note that ifC2 can be obtained fromC1 by adding literals to
it, andT |=d C1 thenT |=d C2. Note also that Lemma 1 and Lemma 2 hold in this model
as well. We modify the learning model accordingly so that equivalence and membership
queries evaluate interpretations according to|=d. Denote these modified oracles by EQ|=d

and MQ|=d .

LEARNING HORN EXPRESSIONS 251

The new semantics defines the notion ofd-falsifying a clause. Similarly, we say thatI d-
coversa clause if its antecedent is satisfied inI by a 1-1 substitution that maps all variables
of C. Note that this requires thatI has enough objects to be mapped to the variables
of C.

A Direct Product is an operation on interpretations that is well known for characterising
Horn expressions. Products have been used before for learning and they are closely related
to least general generalisations (Plotkin, 1970; Horvath & Tur´an, 1996; Horvath, Sloan,
& Turán, 1997). LetI1, I2, . . . , I j be interpretations. The direct product ofI1, I2, . . . , I j

denoted⊗(I1, I2, . . . , I j) is an interpretation. The set of objects in⊗(I1, I2, . . . , I j) is the
set of tuples(a1,a2, . . . ,aj) whereai is an object inIi . The extension of predicates in
⊗(I1, I2, . . . , I j) is defined as follows. Letp be a predicate of arityl and let(c1, . . . , cl) be
al -tuple of elements of⊗(I1, I2, . . . , I j), whereci = (ai1,ai2, . . . ,ai j). Thenp(c1, . . . , cl)

is true in⊗(I1, I2, . . . , I j) if and only if for all 1≤ q ≤ j , p(a1q ,a2q , . . . ,alq) is true inIq.
In words,p(c1, . . . , cl) is true if and only if component-wisep is true on the original tuples
generating(c1, . . . , cl) in the corresponding interpretations. Whenj = 2 we also denote
⊗(I2, I2) by I1⊗ I2. Examples for products were given in the previous section.

Products are important since they exactly characterise the class of Horn expressions.
Of interest in the current context is the fact that, for propositional expressions, products
become the intersection operation used by the algorithm Prop-Horn (using the standard
embedding of atomic propositions as 0-ary predicate symbols). The following theorem is
essentially due to McKinsey (1943). Related results were developed by Horn (1951) and
greatly expanded in model theory (Chang & Keisler, 1990).

Theorem 1 (McKinsey, 1943). A universally quantified first-order expression is equiva-
lent (under|=) to a universally quantified first-order Horn expression if and only if its set
of models is closed under direct products.

For |=d McKinsey’s theorem does not hold. A product of twod-models ofT may not
be ad-model ofT .2 However, a similar property holds for thepairing operation motivated
above.

Let I1, I2 be interpretations, apairing of I1, I2 is an interpretation induced fromI1⊗ I2

by a subset of the objects that corresponds to a 1-1 matching of the objects inI1 and I2.
The number of objects in a pairing is equal to the smaller of the number of objects inI1, I2

Thus a pairing is not unique and one must specify the matching of objects used to create it.
Similar to products we can definek-wise pairings.

An operation similar to pairing has been recently discussed by Geibel and Wysotzki
(1997) in the context of learning relational decision trees. The effort there is to reduce the
size of the least general generalisation of clauses which is a basic operation used to construct
the node tests in the tree.

Lemma 3. Let T ∈ H(P). Then the set of d-models of T is closed under pairings.

Proof: Let I1, I2 be d-models ofT , andC a clause inT . Assume that a pairingI d-
falsifiesC and consider a substitutionθ = (θ1, θ2) such thatC is falsified byI with respect
to θ , whereθ1, θ2 are the corresponding substitutions mapping to elements ofI1, I2. Since

252 KHARDON

a pairing is 1-1, bothθ1 andθ2 are 1-1. We therefore get that the antecedent ofC is true in
I1 w.r.t. θ1, and similarly forI2, θ2. Moreover, for at least one ofI1, I2 the consequent of
C is false under the respective substitution. We get that at least one ofI1, I2 d-falsifies the
clause. 2

Corollary 1. If J is a pairing of I1 and I2, and J d-falsifies C∈ H(P) then at least one
of I1, I2 d-falsifies C, and both d-cover C.

The following lemma shows that for range restricted clauses, pairings characterise Horn
expressions, namely the classH(P)−. This fact is however not needed for our result that
establishes learnability ofH(P).

Lemma 4. Let T be a conjunction of universally quantified first-order range restricted
clauses. If the set of d-models of T is closed under pairings then T is equivalent(under
|=d) to an expression inH(P)− (i.e. it is range restricted and Horn).

Proof: The proof adapts the technique of McKinsey (1943) to the current setting. Let
T = ∀X,C1 ∧ C2 ∧ · · · ∧ Cs and assume thatC = C1 is not Horn, namely it hasj > 1
positive literals, so thatC = ¬P1 ∨ · · · ∨ ¬Pm ∨ Pm+1 ∨ · · · ∨ Pm+ j . Define j “Horn-
Strengthening” (Selman & Kautz, 1996) clauses forC each including one of the positive
literals ofC, so that for 1≤ i ≤ j , Ci = ¬P1 ∨ · · · ∨ ¬Pm ∨ Pm+i .

We claim that for somei , T |=d Ci and thereforeT can be rewritten asT = ∀X,Ci ∧
C2∧ · · ·∧Cs. In this way all the non-Horn clauses ofT can be replaced with Horn clauses.

To prove the claim assume that for alli , T 6|=d Ci and letIi be ad-model ofT which
is not ad-model ofCi (which exists sinceT 6|=d Ci). Let I be a j -pairing induced from
⊗(I1, . . . , I j) by the objects used in̄θ = (θ1, . . . , θ j) whereθi is the substitution forIi

which falsifiesCi . For this note that sinceT is range restricted, all the variables of a clause
appear in all versionsCi of that clause and hence allθi ’s have the same variables.

We get that with respect tōθ all atoms appearing in negative literals ofC are true inI
(since the component-wise atoms must be true in order to falsifyCi), but for the positive
literals at least one of the components is false (e.g. forPm+i the component corresponding
to Ii must be false in order to falsifyCi). We therefore get thatI 6|=d C, which contradicts
the fact that thed-models ofT are closed under pairings. 2

The learning algorithm A1, described in Table 2, is similar in structure to Prop-Horn.
The algorithm generalises this scheme by using pairing (instead of intersection) and other
appropriate operations. In particular, letprop-ant(I), prop-neg(I) andprop-cands(I) be as
defined in Section 2.7, and letX be a set of variables in 1-1 correspondence to the objects
of I . Then, rel-ant(I), rel-neg(I) and rel-cands(I) are derived from their propositional
counterparts by substituting objects with their corresponding variables fromX.

The algorithm maintains an ordered setS of negative interpretations. These are used
to generate the hypothesis by usingrel-cands(si) for eachsi ∈ S. On a positive counter
example, wrong clauses (that are falsified by the example) are removed fromH .

On a negative counter example, the algorithm first minimises the number of objects in
the counter example. This can be done greedily by removing one object at a time and asking

LEARNING HORN EXPRESSIONS 253

Table 2. The algorithm A1: LearnH(P) under|=d using EQ|=d and MQ|=d .

1. Maintain an ordered set of interpretationsS, initialised to∅ and letH = rel-cands(S).
2. Repeat untilH ≡d T :

(A) Ask an equivalence query to get a counter example in caseH 6≡d T .
(B) On a positive counter exampleI (s.t. I |=d T) remove wrong clauses (s.t.I 6|=d C) from H .
(C) On a negative counter exampleI (s.t. I 6|=d T):

i. Minimise the number of objects inI while still negative—(use MQ).
ii. For i = 1 tom (whereS= (s1, . . . , sm))

For every pairingJ of si and I
If J is negative (use MQ) and it has less objects thansi or its size is

smaller than that ofsi then
A. Replacesi with J.
B. Quit loop (Go to Step 2(C) iv)

iii. If no si was replaced then addI as the last element ofS.
iv. Let j be the index of the updatedsi or the added example (i.e.m+ 1). UpdateH by

removing clauses generated by the previoussj (if a replace) and adding the clauses
in rel-cands(sj) to it.

a membership query. By Lemma 1 and Lemma 2 this yields a correct counter example that
has at mostk objects. The algorithm then tries to find a pairing of this counter example with
one of the interpretationssi in S that results in a negative exampleJ with size smaller than
that ofsi , or a smaller number of objects. This is done by trying all possible matchings of
objects in the corresponding interpretations and appealing to a membership query oracle.
The firstsi for which this happens is replaced with the resulting pairing. In case no such
pairing is found for any of thesi , the minimised counter exampleI is added toSas the last
element. Note that the order of elements inS is used in choosing the firstsi to be replaced,
and in adding the counter example as the last element. These are crucial for the correctness
of the algorithm. Finally, note that the algorithm does not need to know the value ofk; it
works correctly for anyT ∈ H(P) though its complexity depends onk.

Example. This example illustrates some aspects of the algorithm. Consider

T = [∀x, y, z, (p1(x, y)p2(y, z)→ p3(x, z))] ∧ [∀x, y, (p3(x, y)→ p4(x, y))]

and the negative example

s1 = {p1(1, 2), p2(2, 3), p3(2, 3), p4(2, 3)}

(over domain{1, 2, 3}). The interpretations1 d-falsifies the first clause ofT andd-covers
the second clause. No object can be removed froms1 while keeping it negative. Therefore
if s1 is the first counter example observed it will be the first element ofS.

Consider the operation of the algorithm if the second negative (counter) example is

I = {p1(a, b), p2(b, c), p2(a, c), p2(a, d)}

254 KHARDON

(over domain{a, b, c, d}). If either ofa, b, c is removed fromI then it is not negative, but
d can be removed to get:I = {p1(a, b), p2(b, c), p2(a, c)} (over domain{a, b, c}). Next
the algorithm will find that the pairing{1a, 2b, 3c} generatesJ = {p1(1a, 2b), p2(2b, 3c)}
which is negative and has a smaller size thans1 and hence replaces1 with J.

Consider instead the operation of the algorithm if the second negative (counter) example
is

I = {p1(a, c), p2(c, b), p3(b, c)}

(over domain{a, b, c}). Note that this example is negative for both clauses ofT . How-
ever, if either ofb, c is removedI becomes positive, buta can be removed to get:I =
{p2(c, b), p3(b, c)} (over domain{b, c}). Now I falsifies only the second clause ofT . Next
the algorithm will find that the pairing{2b, 3c} generatesJ = {p3(2b, 3c)} which is neg-
ative and has less objects thans1 and hence replaces1 with J. This illustrates thatJ may
have less objects thansi . In this example the size ofJ is also strictly smaller than that of
si so both conditions for replacement hold. In fact, Lemma 8 shows that this is always the
case, but the condition on the number of objects inJ simplifies the analysis. 2

The analysis of the algorithm follows the line of argument by Angluin, Frazier, and Pitt
(1992) establishing that similar properties hold in the more general case. Intuitively, the
argument shows that a negative counter example will be “caught” by the firstsi that d-
covers a claused-falsified by it. This guarantees that two elements ofSdo notd-falsify the
same clause inT (since if this happens some previous counter example must not have been
caught), and hence yields a bound on the size ofS. Since in each step some measurable
progress is made, bounds on the number of queries can be derived.

Lemma 5. Let I be a negative counter example after the minimisation of the number of
objects(in Step 2(C) i). Assume that the algorithm tests si (in Step 2(C) ii). If there is a
clause C∈ H(P) such that T|=d C, si d-covers C, and I d-falsifies C, then the algorithm
replaces si .

Proof: Assume the conditions of the lemma hold. FixC, and letθ1 be a substitution
showing thatsi d-coversC, andθ2 a substitution showing thatI d-falsifiesC. ThenJ, the
pairing of the objects that are bound to the same variables inθ1, θ2 (this can be done since
θ1, θ2 are 1-1),d-falsifiesC with respect toθ = (θ1, θ2). ThereforeJ is negative forT .

SinceI 6|=d C and since its number of objects has been minimised, the number of objects
in I is exactly the number of variables inC. It follows that eitherI has less objects than
si (and therefore so do all the pairings andsi is replaced) in which case we are done, orI
andsi have exactly the same number of objects. Assume therefore that the latter is the case;
we argue that the size of the pairingJ is smaller than that ofsi . To observe that notice first
that in a pairing there is at most one copy of every atom insi . Therefore, a pairing cannot
increase the number of positive literals. Moreover, if any atom insi does not have a copy
in the pairing then its size is strictly smaller.

Consider the clause inrel-cands(si) that corresponds toC and denote it byβ. The clause
β can be obtained as follows. Sincesi d-coversC there is a 1-1 mapping from objects insi

LEARNING HORN EXPRESSIONS 255

to variables inC (this is the inverse ofθ1) so that by following this mapping we can obtain
the antecedent ofC as a subset ofrel-ant(si). To getβ, assume this mapping of variables is
used, and pick the element ofrel-cands(si) that has the same consequent asC. There are
two cases: if the consequent ofC is already inrel-ant(si) thenβ is trivially true (it has the
consequent as part of the antecedent). This happens ifsi d-covers but does notd-falsify
C. In the other case, when the consequent ofC is not in rel-ant(si), β is in rel-cands(si).
Moreover, sinceβ can be obtained fromC by adding literals to it we have thatT |=d β and
therefore it is not removed fromH by any positive counter example. Now, in both cases we
haveI |=d β. This clearly holds in the first case sinceβ is a tautology. In the second case
this follows sinceβ is in the hypothesis andI is a negative counter example.

Note that, sinceC andβ have the same variables,θ2 can be used forβ as well. It follows
thatβ is not falsified byI with respect toθ2. Now, sinceI falsifiesC underθ2 it must be
the case that the consequent ofC is false inI underθ2 and since the consequent is the same
in C andβ the same holds forβ. We therefore get that the antecedent ofβ is not true in
I with respectθ2, or in other words there is a literall (X) in β such thatl (θ2(X)) is false
in I . The literall (X) was generated byl (θ1(X)) in si . Since the pairingJ matches objects
according to the variables they are bound to, we get that, whilel (θ1(X)) is in si , l (θ(X)) is
not in J whereθ = (θ1, θ2). Therefore, the size ofJ is smaller than that ofsi . 2

Clearly for any clauseC in T , T |=d C. The Lemma therefore holds for clauses in
T . It is however stronger in that it holds for all clausesd-implied by T . This is true for
several other lemmas below. As discussed in Section 5.5 this can be used to prove stronger
“approximation” properties of the algorithm.

Example. The following example shows that Lemma 5 does not hold under the normal
semantics, thus motivating the change in semantics. The lemma shows that under the stated
conditions there is a pairing ofsi and I that passes the test in Step 2(C) ii. In particular it
has a smaller extension thansi . Consider

T = [∀x, y, z, (p1(x, y)p2(y, z)→ p3(x))] ∧ [∀x, y, z, (p2(x, y)p1(y, z)→ p3(x))].

Let

I1 = {p1(1, 2), p1(2, 2), p2(2, 2), p3(2)},

thens1
1 = I1 (denoting versions ofsby superscript), and assuming wrong consequents were

removed by positive counter examples

H = (p1(x, y)p1(y, y)p2(y, y)p3(y)→ p3(x)).

Let

I2 = {p1(b, b), p2(a, b), p2(b, b), p3(b)},

then

s1
1 ⊗ I2 = {p1(1b, 2b), p1(2b, 2b), p2(2a, 2b), p2(2b, 2b), p3(2b)}.

256 KHARDON

Note that no pairing ofs1
1 and I2 is negative. Moreover, if we try to minimise the number

of objects in the product directly we have two options, omitting either 1b or 2a. If we omit
2a then

s2
1 = {p1(1b, 2b), p1(2b, 2b), p2(2b, 2b), p3(2b)}

which is isomorphic tos1
1 so the algorithm makes no progress. If we omit 1b then

s2
1 = {p1(2b, 2b), p2(2a, 2b), p2(2b, 2b), p3(2b)}

which is a dual case. In either case the size is the same as that ofs1
1. In addition if the

algorithm replacessi with a pairing of the same size then it may be tricked into an infinite
loop: by usingI3 = I1 we get thats2

1 ⊗ I3 is isomorphic tos1
1 ⊗ I2.

It is interesting to note thatT in this example is a Horn definition (Reddy & Tadepalli,
1997) since both clauses have the same consequent. The algorithm of Reddy & Tadepalli
(1997) learns this class and uses least general generalisations which are similar to products.
Their algorithm uses a finer minimisation step removing one atom at a time from a clause
(in contrast to removing all atoms of a particular object as we do here). While this works
for Horn definitions, constructions by Aizenstein and Pitt (1995) suggest that it may not
work in the general case. 2

Lemma 6. At all times in the algorithm, for all k, i such that k< i , and for all C ∈ H(P)
such that T|=d C, if si d-falsifies C then sk does not d-cover C.

Proof: We argue by induction on the construction ofS. The claim clearly holds for
the empty set. For the inductive step, assume the claim does not hold; we show that a
contradiction arises. LetI be the last counter example, and letC be the clause that exists if
the claim does not hold.

Consider first the case whereI = si is appended. But in this caseI d-falsifiesC, and by
Lemma 5sk is replaced if tested.

Clearly we only need to argue about cases where eithersi or sk are replaced. Consider
next the case wheresk is replaced byJ. By Corollary 1, sinceJ d-falsifiesC, sk d-covers
C, and this contradicts the inductive assumption.

Consider next the case wheresi is replaced byJ. Therefore, sinceJ d-falsifiesC, (by
Corollary 1) bothsi and the counter exampleI , d-coverC, and at least oned-falsifiesC. If
si d-falsifiesC we get a contradiction to the inductive assumption. IfI d-falsifiesC then
by Lemma 5sk is replaced if tested. 2

The following property of the algorithm is useful in extensions developed elsewhere
(Khardon, 1999a). It is also used here to get a tighter bound for the number of queries.

Lemma 7. The following holds at all times in the algorithm. Let si ∈ S and D be the
domain of si . Then si 6|=d T and for any object b∈ D, si |D\{b} |=d T .

LEARNING HORN EXPRESSIONS 257

Proof: We argue by induction on the construction ofS. The claim clearly holds for the
empty set. For the inductive step, consider first the case whereI = si is appended. In this
case the claim follows since the number of objects inI is minimised in Step 2(C) i.

Consider next the case wheresi is replaced byJ. SinceJ is negativeJ 6|=d C for some
C such thatT |=d C. LetC be such a clause with the minimum number of variables. Since
J d-falsifiesC, (by Corollary 1) bothsi and the minimised counter exampleI , d-coverC,
and at least oned-falsifiesC. If si d-falsifiesC, by the inductive assumption the number
of objects insi is equal to the number of variables inC (otherwise some object can be
removed). Now,J has at most that many objects since it is a pairing ofsi . SinceC has
the minimum number of variables it follows that if any object is removed fromJ then it is
positive.

If I d-falsifiesC then sinceI is minimised the number of objects inI is equal to the
number of variables inC. Now, J has at most that many objects since it is a pairing ofI .
As above, sinceC has the minimum number of variables, no object can be removed from
J. 2

As a result we see that one of the conditions in Step 2(C) is superfluous.

Lemma 8. If the algorithm replaces si by J (in Step 2(C) ii) then the size of J is strictly
smaller than that of si .

Proof: Clearly, we only need to consider the case whereJ has less objects thansi . Now if
J has the same size assi then the objects ofsi that are omitted in the pairing do not appear
in the extension of any predicate insi . We claim that any such object can be removed from
si andsi is still negative, a contradiction to Lemma 7.

To see that, letθ = (θ1, θ2) be such thatJ 6|=d Cθ for C such thatT |=d C. The
substitutions(θ1, θ2) are the corresponding substitutions forsi and I respectively, and can
be extracted fromθ given the pairing. Note that only objects inJ are used inθ and J
contains a copy of every positive atom true insi and only these atoms. Therefore, for every
atom p() in C, p()θ is true in J if and only if p()θ1 is true insi . This implies that
si 6|= Cθ1 and the objects not used inθ1 can be removed fromsi . 2

Theorem 2. The classH(P) is learnable(under|=d) by the algorithm A1 using EQ|=d and
MQ|=d . For T ∈ Hk(P)with m clauses, the algorithm makes at most EN + EP equivalence
queries and(n+mkk)EN membership queries, where EN ≤ mα, EP ≤ ENα, n is the lar-
gest number of objects in any of the counter examples, andα= |P|ka where a is the bound
on arity of predicates. The running time of the algorithm is polynomial in the above bounds
and nk.

Proof: Since all elements ofSare negative, each oned-falsifies at least one clause ofT .
By Lemma 6, no two elementsd-falsify the same clause ofT and hence at any timeShas
at mostm elements.

By Lemma 8 every negative counter example either introduces a new elementsi or strictly
reduces the size of somesi . By the minimisation of objects, eachsi has at mostk objects,

258 KHARDON

and the size of any suchI is bounded by|P|ka. The number of negative counter examples
EN is therefore bounded bymα.

After each negative counter example the algorithm updatesH by changing the clauses
of a singlesj . Since the number of possible consequents is bounded byα this produces at
mostα wrong clauses. Since every positive counter example removes at least one wrong
clause fromH , there are at mostENα positive counter examples. This derives the bound
on the number of equivalence queries.

For the membership queries notice that for each negative counter example we need at
mostn queries for reducing the number of objects, and at mostmkk queries to test pair-
ings.

Considering the running time, the operations on negative examples are polynomial in
the above bounds. For a positive counter exampleI the algorithm has to evaluate each
clause inH on I , and this can be done in timeO(nk), since clauses inH have at mostk
variables. 2

By careful recording we can make sure that each consequent inrel-cands(si) is removed
only once and in this way reduce the number of positive counter examples. This can be
done since ifAB→ C is not implied byT (and it is removed), then clearlyA→ C is not
implied byT . It can be seen that for a fixedi , the antecedents of clauses inrel-cands(si) are
subsets of previous antecedents. Hence once a consequent is removed forsi , as a result of a
positive counter example, it need not be generated again when updatingH . HenceEP can
be reduced tomα. This idea is discussed in detail for the propositional case by Angluin,
Frazier, and Pitt (1992). The resulting algorithm makes at most 2mα equivalence queries
andm2αkk + nmα membership queries.

5. Extensions

In this section we apply Theorem 2 to other settings. In doing so we omit the exact bounds
which can be easily derived (and are polynomial in the same parameters). A related discus-
sion and comparison of various models of learning when queries are not allowed is given
by De Raedt (1997).

5.1. Normal semantics

We can apply the theorem to the normal semantics since expressions inHk(P) under|=d

can simulate expressions inHk(P) under|=.

Lemma 9. For every T∈ Hk(P) with m clauses there is an expression U(T) ∈ Hk(P)
with at most mkk clauses such that for all interpretations I, I |= T if and only if I |=d U (T).

Proof: We constructU (T) from T by considering every clause separately. For a clause
C in T with j variables generate a set of clausesU (C). To do that, consider all partitions
of the j variables; each such partition generates a clause by assigning a single new variable
to all variables in a single class. This covers all possibilities of unifying various subsets of

LEARNING HORN EXPRESSIONS 259

Table 3. The algorithm A2: LearnH(P) under|= using EQ and MQ.

• Run algorithm A1 to learnU (T) simulating EQ|=d and MQ|=d (with respect to
U (T)) by using EQ and MQ (with respect toT).
– When A1 presentsI to MQ|=d presentI to MQ and answer in the same way.
– When A1 presentsH to EQ|=d presentH to EQ and return the same
counter exampleI (or “yes”) to A1.
• Modify the treatment of positive counter examples in A1. On counter exampleI ,

remove a clauseC from H if I 6|= C.

variables ofC to each other. The number of such clauses is equal to the number of partitions
of a j element set (the Bell numberBj) that is obviously bounded byj j . The requiredU (T)
is the conjunction of all clauses generated for all clauses ofT . The variables in every clause
in U (T) are quantified separately. The construction makes sure that all possible ways to
falsify a clauseC in T by a non-injective substitution are covered by an injective substitution
for one of the clauses ofU (C). It is easy to check that the claim follows. 2

Hence the algorithm working under|=d can simply interact with oracles working accord-
ing to |= and still learn the same class. We next show that the algorithm can be modified so
that it uses hypotheses interpreted according to|= rather than|=d. For this the hypothesis
itself need not be changed syntactically. Instead the same expression is used with respect
to |=, so that when A1 presentsH to EQ|=d (with respect toU (T)) the modified algorithm
simply presentsH to EQ (with respect to the targetT). If this is done then negative counter
examples (I 6|= T and I |= H) remain counter examples sinceI 6|=d U (T) (by Lemma 9)
and I |=d H (sinceI |= C implies I |=d C). For positive counter examples (I |= T and
I 6|= H), we have thatI |=d U (T) (by Lemma 9) but it may be the case thatI |=d H and
I is not a counter example. To handle this the algorithm needs to be modified to evaluate
clauses according to|= when removing clauses on a positive counter example. We call this
modified algorithm A2; the modifications are summarised in Table 3.

Since the algorithm is modified it must be verified that Theorem 2 can be applied to show
that A2 succeeds in learningU (T). For this, note that the only place where the hypothesis
is used in the argument above is in the proof of Lemma 5, where we must argue thatβ is not
removed from the hypothesis. In this case we know that the antecedent ofβ is a superset
of the antecedent of a clause inU (T) and their consequents are identical. It follows that
T |= β. Therefore,I |= T implies I |= β andβ is not removed by the modified process.

Corollary 2. The classH(P) is learnable(under |=) by the algorithm A2 using EQ
and MQ. The algorithm makes at most2mαkk equivalence queries and m2αk3k + nmαkk

membership queries.

5.2. Using equality

As we now show, another advantage of|=d is that it allows for an easy incorporation
of equalities and inequalities relative to|=. In particularHk(P) under|=d can simulate
Hk(P,=) under|= hence yielding a learning result forH(P,=) under|=.

260 KHARDON

Lemma 10. For every T ∈ Hk(P,=) with m clauses there is an expression U∗(T) ∈
Hk(P) with at most mkk clauses such that for all interpretations I, I |= T if and only if
I |=d U ∗(T).

Proof: We first show that for eachT ∈ H(P,=) there is an expressionG equivalent to
T under|= such that no clause inG includes inequalities andG has the same number of
clauses asT . (Hence inequalities are in some sense useless.) To getG from T consider
each clause separately. For each inequality(xi 6= xj) in a clauseC replace all occurrences
of xi andxj in C by xmin{i, j } and remove the inequality fromC. Repeat this until there are
no more inequalities inC.

Now, if I 6|= T then there is a substitutionθ and a clauseC that is falsified by it. Consider
any inequality inC. Since the inequality is not satisfied,θ maps both its variables to the
same object. Hence all the variables ofC re-mapped to a single variable inG are mapped
to a single object byθ . Since we kept one of these variables as the representative, all the
literals in the corresponding clause ofG have the same value underθ and hence it is falsified
by I .

On the other hand ifI 6|= C′ for a clauseC′ in G then one can extend the substitution
to cover variables of the corresponding clauseC in T by mapping all the variables unified
in the generation ofC′ to the same object. Clearly,I falsifies all literals that are retained
in C′ under this substitution. By construction it also falsifies the inequalities, and hence
falsifiesC.

We next constructU ∗(T) from G by considering every clause separately. For a clause
C in G generate set of clausesU ∗(C). Consider a clauseC in G and the clausesU (C) as
generated in Lemma 9 ignoring equalities and inequalities. Now consider a positive literal
(xi = xj) in the clauseC. The clause is satisfied under any substitution in whichxi andxj

are mapped to the same object. Hence we can remove fromU (C) all those clauses where
xi andxj were mapped to the same variable. This can be repeated for all equalities inC to
generateU ∗(C). The conjunction of all clauses inU ∗(C) for all C in G constitutesU ∗(T).

AssumeI 6|= G for some I . Thus some clauseC in G is falsified by I under some
substitutionθ . Partition the variables ofC according to the objects they are mapped to in
θ , generating a clause from this partition as in the generation ofU (C). We claim that the
resulting clauseC∗ has not been removed fromU ∗(C). This is true since all equalities inC
are not satisfied and thus their variables are mapped to distinct objects. HenceC∗ is falsified
by I under the substitution induced fromθ (which is 1-1 for its variables). SinceC∗ is in
U ∗(T) this implies thatI 6|=d U ∗(T).

Finally, assumeI 6|=d U ∗(T) for someI . Thus some clauseC′ in U ∗(T) is falsified byI
under some substitutionθ mapping distinct variables to distinct objects. LetC be the clause
in G that generatedC′, and extendθ to variables ofC by using the inverse mapping of
the variable partition used when generatingC′ from C. We claim thatI falsifiesC under
the extended substitution. For this first observe that all literals inC not involving equality
are falsified since they have the same values as inC′ underθ . Consider next an equality
(xi = xj) in C. All elements ofU (C) in which xi andxj are mapped to the same variable
have been removed fromU ∗(C). It follows thatxi andxj are mapped to different variables
in C′ and sinceθ maps each variable ofC′ to a unique object the equality is falsified. Hence
all literals ofC are falsified, andI 6|= G. 2

LEARNING HORN EXPRESSIONS 261

Table 4. The algorithm A3: LearnH(P,=) under|= using EQ and MQ.

• Run algorithm A1 using EQ and MQ instead of EQ|=d and MQ|=d .
• The hypothesisH of A1 is modified syntactically by adding equalities on all

variables used in the clauses. It can be interpreted according to|=.

Here again, the hypothesis of the algorithm can be converted into an expression in
the class being learned. This time there is no need to modify the algorithm, but the
hypothesis is syntactically modified. In particular, this can be done by adding equali-
ties on all the variables in all clauses. That is(p(x, y)p(y, z)→q(z)) (under|=d) will
be translated to(p(x, y)p(y, z)→q(z)∨ (x= y)∨ (x= z)∨ (y= z)) or equivalently to
(p(x, y)p(y, z)(x 6= y)(x 6= z)(y 6= z)→q(z)). This is summarised as algorithm A3 in
Table 4.

Corollary 3. The classH(P,=) is learnable(under|=) by the algorithm A3 using EQ
and MQ.

5.3. Entailment queries

For learning from entailment (Frazier & Pitt, 1993) examples are clauses in the language.
Here we use ground clauses as examples. This seems natural and corresponds to what is
done in inductive logic programming. It is easy to see that the same ideas apply if examples
are universally quantified clauses.

In the following, we modify the signature of the language so as to include an infinite
number of constant symbols (as the natural numbers) in direct correspondence with the
possible names of domain elements in the interpretations; thus the signature is(P, N) and
in all interpretations the domain is a subset ofN. In the extended language interpretations
must map constant symbols to domain elements (in addition to specifying a domain and
the extension of predicates). While the number of constants is infinite we will allow inter-
pretations to map only a (finite) subset of the constants. We must therefore define when an
interpretation is suitable for assigning a truth value for expressions in the language.3

Definition 5. An interpretationI overP mapping a subsetN ′ ⊂ N as constants issuitable
for an expressionT over(P, N) if all constants appearing inT are inN ′.

If I is suitable forT thenT can be assigned a truth value in the standard way. We can now
extend the definition of implication in a natural way. For expressionsT1, T2 over(P, N)we
say thatT1 impliesT2 if for every interpretationI which is suitable for bothT1 andT2, if I is
a model ofT1 then it is also a model ofT2. Since the truth value of clauses over(P, N) does
not depend on constants not appearing in them this is identical with the standard definition.
In the following, we will only discuss the relationI |= C when I is suitable forC (and
hence omit reference to this point).

We can now define the learning model. LetH be the set of ground clauses obtained
fromH(P) by using constants inN. The expression to be learned,T ∈ H(P), still does
not include constant symbols. ForEntailment Membership Queries(EntMQ), the learner

262 KHARDON

presents a clausec ∈ H and the oracle returns “yes” iffT |= c. ForEntailment Equivalence
Queries(EntEQ) the learner presents a hypothesisH ∈ H(P) and the oracle returns “yes”
if H = T and otherwise it returns a clausec ∈ H that is a counter example (T |= c and
H 6|= c or vise versa).

We first observe that membership queries can be replaced with entailment membership
queries. Recall thatprop-cands(I) is the propositional operation of Section 2.7.

Lemma 11. Let I be an interpretation over signature P and T∈ H(P). Then I 6|= T if
and only if for some c∈ prop-cands(I), T |= c.

Proof: ExtendI to I ′ by interpreting constants that correspond to domain elements ofI as
these elements. Clearly,I |= T iff I ′ |= T . Now, for all c ∈ prop-cands(I) the antecedent
of c is satisfied byI ′ and its consequent is not, and thereforeI ′ 6|= c. Hence, ifT |= c, then
I ′ 6|= T .

For the other direction assumeI ′ 6|= T . Therefore it falsifies some clauseC of T under
some substitutionθ . Considerc′ = C(θ(X)) the ground instance ofC obtained by following
θ . Clearly, I ′ 6|= c′, and therefore its antecedent is true inI ′ (and therefore is a subset
of prop-ant(I)), and its consequent is not. Now consider the clausec whose antecedent
is prop-ant(I) and whose consequent is identical to the consequent ofc′. Thenc is in
prop-cands(I) andT |= C |= c′ |= c. 2

Therefore when the algorithm presents a membership query we can ask a sequence of
entailment membership queries and answer “no” if and only if one of them is implied
by T . Moreover, if entailment membership queries are available we can make sure when
creating a hypothesis that its clauses are always implied byT . This can be done by asking
an entailment membership query for each of the clauses inrel-cands(si). Since clauses
in rel-cands() are universally quantified they must be translated to ground clauses if we
want to use EntMQ. As the following lemma suggests, this can be done by substituting an
arbitrary distinct constant for every variable in the clause.

Lemma 12. Let T ∈ H(P), C a clause inH(P), and θ a substitution that maps each
variable of C to a different constant. Then T|= C if and only if T |= Cθ .

The proof which is omitted is straightforward. Note that by performing this we avoid thenk

dependence in the running time (needed for positive counter examples). These modifications
are summarised as Algorithm A4 in Table 5.

Corollary 4. The classH(P) is learnable(under|=) by the algorithm A4 using EQ and
EntMQ.

For EntEQ notice that ifT |= H andc is a counter example clause forH then it is the
case thatT |= c andH 6|= c. Namely, only one type of counter examples is encountered.

Lemma 13. Let T, H ∈ Hk(P). If T |= H and c is a counter example ground clause for H
then an interpretation I such that I6|= T and I |= H can be found in time O(|H ||P|nkna)

where n is the number of constants in c.

LEARNING HORN EXPRESSIONS 263

Table 5. The algorithm A4: LearnH(P) under|= using EQ and EntMQ.

• Run algorithm A2 simulating its oracles as needed and modified as follows.
• Modify the hypothesis generation step of A2. For each clause that A2 intends

to include in the hypothesis, includeC only if T |= C.
To test this, substitute an arbitrary distinct constant for every variable inC to
getC(θ). Use EntMQ to test whetherT |= C(θ). IncludeC in H if the answer
is “yes”.
• Calls to the oracle EQ are treated as in A2.
• On a call to MQ with interpretationI answer “no” if and only if for some

c ∈ prop-cands(I), T |= c (use EntMQ to test this).

Table 6. The algorithm A5: LearnH(P) under|= using EntEQ and EntMQ.

• Run algorithm A4 simulating its oracles as follows.
• Calls to the oracle EntMQ are treated as in A4.
• On a call to EQ with hypothesisH , first call EntEQ withH . On a counter

examplec (such thatT |= c andH 6|= c) run the procedure of Lemma 13 to
generate an interpretationI and presentI as a counter example to A4.

Proof: Let I be an interpretation whose domain includes the objects inc, and where
the extension of predicates includes precisely the positive literals in the antecedent ofc.
The idea (Frazier & Pitt, 1993; Reddy & Tadepalli, 1998) is to compute the “closure” of
I with respect toH . Clearly, I 6|= T . If I |= H then we are done. Otherwise, we can
find a clauseC of H falsified by I under a substitutionθ . We claim thatC cannot have
an empty consequent. Assume it does. Then since forward chaining is sound we have
H |= (ant(c)→ False) |= c. But this contradicts the fact thatc is a counter example for
H . Let the ground consequent ofC(θ(X)) beγ ; addγ to I . Since the domain size isn,
the number of atoms that can be added is bounded by|P|na. Therefore, this process can be
repeated until no clause ofH is falsified byI , and thusI |= H . Finally, observe thatI 6|= T
sinceH 6|= c and thus the consequent ofc is never added toI (since forward chaining is
sound).

The complexity bound follows by observing that in each iteration we can search for a
clause ofH falsified by I in time |H |nk. 2

The above process is similar to the use of the chase procedure to decide on uniform
containment of database queries (Sagiv, 1988). The lemma implies that EntEQ can be used
to simulate EQ. The modifications required are summarised as Algorithm A5 in Table 6.

Corollary 5. The classH(P) is learnable(under|=) by the algorithm A5 using EntEQ
and EntMQ.

5.4. Inductive logic programming

Both interpretations and clauses were used as examples in ILP and the results above are
therefore relevant to this area. The main other feature incorporated into ILP models is

264 KHARDON

the use of background knowledge. The background knowledgeB is an expression over the
signature(P, N)which is known to the learner before the learning session. A distinction has
been made betweenextensional background knowledgewhereB is a conjunction of positive
ground literals, andintentional background knowledgewhereB may include general Horn
expressions. We show that both types can be handled by our algorithm in the case of learning
from entailment.

We consider the setting as defined by Cohen (1995a). In this setting, an example is meant
as a positive example for some concept in the world (which is the consequent in some
clause inT). In particular an example is a pair(E, D) such thatD (for Description) is a
conjunction of positive ground literals andE is a single positive ground literal. An example
(E, D) is a positive example forT with respect toB if and only if T ∧ B∧ D |= E. Since
this is equivalent toT ∧ B |= (D→ E) we see that a positive ILP example is similar to an
example clause.

We modify the learning model accordingly. The targetT ∈ H(P) and the background
knowledgeB are fixed by an adversary. The target is hidden from the learner butB is given
to the learner. For an ILPequivalence oracle(ILPEQ), the learner presents a hypothesis
H , and the oracle returns “yes” if and only ifT ∧ B is equivalent toH ∧ B. Otherwise it
returns an ILP counter example, namely, a pair(E, D) which is positive for one ofT or H
but not the other. Note that ifT is not definite then we need to allowE to denoteFalse . An
ILP membership oracle(ILPMQ) for B andT when presented with a pair(E, D) answers
“yes” if and only if T ∧ B |= (D→ E).

For the extensional case, the idea is to run the same algorithm but modify the examples
slightly. SinceT ∧ B |= (D→ E) if and only if T |= (B∧ D→ E), a ILP counter example
(E, D) can be turned into a clausec = (B ∧ D → E) which is a counter example forH .
The use of EntEQ is therefore straightforward.

For EntMQ a clausec can be seen as a pair corresponding toc= (D→ E); the only
problem one needs to get around in order to apply Corollary 5 is the fact thatB is part of
the problem specification and thus we need to make sure thatB does not effect the answers
to our queries. Namely, we want to haveT |= (D→ E) if and only if T ∧ B |= (D→ E).
This can be done by using distinct new constants in the queries (that do not appear inB).
The resulting algorithm A6 is summarised in Table 7.

Corollary 6. The classH(P) is learnable(under|=) relative to an extensional background
knowledge by the algorithm A6 using ILPEQ and ILPMQ.

Table 7. The algorithm A6: LearnH(P) under|= relative to an extensional background knowledge using ILPEQ
and ILPMQ.

• Run algorithm A5 simulating its oracles as follows.
• On a call to EntEQ with hypothesisH , first call ILPEQ withH . On a counter

example(E, D) (such thatT ∧ B |= (D→ E) andH ∧ B 6|= (D→ E)), present
c = (B ∧ D→ E) to A5 as a counter example.
• On a call to EntMQ with clausec, rename the constants inc so that none of

them appears inB to getc′ = (D→ E). Present(E, D) to ILPMQ and return
the same answer to A5.

LEARNING HORN EXPRESSIONS 265

For intentional background knowledge inH(P) the idea is to have the algorithm learn
the expressionT ∧ B∈H(P). The background knowledge can be incorporated into the
algorithm by using the clauses inB to initialise the setS of interpretations the algorithm
uses. For each clauseC, we generate an interpretationsC from its antecedent by substituting
a unique object to each variable. Let the set of interpretations so generated beS0. Clearly,
the clauseC is in rel-cands(sC). However, since the order of elements inS is important, we
must use these interpretations carefully. The solution we present uses one of the previous
learning algorithms as a subroutine that automatically adapts to this requirement.

The learning algorithm A7 runs in two phases. In the first phase it incorporatesB into the
hypothesis by using A4 as follows. On an EntMQ for the clausec = (D→ E), it presents
(E, D) to ILPMQ and answers accordingly. On an EQ with hypothesisH , it evaluatesH
on all the interpretations inS0. If for somes ∈ S0, s |= H , thens is returned to A4 as a
counter example. Otherwise the algorithm moves to the second phase.

In the second phase it runs A5 but using the setSresulting from the first phase to initialise
the setS of A5. EntMQ are dealt with as in the first phase. On an EntEQ with hypothesis
H , the algorithm presentsH to ILPEQ to get a counter example(E, D) that it returns as a
counter examplec = (D→ E) to A5. The algorithm is summarised in Table 8.

It is easy to see that after the first phase and throughout the second one the hypothesis of
the algorithm will satisfyH |= B andT ∧ B |= H . Therefore the complexity of learning
in the second stage is bounded by the complexity of learningT alone in the case with no
background knowledge. The number of EntMQ in the first phase can be bounded using the
number of counter examples in this phase (which is at most the number of clauses inB)
and the analysis as above.

Corollary 7. The classH(P) is learnable(under|=) relative to an intentional background
knowledge inH(P) by the algorithm A7 using ILPEQ and ILPMQ.

Clearly, both kinds of background knowledge can be combined though this does not
allow for clauses that include both variables and constants.

Table 8. The algorithm A7: LearnH(P) under|= relative to an intentional background knowledge using ILPEQ
and ILPMQ.

1. ComputeS0 from the clauses ofB.
2. Run algorithm A4 simulating its oracles as follows.
• On a call to EntMQ with clausec = (D→ E) present(E, D) to ILPMQ

and return the same answer to A4.
• On a call to EntEQ with hypothesisH , evaluateH on interpretations in

S0; if an interpretationI ∈ S0 such thatI |= H is found then return it as
a counter example to A4. Otherwise go to Step 3.

3. Run algorithm A5 initialisingS to be the same as in the last stage of A4, and
simulating its oracles as follows.
• On a call to EntMQ with clausec = (D→ E) present(E, D) to ILPMQ

and return the same answer to A5.
• On a call to EntEQ with hypothesisH , first call ILPEQ withH . On a

counter example(E, D) (such thatT ∧ B |= (D→ E) andH ∧ B 6|= (D→ E)),
presentc = (D→ E) to A5 as a counter example.

266 KHARDON

5.5. Learning to reason

We next show that the algorithm for learning from entailment is robust in the sense that if
the target expression is not Horn then it will find a Horn expression which is as close to it
as possible. In fact we show that the algorithm is a Learn to Reason algorithm (Khardon
& Roth, 1997) with respect to the classH(P). This is formalised using the notion of least
upper bounds that were introduced by Selman and Kautz (1996) and discussed by various
authors (e.g. Frazier & Pitt, 1993; Khardon & Roth, 1996; Del Vel, 1996).

Definition 6. Let G,H be classes of first-order expressions over the signatureP. An
expressionT ∈ H is the least upper bound ofG ∈ G in H, if (1) G |= T , and (2) for all
T ′ ∈ H such thatG |= T ′, it is the case thatG |= T |= T ′.

In the following we fixG to be the class of expressions composed of conjunctions of
range restricted clauses (not necessarily Horn), andH to beHk(P) for some fixedk. Since
Hk(P) is closed under conjunctions and the number of possible clauses is finite it is easy
to see that the least upper bound is well defined and unique. We modify the learning model
so that the target expression is inG but examples are ground instances of clauses inH. For
EntMQ, the learner presentsC(θ(X)), a ground instance of a clauseC ∈ Hk(P) (i.e. all
variable are substituted to constants) and the oracle returns “yes” iffT |= C(θ(X)). For
EntEQ, the learner presents a hypothesisH ∈ Hk(P) and the oracle returns “no” if there
is a clauseC ∈ H(P) and a substitutionθ such thatT |= C(θ(X)) andH 6|= C(θ(X)) or
vice versa. In this case it returns such a ground clause as a counter example. Otherwise it
returns “yes”. Notice that it may be the case thatG 6= H but there is no counter example in
Hk(P) and the oracle returns “yes”. We denote this restricted oracle by EntEQ[Hk(P)].

Theorem 3. Given access to EntMQ and EntEQ[Hk(P)] and for any target expression
G ∈ G, algorithm A5 will find an expression H∈ Hk(P) that is equivalent(under|=) to
the least upper bound of G inHk(P).

Proof: Let T be the least upper bound. The theorem follows by observing that the oracles
behave as if the algorithm was learningT . In particular, by the definition of least upper
bounds, for anyC ∈ Hk(P), G |= C if and only if T |= C, and hence EntMQ are answered
correctly according toT . For EntEQ, recall that the algorithm makes sure thatG |= H
whereH is the hypothesis. Therefore, counter examples are such thatG |= c andH 6|= c.
Now, sinceT is the least upper bound,G |= T |= c, andc is a counter example forT as
well. 2

This result can be translated into an “on-line” learning scenario where the learner uses its
hypothesis to reason about the world (as expressed byG). When it makes a mistake it finds a
counter example clause that it can use to refine its hypothesis. Our result implies that even if
G is not Horn, and despite the fact that we do not have an algorithm to learnG, the learning
algorithm can learn a representation that supports correct reasoning with respect toG for
all expressions inHk(P). Results of this type were previously developed for propositional
logic and called Learning to Reason; Theorem 3 generalises the Learning to Reason result

LEARNING HORN EXPRESSIONS 267

for propositional Horn expressions (Theorem 7.1 in Khardon & Roth, 1997). Finally, we
note that since our analysis in Section 4 discussed clausesC such thatT |= C rather than
clauses in the expressionT , a similar claim can be made for learning from interpretations
under a suitable restriction of EQ.

6. A lower bound

In this section we characterise the Vapnik-Chevonenkis dimension (VC-Dim) ofH(P). It is
known that the VC-Dim of a concept class is a lower bound for the number of equivalence
and membership queries when learning this class (Maass & Tur´an, 1992). The following
theorem thus shows thatÄ(m|P|ka) queries are necessary. Comparing with our upper
bound ofO(m2|P|kak3k + nm|P|kakk) we see that apart from the dependence on the size
of counter examplesn the main discrepancy is in the exponential dependence onk.

We start with the necessary definitions (Blumer et al., 1989; Maass & Tur´an, 1992). Let
A be a set,B ⊆ 2A, andS⊆ A. Then5B(S) = {B ∩ S | B ∈ B} is the set of subsets of
S that can be obtained by intersection with elements ofB. If |5B(S)| = 2|S| then we say
thatB shattersS. Finally, VC-Dim(B) is the size of the largest set shattered byB (or∞ if
arbitrary large sets are shattered).

In our caseA is the set of interpretations, andB is the classH(P) interpreted under|=.
LetHk(P)[m] be the class of expressions inHk(P) with at mostm clauses.

Theorem 4. If |P| ≥ 2(k + 1+ logm) and all predicates in P have arity a then VC-
Dim(Hk(P)[m]) = 2(m|P|ka).

Proof: Let α = |P|ka, and fix anyk variables; the number of positive literals generated
by predicates inP with these variables is at mostα. The number of antecedents is thus
bounded by 2α and the number of consequents byα. Therefore,

|Hk(P)[m]| ≤
m∑

i=1

(
α2α

i

)
≤
(

eα2α

m

)m

and VC-Dim(Hk(P)[m]) ≤ log(|Hk(P)[m]|) = O(αm).
For the lower bound we assume for simplicity that there arek+1+logmunary predicates,

L0, L1, . . . , Lk, N1 . . . , Nlogm, and the rest of the predicates are of aritya.
We first show thatHk(P)[1] can shatter a setSof sizeÄ(α). The domain in all interpre-

tations inS is {1, . . . , k}, and in all interpretations the extension ofL1, . . . , Lk is precisely
L1(1), . . . , Lk(k) andL0, N1, . . . , Nlogm have an empty extension.

Let Q be the set of ground atoms that can be generated by the non-unary predicates in
P over the domain{1, . . . , k}. Each interpretation inSwill omit exactly one element ofQ.
Note that|S| = |Q| and that if|P| ≥ 2(k+ 1+ logm) then|Q| ≥ 1

2|P|ka.
To see that this set of interpretations is shattered byHk(P)[1] note that using the con-

junction L1(x1) ∧ · · · ∧ Lk(xk) in the antecedent of a clause we can make sure that in any
falsifying substitutionxi is bound toi for all i .

268 KHARDON

Let S′ ⊆ Sbe a subset of the interpretations to be rejected (falsified) by a single clause.
The required clause is of the formC → L0(x1), whereC is the conjunction of all atoms
that are true in all the interpretations inS′ where objecti is substituted with the variablesxi .
By construction this includes the conjunctionL1(x1) ∧ · · · ∧ Lk(xk). Now, for eachs ∈ S′

the antecedent is satisfied bys using the obvious substitution, and therefore the clause is
falsified bys. Fors 6∈ S′ the clause is not falsified since the atom ofQ missing ins appears
in the antecedent of the clause (with the corresponding variables substituted for the objects).

ForHk(P)[m], we replace each of the interpretations above withm interpretations. This
is done by using theN() predicates to give a label between 0 andm− 1 to each generated
interpretation. In particular, for each 0≤ i ≤ m− 1 generate an interpretation by adding
exactly one of the atomsNj (1), Nj (2) for each j according to the binary encoding ofi .
Now, given a setS to be rejected, first divide it intom subsets according to the label. Each
subset can be rejected using the clause as above where we add the encoding of the label to
the antecedent. 2

7. Using the propositional algorithm

In this section we show that the algorithm Prop-Horn can be applied more directly to the
relational learning problem. The resulting algorithm is similar to A2. The result here is
slightly weaker than the one using A2 both in terms of the class learnable which isH(P)−
and the mistake bound (only slightly worse). It may be of interest however since the proof
is different and is based essentially on a reduction to the propositional case.

We first show that if the domain is fixed thenH(P)− can be simulated by propositional
expressions. In order to relate interpretations to the standard propositional setting we assume
a fixed number of objectsk, and object names 1, 2, . . . , k. For each predicater () of arity a
we createka propositional variablesr(1,...,1), . . . , r(k,...,k), corresponding to all instantiations
of r () over objects in{1, 2, . . . , k}. An interpretationI corresponds to an assignment of
values in{0, 1} to the propositional variables in a natural way. Namely, for a tupleA of a
objects in{1, . . . , k}, the propositional variabler A is assigned 1 if and only ifr (A) ∈ I .
When discussing propositional expressions and the propositional learning algorithm we
implicitly assume that this translation is used.

Let T be a universally quantified Horn expression on a set of variablesX = (X1, . . . , Xk)

T = ∀X,C1(X) ∧ C2(X) ∧ · · · ∧ Cm(X).

Let θ1, . . . , θkk be an enumeration of all possible mappings ofk variables to objects in an
interpretation with domain{1, . . . , k}. Consider the propositional expression

Tp = C1(θ1(X))C1(θ2(X)) · · ·C1(θkk(X))

C2(θ1(X))C2(θ2(X)) · · ·C2(θkk(X))

· · ·
Cm(θ1(X))Cm(θ2(X)) · · ·Cm(θkk(X)),

where we have omitted the conjunction symbols. Recall thatIk is the set of interpretations
with at mostk objects. ForI ∈ Ik defineinflate(I) to be the interpretation with the same

LEARNING HORN EXPRESSIONS 269

extension asI but where the number of objects is exactlyk. Namely to getinflate(I) we
add new “phantom” objects toI .

Lemma 14. Let T∈Hk(P)−, I ∈ Ik, and let Tp be the propositional version of T de-
scribed above. Then the following conditions are equivalent:
(1) I 6|= T
(2) inflate(I) 6|= T
(3) inflate(I) 6|= Tp.

Proof: Clearly (1) implies (2) and (3) since the falsifying substitution inI suffices. Now
(3) implies (2) since the clause falsified inTp supplies the falsifying substitution forT . To
see that (2) implies (1) notice that phantom assignments do not change the truth value of
range restricted clauses. For anyθ that maps a variable to a phantom object, and any clause
C that uses this variable,C(θ(X)) is true since the antecedent ofC is false. 2

Lemma 14 suggests thatH(P)− can be learned by using the propositional algorithm
directly. The learning algorithm will use the propositional hypothesis of Prop-Horn and
will adapt the number of objects in counter examples to be exactlyk by using membership
queries to reduce the number of objects (relying on Lemma 1 and Lemma 2) or using
inflate() to set the number of objects tok (relying on Lemma 14). This however does
not quite work if arbitrary examples rather than examples inIk are used sinceTp is not
guaranteed to be correct on these. We next show that this difficulty can be overcome by
adapting the algorithm to use a first-order hypothesis.

Assume first thatT ∈Hk(P)− and the algorithm knows the correct value ofk. The
algorithm A8 runs Prop-Horn usingIk as the domain and simulating its oracles while
interacting with the first-order oracles. The algorithm uses Prop-Horn’s set of interpretations
S to generate its own hypothesis,H = ∧si∈Srel-cands(si). (In fact, only range restricted
clauses inrel-cands() need to be included in the hypothesis since clauses inT are range
restricted.) InitiallyS= ∅ andH is true on any interpretation.

When Prop-Horn asks a membership query (after computing the intersection ofx with
an elementsi ∈ S) the queries are passed directly to the membership oracle and answered
in the same way.

When Prop-Horn asks an equivalence query the algorithm recomputesH as H =
∧si∈Srel-cands(si) and asks an equivalence query. Given a positive counter example the
algorithm evaluates all clauses inH on it, and removes any clause falsified byI from H .

Given a negative counter example if it has more thank objects the algorithm first finds
a subset of objects that is sufficient as a counter example. This can be done (as in A2)
greedily by removing one object at a time and asking a membership query. By Lemma 1
and Lemma 2 this yields a correct counter example that has at mostk objects. LetI be the
minimal counter example found; the algorithm renames the objects ofI using names in
{1, 2, . . . , k}, and presentsx = inflate(I) to Prop-Horn as a counter example.

Note that Prop-Horn’s hypothesis is never evaluated (and hence need not be generated).
Its computation is restricted to computing intersections and asking membership queries.
These in fact can be incorporated into A8. Finally, the algorithm can be adapted for the case
when the value ofk is not known using a doubling technique. The resulting algorithm A8
is summarised in Table 9.

270 KHARDON

Table 9. The algorithm A8: LearnH(P)− using EQ and MQ (propositional version).

1. Letk = 1.
2. Run algorithm Prop-Horn with domain{1, . . . , k} simulating its oracles as needed.
3. On a call to EQ (propositional with fixedk) with the setSgenerating Prop-Horn’s hypothesis,

computerel-cands(S) as a hypothesis. PresentH to EQ to get a counter exampleI .
• if I is a positive counter example (I |= T) then remove wrong clauses (s.t.I 6|= C) from H and repeat

the call to EQ.
• If I is a negative counter example, then minimise the number of objects inI using MQ

(as in A2). If I has at mostk objects then returninflate(I) as a counter example
to Prop-Horn.
Otherwise, letk = max{2k, number of objects inI } and restart Step 2.

4. On a call to MQ (propositional with fixedk) with interpretationI , presentI to MQ and answer
in the same way.

It can be seen that A8 is in some sense a brute force version of A2. While A2 will learn
several copies of clauses if needed (if variables are unified in early examples), A8 always
learns many copies of all clauses. In addition even in the worst case less copies are used in
A2 (Bell’s number compared withkk), and the doubling technique adds another factor of
logk to the number of queries. The use of theinflate() operation enforces the restriction
toH(P)−.

Theorem 5. The classH(P)− is learnable(under|=) by the algorithm A8 using EQ and
MQ. For T∈Hk(P)−with m clauses, the number of queries is polynomial in m, |P|, ka, kk, n,
and the time complexity is polynomial in the above parameters and nk, where n is the largest
number of objects in the counter examples.

We first show that if entailment membership queries are also allowed then the algorithm
can be used to learn the classH(P)−. For this we modify algorithm A8 as follows. The
set rel-clauses(I) is the set of clauses{C ∈ rel-cands(I) | T |= C}. Given a setS of
interpretations,rel-clauses(S) can be computed by appealing to an entailment oracle (as
before by substituting constants to variables). Notice that sincesi 6|= T , si falsifies at
least one of the clauses ofT and hencerel-clauses(si) is not empty. The hypothesis of the
algorithm is now computed byH = ∧si∈Srel-clauses(si).

Lemma 15. The classH(P)− is learnable(under|=) by the modified A8 algorithm using
EQ, MQ, and EntMQ. For T∈ Hk(P)− with m clauses, the algorithm is polynomial in
m, |P|, ka, kk, n, where n is the largest number of objects in the counter examples.

Proof: Note that by the use of the entailment oracle we are guaranteed that at all times
T |= H , and therefore a counter example is such thatI 6|= T and I |= H .

Lemma 14 identifies a target expressionTp for the learning problem for Prop-Horn. The
correctness and complexity bound follow from those of Prop-Horn if we can show that
the simulation is correct. It suffices to show that (1) the membership queries are answered
correctly according toTp, (2) if Prop-Horn asks an equivalence query and ifH 6= T then
the algorithm will present a counter examplex to Prop-Horn, and (3)x is indeed a counter

LEARNING HORN EXPRESSIONS 271

example for the internal hypothesis of Prop-Horn and the target expressionTp. Part (1)
follows immediately by Lemma 14.

For (2) note that ifH 6= T then a counter example forH is returned, and somex
is passed to Prop-Horn. Note also that as argued above the reduced interpretationI is a
counter example forH and using Lemma 14 again we get thatx is a counter example forH .

For (3), we claim thath the internal hypothesis of Prop-Horn is satisfied byx, and thusx
is a counter example. Here we only consider clausesc such thatTp |= c, and therefore have
Tp |= h. Since the internal hypothesis is never created we may assume a modified version
of Prop-Horn that appeals to an entailment oracle and includes only correct clauses in its
hypothesis. This modified version is obviously correct and suffices for the current argument.

Assumex falsifiesh. Then one of the clausesc in h is falsified. Letsi be the interpretation
that generatedc and letC be the corresponding clause ofH . Clearly, there is a substitution
θ , the inverse of the one used for the generation ofC, so thatC is falsified byx, contradicting
the fact thatx is a counter example forH .

The time complexity of the algorithm is similar to that of A2. The number of queries
is governed by the query complexity of Prop-Horn which is polynomial in the number of
propositional variables and the size ofTp. The latter isO(mkk) whereT ∈ Hk(P)− hasm
clauses.

Lastly, consider the case wherek is not known. We start withk= 1 and run as before unless
we find that a counter example cannot be minimised to havek objects. We then increasek
to be the maximum of 2k and the number of objects inI , whereI is the counter example,
and restart the algorithm. Correctness follows since as long as we do not meet counter
examples that are too large, the propositional learning problem simulates the learning of
T when restricted to interpretations of sizek. (Essentially the construction ofTp can be
generalised to havei k substitutions when consideringi objects.) We therefore have at most
logk iterations where in each iteration the complexity is bounded as before. 2

Finally, to prove the theorem we show that entailment membership queries are not needed:

Proof of Theorem: The modified A8 algorithm uses Prop-Horn as a black box. The role
of Prop-Horn is however reduced to manipulating the setS. Namely, the hypothesis need
not be generated. The manipulation ofS consists of computing the intersection of two
interpretations and in asking membership queries to decide on the update.

In the previous lemma entailment membership queries were used to ensure that all counter
examples are negative. When using the hypothesisH = ∧si∈Srel-cands(si), the algorithm
may get positive counter examples, that are used to remove wrong clauses fromH . This
can be done in timeO(nk) for each clause inH . Since the number of wrong clauses in
H is bounded by the size of the setsrel-cands(si) the same bounds follow (essentially the
entailment membership queries are traded for positive counter examples). 2

8. Concluding remarks

We have shown that universally quantified function-free Horn expressions are learnable in
several models of exact learning from queries. This includes learning from interpretations,

272 KHARDON

learning from entailment, learning with intentional or extensional background knowledge
and learning to reason. The most expressive class shown learnable allows for an arbitrary
number of equalities to appear in the expressions thus going slightly beyond pure Horn
expressions.

The algorithms presented are polynomial in the number of predicate symbols in the
language and the number of clauses in the target Horn expression but exponential in the
arity of predicates and the number of universally quantified variables. We also derived
lower bounds for these tasks by way of characterising the VC-dimension of this class
of expressions. The main discrepancy between the lower bound and the bounds for our
algorithms is the exponential dependency on the number of variables.

In order to develop the results we introduced the unique substitutions semantics and the
pairing operation that restricted the size of generalised clauses. The pairing operation as
well as the operations of omitting one object at a time from an interpretation while using
MQ can be seen as refined forms of minimising the size of interpretations or the relevant
clauses. A “fine grain” minimisation by omission of one atom at a time is used in the
propositional domain for example by Angluin (1988) for learning monotone DNF, and for
relational problems by Reddy and Tadepalli (1997, 1998). Work by Aizenstein and Pitt
(1995) indicates that this may not always be successful. Our work identifies more “coarse
grain” minimisation steps that are safe for function-free expressions.

The application of these ideas in a practical ILP system would require an interactive setting
where membership queries are answered. Some work in ILP included systems with similar
requirements (Sammut & Banerji, 1986; Muggleton & Buntine, 1992) and our results can be
applied in these scenarios. Clearly, finding heuristics for reducing the number of queries is an
important step in this direction. Another possibility is to simulate (entailment) membership
queries by testing against a large set of examples.

There are several natural questions as for improvements of these results. These include
for example allowing constants and function symbols in the learned expressions, improving
the complexity or proving better lower bounds, and allowing for alternation of quantifiers.
Another aspect concerns the learning model. Shapiro’s (1983) system introduced the model
inference problem, where a learner is trying to find a logic program corresponding to an
“intended interpretation”. There are subtle differences between this requirement and the ones
studied in this paper. In addition the set of queries available to the learner is also different.
Clarifying these aspects will be of interest. Finally, some connections of the problems
studied here to work in database theory have been mentioned and further exploration of
these may prove useful.

When considering function symbols in the language it is important to make sure that
learned expressions are useful in the sense that computations with them are decidable
and efficient. Some efforts in this direction (Arimura, 1997; Reddy & Tadepalli, 1998;
Rao & Sattar, 1998) use additional queries (on the order of atoms for acyclic expressions
or subsumption queries) that help identify the syntactic form of the target expression.
Some progress on learning without additional queries was recently made, showing that a
natural generalisation of range restricted expressions, where every term that appears in the
consequent of a clause also appears in its antecedent, is learnable (Khardon, 1999a).

LEARNING HORN EXPRESSIONS 273

Acknowledgments

A preliminary version of this paper appeared in COLT 1998. This work was partly supported
by EPSRC Grant GR/M21409. Part of this work was done while the author was at Harvard
University and supported by ARO grant DAAL03-92-G-0115 and ONR grant N00014-95-
1-0550.

I am grateful to Dan Roth for many discussions regarding the notion of products and
to Mark Jerrum, Chandra Reddy, and Prasad Tadepalli, and the anonymous referees for
comments that helped improve the paper.

Notes

1. This restriction has been used before by several authors. Unfortunately, in a previous version of this paper it
was called “non-generative” while in other work it was called “generative” (Muggleton & Feng, 1992). The
term “range-restricted” was used in database literature (see e.g. Minker, 1988).

2. For example letT = (p1(X,Y)→ p2(X)), I1 = {p1(1, 1)}, and I2 = {p1(a, b), p2(a)}. Both I1 and I2 are
positive but their product{p1(1a, 1b)} is negative.

3. There are several possibilities here; the one used above seems the simplest. Another possibility is to map all
constants that do not appear in the domain to the object with the smallest index in some lexicographic ordering.
One can also extend the domain so that it includes all constants, many of which will not appear in the extension
of any predicate. This, however, requires that we restrict the expressions to be range restricted.

References

Aizenstein, H., & Pitt, L. (1995). On the learnability of disjunctive normal form formulas.Machine Learning, 19,
183–208.

Angluin, D. (1998). Queries and concept learning.Machine Learning, 2(4), 319–342.
Angluin, D., Frazier, M., & Pitt, L. (1992). Learning conjunctions of Horn clauses.Machine Learning, 9, 147–

164.
Arimura, H. (1997). Learning acyclic first-order Horn sentences from entailment.Proceedings of the International

Conference on Algorithmic Learning Theory,Sendai, Japan, Springer-Verlag, LNAI 1316.
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M.K. (1989). Learnability and the Vapnik-Chervonenkis

dimension.Journal of the ACM, 36(4), 929–865.
Chang, C., & Keisler, J. (1990).Model Theory. Amsterdam, Holland: Elsevier.
Cohen, W. (1995a). PAC-learning recursive logic programs: Efficient algorithms.Journal of Artificial Intelligence

Research, 2, 501–539.
Cohen, W. (1995b). PAC-learning recursive logic programs: Negative results.Journal of Artificial Intelligence

Research, 2, 541–573.
De Raedt, L. (1997). Logical settings for concept learning.Artificial Intelligence, 95(1), 187–201. See also relevant

Errata (forthcoming).
De Raedt, L., & Bruynooghe, M. (1992). An overview of the interactive concept learner and theory revisor CLINT.

In S. Muggleton (Ed.),Inductive Logic Programming. Academic Press.
De Raedt, L., & Dzeroski, S. (1994). First orderjk-clausal theories are PAC-learnable.Artificial Intelligence, 70,

375–392.
Del Val, A. (1996). Approximate knowledge compilation: the first order case.Proceedings of the National Con-

ference on Artificial Intelligence,Portland, Oregon (pp. 498– 503). AAAI Press.
Dzeroski, S., Muggleton, S., & Russell, S. (1992). PAC-learnability of determinate logic programs.Proceedings

of the Conference on Computational Learning Theory,Pittsburgh, PA (pp. 128–135). ACM Press.

274 KHARDON

Frazier, M., & Pitt, L. (1993). Learning from entailment: An application to propositional Horn sentences. In
Proceedings of the International Conference on Machine Learning,Amherst, MA (pp. 120–127). Morgan
Kaufmann.

Frazier, M., & Pitt, L. (1996). CLASSIC learning.Machine Learning, 25, 151–193.
Geibel, P., & Wysotzki, F. (1997). A logical framework for graph theoretical decision tree learning.Interna-

tional Workshop on Inductive Logic Programming,Prague, Czech Republic (pp. 173–180). Springer. LNAI
1297.

Haussler, D. (1989). Learning conjunctive concepts in structural domains.Machine Learning, 4(1), 7–40.
Horn, A. (1951). On sentences which are true on direct unions of algebras.Journal of Symbolic Logic, 16(1),

14–21.
Horvath, T., Sloan, B., & Tur´an, G. (1997). Learning logic programs by using the product homomorphism method.

Proceedings of the Conference on Computational Learning Theory,Nashville, Tennessee (pp. 10–20). ACM
Press.

Horvath, T., & Turán, G. (1996). Learning logic programs with structured background knowledge. In L. De Raedt,
(Ed.),Advances in Inductive Logic Programming. IOS Press.

Khardon, R. (1999a). Learning range-restricted Horn expressions.Proceedings of the Fourth European Conference
on Computational Learning Theory,Nordkirchen, Germany (pp. 111–125). Springer-Verlag. LNAI 1572.

Khardon, R. (1999b). Learning to take actions.Machine Learning, 35(1), 57–90.
Khardon, R., & Roth, D. (1996). Reasoning with models.Artificial Intelligence, 87(1-2), 187–213.
Khardon, R., & Roth, D. (1997). Learning to reason.Journal of the ACM, 44(5), 697–725.
Lloyd, J. (1987).Foundations of Logic Programming,Springer Verlag. 2nd Edition.
Maass, W., & Turán, G. (1992). Lower bound methods and separation results for on-line learning models.Machine

Learning, 9, 107–145.
McKinsey, J.C.C. (1943). The decision problem for some classes of sentences without quantifiers.Journal of

Symbolic Logic, 8(3), 61–76.
Minker, J. (Ed.) (1988).Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann.
Muggleton, S., & Buntine, W. (1992). Machine invention of first order predicates by inverting resolution. In S.

Muggleton (Ed.),Inductive Logic Programming. Academic Press.
Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods.Journal of Logic

Programming, 20, 629–679.
Muggleton, S., & Feng, C. (1992). Efficient induction of logic programs. In S. Muggleton (Ed.),Inductive Logic

Programming. Academic Press.
Nienhuys-Cheng, S., & De Wolf, R. (1997).Foundations of Inductive Logic Programming. Springer-Verlag. LNAI

1228.
Page, D. (1993).Anti-Unification in Constraint Logics: Foundations and Applications to Learnability in First-

Order Logic, to Speed-Up Learning, and to Deduction. Ph.D. thesis, Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign. Available as a Technical Report UIUCDCS-R-93-1820.

Papadimitriou, C.H., & Yannakakis, M. (1997). On the complexity of database queries.Proceedings of the sym-
posium on Principles of Database Systems,Tucson, Arizona (pp. 12–19). ACM Press.

Plotkin, G.D. (1970). A note on inductive generalization. In B. Meltzer, & D. Michie (Eds.),Machine Intelligence
5. American Elsevier.

Rao, K., & Sattar, A. (1998). Learning from entailment of logic programs with local variables.Proceedings of
the International Conference on Algorithmic Learning Theory,Otzenhausen, Germany. Springer-Verlag. LNAI
1501.

Reddy, C., & Tadepalli, P. (1997). Learning Horn definitions with equivalence and membership queries.Inter-
national Workshop on Inductive Logic Programming,Prague, Czech Republic (pp. 243–255). Springer. LNAI
1297.

Reddy, C., & Tadepalli, P. (1998). Learning first order acyclic Horn programs from entailment.International
Conference on Inductive Logic Programming,Madison, WI (pp. 23–37). Springer. LNAI 1446.

Reddy, C., Tadepalli, P., & Roncagliolo, S. (1996). Theory guided empirical speedup learning of goal decomposition
rules. InInternational Conference on Machine Learning,Bari, Italy (pp. 409–416). Morgan Kaufmann.

Sagiv, Y. (1988). Optimizing datalog programs. In J. Minker (Eds.),Foundations of Deductive Databases and
Logic Programming. Morgan Kaufmann.

LEARNING HORN EXPRESSIONS 275

Sammut, C., & Banerji, R. (1986). Learning concepts by asking questions. In R. Michalski, J. Carbonell, & T.
Mitchell, (Eds.),Machine Learning : An AI Approach, (Vol. II). Morgan Kaufman.

Selman, B., & Kautz, H. (1996). Knowledge compilation and theory approximation.Journal of the ACM, 43(2),
193–224.

Shapiro, E. (1991). Inductive inference of theories from facts. In J. Lassez, & G. Plotkin (Eds.),Computational
Logic. MIT Press.

Shapiro, E.Y. (1983).Algorithmic Program Debugging. Cambridge, MA: MIT Press.
Valiant, L.G. (1984). A theory of the learnable.Communications of the ACM, 27(11), 1134–1142.
Valiant, L.G. (1985). Learning disjunctions of conjunctions. InProceedings of the International Joint Conference

of Artificial Intelligence,Los Angeles, CA (pp. 560–566). Morgan Kaufmann.

