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Abstract. The problem of learning universally quantified function free first order Horn expressions is studied.
Several models of learning from equivalence and membership queries are considered, including the model where
interpretations are examples (Learning from Interpretations), the model where clauses are examples (Learning
from Entailment), models where extensional or intentional background knowledge is given to the learner (as done
in Inductive Logic Programming), and the model where the reasoning performance of the learner rather than
identification is of interest (Learning to Reason). We present learning algorithms for all these tasks for the class of
universally quantified function free Horn expressions. The algorithms are polynomial in the number of predicate
symbols in the language and the number of clauses in the target Horn expression but exponential in the arity of
predicates and the number of universally quantified variables. We also provide lower bounds for these tasks by
way of characterising the VC-dimension of this class of expressions. The exponential dependence on the number
of variables is the main gap between the lower and upper bounds.
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1. Introduction

We study the problem of exactly identifying first-order Horn expressions using Angluin’s
(1988) model of exact learning. Much of the work in learning theory has dealt with learning
of Boolean expressions in propositional logic. Early treatments of relational expressions
were given by Valiant (1985) and Haussler (1989), but only recently more attention was
given to the subject in the framework of Inductive Logic Programming (see e.g. Muggleton
& De Raedt, 1994; Cohen, 1995a; Nienhuys-Cheng & De Wolf, 1997). It is clear that
the relational learning problem is harder than the propositional one and indeed except for
very restricted cases it is computationally hard (Cohen, 1995b). To tackle this issue in
the propositional domain various queries and oracles that allow for efficient learning have
been studied (Valiant, 1984; Angluin, 1988). In particular, propositional Horn expressions
are known to be learnable in polynomial time from equivalence and membership queries
(Angluin, Frazier, & Pitt, 1992), and from entailment queries (Frazier & Pitt, 1993). In the
relational domain, queries have been used in several systems (e.g. Shapiro, 1983; Sammut &
Banerji, 1986; De Raedt & Bruynooghe, 1992; Muggleton & Buntine, 1992) and results on
learnability in the limit were derived (Shapiro, 1991; De Raedt & Bruynooghe, 1992). More
recently progress has been made on the problem of learning first-order Horn expressions
from equivalence and membership queries. These results were obtained by using additional
constraints on the language (Page, 1993; Reddy & Tadepalli, 1997) and using additional
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queries that help identify the syntactic form of the target expression (Arimura, 1997; Reddy
& Tadepalli, 1998; Rao & Sattar, 1998).

In this paper we show that function-free universally quantified Horn expressions are
exactly learnable in several models of learning from equivalence and membership queries.
One distinction between the learning models is concerned with the notion of examples. The
natural generalisation of the setup studied in propositional logic suggests that examples are
interpretations of the underlying language. That is, a positive example is a model of the
expression being learned. Another view suggests that a positive example is a sentence that
is logically implied by the expression, and in particular Horn clauses have been used as
examples. These two views have been calésining from interpretationsndlearning
from entailmentespectively (De Raedt, 1997) and were both studied before.

Another aspect of the learning models is the use of background knowledge in the process
of learning. This idea has been formalisedriductive Logic ProgrammingLP) where
the background knowledge is given to the learner as a logical expression in the same lan-
guage as that of the target expression being learned (Muggleton & De Raedt, 1994). The
background knowledge may bgtensionalthat is a set of ground facts, imtentionalwhere
it may include arbitrary expressions in the language. Finally, the framewdrkarhing
to Reasor{Khardon & Roth, 1997) has been suggested for the study of systems that learn
their knowledge in order to reason with it. For example, such a system may learn domain
knowledge for a particular domain and then use it to reason about this domain. Instead
of finding an expression equivalent to the domain description, the learner is expected to
learn some representation with which it can perform the reasoning correctly, for reasoning
questions in a restricted class of expressions.

We present algorithms for all these tasks with respect to universally quantified function-
free Horn expressions. Our method follows closely the results from the propositional domain
(Angluin, Frazier, & Pitt, 1992; Frazier & Pitt, 1993) generalising these by finding appro-
priate first-order constructs. Thus one contribution of the paper is in lifting the results to the
first-order domain and developing the appropriate algorithms. Another contribution is in
developing techniques for converting learning algorithms from one model to another, thus
clarifying some of the relationships between the various models. Finally, we characterise the
VC-dimension of the class under consideration; this is a combinatorial parameter known
to provide a lower bound for the complexity of learning (Blumer et al., 1989; Maass &
Turan, 1992). For our case this induces a lower bound on the number of queries made by
any algorithm that learns function-free Horn expressions.

To illustrate the complexity of the algorithms consider the Horn expression (exact defi-
nitions for the various notions appear in the next sections):

[VX1, X2, X3, (P1(X1, X2) P2(X1, X3) = P1(X2, X1))]
A VX1, X3, (P3(X3, X1) P1(X3, X1) — Pa(X3))]. (1)

The language includg®| =4 predicates, ..., ps each of arity at mosd = 2, the num-
ber of clauses in the expressionns=2 and the maximal number of universally quan-
tified variables in a clause Is= 3. Our algorithm learns this class of expressions with
query complexity bounded byn®|P|kank* wheren is the size (number of objects)
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in the examples it sees, and time complexity polynomial in the above parameters and
nk. The lower bound for the number of queries following from the VC-dimension is
Q(m|P|k?).

Our results are derived by first considering the case of learning from interpretations. We
describe two slightly different algorithms (with different proofs of correctness) that perform
this task. Algorithms for other tasks are then constructed from the solution of this task. One of
the main results of the paper is concerned with deriving one of the basic algorithms. In doing
that we use a variant of the standard semantics where each universally quantified variable
in an expression must be bound to a different element. We show that in this setting the
number of equivalence queries is polynomiakigrather tharkk) whereas the running time
and membership queries are as above. Our learning algorithnpasegys of examples,
an operation that is a variant of direct products that have been used before for learning
(Horvath, Sloan, & Tuah, 1997; Frazier & Pitt 1996). A similar modified semantics has
been considered before by Haussler (1989). In fact our result can also be seen as extending
Haussler's positive result (that shows the learnability of a single clause) in having more than
one clause in the expression though restricting the clauses to be Horn. Another interesting
aspect of the modified semantics is that it can be used to derive a learning algorithm for a
more expressive language (under the normal semantics) allowing an arbitrary number of
equalities in the clauses, as in:

[VX1, X2, X3, (P2(X1, X3) P3(X2, X1) = Pa(X2) V (X1 = X2))]

thus going somewhat beyond the pure Horn case.

While this paper concentrates on function-free expressions, extending the results to more
expressive languages in clearly of interest. One such result for range restricted Horn expres-
sions (where the way function symbols are used in clauses is restricted) has been recently
developed using a reduction to the function-free case (Khardon, 1999a).

The rest of the paper is organised as follows. Section 2 gives preliminary definitions and
details. Section 3 presents some simple examples that motivate the construction developed
in Section 4 where the result on learning with the special semantics is proved. Section 5
extends this result for other learning models, and Section 6 characterises the VC dimension
of the class. Section 7 develops the second basic algorithm showing how the propositional
algorithm can be used more directly in the first-order domain. Finally Section 8 concludes
with a brief discussion.

2. Preliminaries
2.1. First-order Horn expressions

We consider a subset of the class of universally quantified expressions in first-order logic.
The learning problems under consideration assume a pre-fixed known and finite signature
of the language. Constants or other function symbols are not allowed in the language. That
is, the signature is a finite set of predicafe®ach with its associated arity. In addition a

set of variablexy, Xz, X3, . .. IS used to construct expressions.
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Definitions of first-order languages can be found in standard texts (e.g. Chang & Keisler,
1990; Lloyd, 1987); here we briefly introduce the necessary constructs. A positive literal
is a predicate applied to a set of variables, thapisX) wherep € P and X is a set of
variables of an appropriate size (the arity®f A negative literal is obtained by adding the
negation symbol to a positive literal, e g(X). A clause is a disjunction of literals where
all variables in the clause are (implicitly) universally quantified. A Horn clause has at most
one positive literal; a Horn clause is said todediniteif it has precisely one positive literal.

A Horn expression is a conjunction of Horn clauses. Note that any clause can be written
asC = (Aneneg") — (VpeposP) Where Neg and Pos are the sets of atoms that appear in
negative and positive literals @f respectively. When doing so we will refer (.nenegn)

as theantecedenof C and to(V peposp) as theconsequendf C.

Definition 1 Let C = (Aneneg") = (VpeposP) be a clause, the@ is range restricted if
every variable that appears in Pos also appears in Neg.

Definition 2 Let H(P) be the set of (function-free) Horn expressions over signature
andH(P)~ the set of expressions #(P) in which all clauses are range restricted.

Forexample(p(x, y) — q(X)vq(y)) isrange restricted but not Hortp(x, y) — q(2))
andq(x) are inH(P) but notinH(P)~, (p(X, ¥) V p(y, 2)) isin H(P)~ but is not definite,
and(p(x, y) — q(x)) is a definite clause i (P)~.

Definition 3 Let H(P, =) be the languag@{(P) extended so that clauses can have any
number of literals of the fornix; = x;), or (x; # X;) wherex;, x; are variables that appear
in relational literals in the clause.

The clasgi(P, =) goes somewhat beyond Horn expressions if equalities are considered
as positive literals. An example clausefif{ P, =) appears in the introduction.

2.2. Examples

An example is an interpretatioh of the predicates irP (Lloyd, 1987). It lists a set of

domain elements and the truth values of all instantiations of predicates on these elements.

The extensiorof a predicate ifl is the set of positive instantiations of it that are trud jn

thesizeof the extension is the size of this set. ®imeof an interpretation is the sum of sizes

of extensions of predicates in it. If the arity of all predicates is bounded by a coagtear

the size of the extension of an example is polynomial in the number of domain elements.
Examples of this form have been used by Haussler (1989) and are motivated by the sce-

nario of acting in structural domains (e.g. Khardon, 1999b; Reddy, Tadepalli, & Roncagliolo,

1996). They are also used in the non-monotonic form of ILP (De Raedt & Dzeroski, 1994).

In structural domains, domain elements are objects in the world and an instantiation de-

scribes properties and relations of objects. We therefore refer to domain elemaljecas

For convenience we assume a standard way of naming objects, as a list of natural numbers.
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For example, for the language of Eq. (L)may have the extension

(P11, 2), p1(2, 1), p1(3, 5), p2(1,5), p4(2)} 2

for the set of object§l, 2, 3, 4, 5}. Notice that no positive atom holds Infor the object 4.

2.3. Semantics

Note that the classes of expressions were defined syntactically. We associate a concept to
each expression by defining appropriate semantics. Since the paper discusses two different
semantics, an expression may be mapped to two different concepts under these. When the
chosen semantics is not clear from the context we would specify which concept is meant.
For the meantime we define a single semantics, the standard one (Chang & Keisler, 1990;
Lloyd, 1987).

Letl (X) be aliteral,l aninterpretation an@la mapping of the variables X to objectsin
| . Theground literal 1(6 (X)) is obtained fron (X) by substituting variables in it according
to 6. A ground positive literalp(6 (X)) is true inl if and only if it is in the extension of
the relevant predicate inh A ground equality literad (x; = x;) is true inl if and only if 6
mapsx; andx; to the same object. A ground negative literal is true i and only if its
negation is not.

A clauseC € H(P) is true in an interpretatioh if for all substitutionsd of variables in
C to objects inl at least one of the literals i@ (0) is true inl . An expressiol € H(P) is
true inl if all clausesC in T are true inl. The terms (1) is true inl, (2) | is a positive
example forT, (3) | satisfiesT, (4) | is a model ofT, and (5)I & T, have the same
meaning. Lefl;, T, € H(P) thenT; implies T,, denotedT; & To, if every model ofT; is
also a model off,.

Using thisterminology, the interpretation of Eq. (2) is a positive example of the expression
of Eq. (1), while{p1(1, 2), p1(3,5), p2(1, 5), ps(2)} is a negative example.

2.4. Parametrising the concept class

The languages defined above can be further parametrised by restricting the number of
(universally quantified) variables in each clause. Denote the respective classes where the
number of variables is bounded kyby H*(P), HK(P)~, andHX(P, =).

For anyT € HX(P, =), one can test whethéri= T by enumeration in tim@©(|T |n¥)
if 1 hasn objects. In general even evaluating a single clause on a single interpretation
is NP-Hard ifk is not bounded, and recent results suggest that it is not likely to have
an algorithm polynomial im even for small non-constant valueslofPapadimitriou &
Yannakakis, 1997). We will thus assume tha$ constant whenever such evaluation needs
to be performed. Note that this restriction does not limit the size of clauses to be constant.
Long clauses can be constructed since variables can appear in more than one literal. Similar
restrictions have been previously used by Haussler (1989).

Other assumptions that ensure tractability, e.g. determinacy (Dzeroski, Muggleton, &
Russell, 1992), have been used before but we do not address such restrictions here.
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2.5. The learning model

The learning model uses several forms of queries (Angluin, 1988; Frazier & Pitt, 1993). Let
‘H be a class under consideration. In the learning model a target expré@ssidt is fixed

and hidden from the learner. The learner interacts with the equivalence and membership
oracles and has to find an expresskdrihat is equivalent t@ with respect td=.

For Equivalence QuerieEQ) the learner presents a hypothddis= H and the oracle
returns “yes” ifH = T and otherwise it returns an interpretatiothat is a counter example
(I = T andl = H or vice versa). FoMembership Querie@MQ) the learner presents an
interpretationl and the oracle returns “yes” iff = T.

We also study oracles based on entailment where clauses serve as examples. Intuitively,
for Entailment Membership Queries, the learner pres€ii@s X)), a ground instance of a
clauseC € H (i.e. all variable are substituted to objects) and the oracle returns “yes” iff
T = C(6(X)). However, in order to do this we must include object names as constants in
the underlying first-order language. Precise definitions for entailment oracles as well as the
ILP setting are given in Section 5.

2.6. Small interpretations

The following lemmas indicate that we may restrict our attention to small interpretations. Let
| be an interpretation, and |&tbe a subset of the objectslinThenl,  is the interpretation
induced froml by deleting the objects not iA and all the instantiated predicates on these
objects. LetZ¥ be the set of interpretations where the number of objects is atknost

Lemmal. LetT e HX(P)andlet| be any interpretation. If j= T then there is a set A
of objects of | such that

(1) |Al = k, and IIA = T

(QVBO Al ET.

Proof: This follows since to falsifyl a single substitutioni is sufficient and sinc& has
at mostk variables it is sufficient to include iA the objects mentioned . Clearly, any
superseB of A can falsify T using the same. O

Lemma2. LetT e H(P),and let| be any interpretation. If = T then for any set A of
objectsof L o =T.

Proof: Assumel s = T. Then there is a substitutighand a claus€ in T such thalC
is not true inl;a. ClearlyC is not true inl under the same. O

2.7. The algorithm Prop-Horn

For reference, we describe the propositional algorithm by Angluin, Frazier, and Pitt (1992)
which we refer to later as Prop-Horn. The description casts the algorithm in a relational
setting illustrating the relation to the first-order algorithms. In order to do this assume that
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all interpretations use the objects 1,, k for some fixedk. We us€(1, . .., k} as constants
so that ground atoms (in the relational domain) correspond to atomic propositions (in the
propositional domain).

We first define the basic operations of the algorithm. Lée an interpretation, and let
prop-an{l) be the conjunction of all positive ground literals trud irandprop-neg|) be
the set of all positive ground literals that are falsd iThe sefprop-candsl ) is the set of
clauseqprop-anil) — A | A € prop-nedl)} U {prop-an{|)}. For a set of interpretations
S, prop-candsgS) = Uscgprop-candss).

For example, assume we have two unary predicpiés), pz( ), and the interpretation
I with positive atomg p;(1), p2(2)} over the domairil, 2}. Thenprop-an{l) = p;(1) A
pP2(2), prop-nedl) = {p1(2), p2(1)}, andprop-candsl ) includes three clauseép:;(1) A
P2(2) = p1(2)), (p1(D) A P2(2) = p2(1)), and(p1(1) v p2(2)). Intuitively, prop-candsl )
is a set of candidate clauses to be included in the hypothesis. All these clauses are falsified
by I.

Let 14, I, be interpretations with the same set of objects. rtersectionof 14, I, is
defined to have the same objects as i ,, and the extension of predicates in the intersection
is defined to be the intersection of the extensions of corresponding predicéiesinVe
denote the intersection ly A I,.

The algorithm is described in Table 1. The algorithm maintains an ordered set of “repre-
sentative” negative examples from which it builds its hypothesis by usirgrtipecands )
operation that generates “candidate” clauses. A counter example either removes a wrong
clause, refines one of the current representative examples, or is otherwise added as a new
representative example. The correctness and efficiency of the algorithm follow by show-
ing that no two representative examples falsify the same clause in the representation for
the target expression, and that each refinement makes progress is some measurable way
(Angluin, Frazier, & Pitt, 1992).

3. Some illustrative examples

We discuss some simple examples in order to develop an intuition for the construction that
follows. The discussion here is informal and precise definitions appear in the sections that
follow.

Table 1 The algorithm Prop-Horn: learn propositional Horn expressions using EQ and MQ.

1. Maintain an ordered set of interpretatidpsnitialised toy and letH = prop-candsS).
2. RepeatuntiH =T:
e Ask an equivalence query to get a counter example in EhgeT.
¢ On a positive counter example(s.t.1 = T) remove wrong clauses (slt.t= C) from H.
e On a negative counter examglgs.t.| = T):
Fori = 1tom (whereS= (sy,..., Sm))
If J =5 Al is negative (use MQ to test whethér= T),
and its size is smaller than that f
then replaces with J, and quit the For Loop.
If no s was replaced then addas the last element &.
After each negative counter example, recompditasprop-candss).
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Let the signature b® = {p1, ..., ps} where all predicates are of arity 2. First recall
that our expressions are function-free and hence cannot refer to constants or object names.
Therefore these names are not important and we can abstract them away from examples.
Consider the case where the target expression is the single clause

T =[VX,¥.Z (p1(X, ¥) A p2(Y, 2) = ps(X, X))]

and the negative example (with doméin 2, 3})

1 ={p1(1, 2), p2(2, 3), pa(2, 3)}.

In order to show that; [~ T we can substitute /k, 2/y, 3/z and satisfy the antecedent
in I, while not satisfying the consequent. Therefore, we can find an approximation of
the antecedent of the target clause simply by substituting each objgctvith a distinct
variable. This yield1 (X, ¥) A p2(Y, 2) A pa(y, ). Notice that the literals in this antecedent
are a superset of the true set of literalsTinAssuming that we have a way of finding out
what the right consequent is (we will later simply try all possibilities) this process yields
the clausg p1(X, ¥) A p2(Y, 2) A pa(y, 20 — ps3(X, X)). Once this is done all we need to
do is somehow omit the extra literpl(y, z) to get the correct clause.

This process may encounter a problem when used with

l2 = {p1(1,2), p2(2, 2), pa(2, 3)}.

In this case, the resulting clause {® (X, y) A pa2(Y, ¥) A pa(Y, 2) — ps(X, X)) and we see
that the variabley, z in the original clause have been unified into a single varigiitethe
resulting clause. The cause of this is the fact that the substitufien2ly, 2/z showing
thatl, = T maps the same object to bograndz.

These two problems, extra literals and unified variables, may be solved by using several
negative examples of the same clause and the direct product construction. Consider the two
negative examples

I3 ={p1(1, D), p2(2, 2), ps(2, 3)}
l2 = {p1(a, @), p2(a, b), ps(b, ©)}.

Each of these interpretations will generate an extra literal and both unify varidblesties
y, Zandl4 unifiesx, y. The domain of the direct produtt ® |4 is the Cartesian product
of those ofl; and I4, namely,{1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c}. An atom p(ap, y9) is
true in the product if its projectionp(x, y) and p(g8, §) are true in the corresponding
interpretations. Thus the extension of predicates in the product is

I3® I = {p1(1a, 23), p2(2a, 2b)}.

When a clause is generated from this interpretation we get the target clause exactly.
A slightly modified example shows that products may also generate new extra literals.
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Consider the two negative examples

Is = {p1(1, 2), p1(L, 3), P2(2, 2), pa(2, 3)}
le = {p1(a, @), pi(a, b), p=(a, b), ps(b, ©)}.

The product has the same domain as above and the extension of predicates is
Is ® lg = {p1(1a, 2a), pi(1a, 2b), p1(1a, 3a), p1(1a, 3b), p2(2a, 2b)}.

Clearly, the size of the product may be as large as the product of the sizes of the original
interpretations. If using products several times the size may increase exponentially.

A final observation is that (even if the product is large) there is a small number of domain
elements in the product which are of interest. These are the elements participating in a
falsifying substitution for the clause. Namely, in the last product thesear2al2b. We
could in principle project to keep only information on objects of interest, as in:

(Is ® le)j1a,2a.20p = {P1(1a, 2a), p1(1a, 2b), p2(2a, 2b)},

where some of the extra literals (but not all) are removed. Note that the two remairiing
atoms are versions d¢fie sametom inls.

As illustrated in the next section, projection on its own does not suffice to make progress,
that is, remove literals relative to the original interpretations. However, we also show in the
next section that projection is guaranteed to be useful in case the original interpretations
did not unify variables. We call such a projectiamairing of the interpretations. Consider
the two negative examples

I7 = {p1(1, 2), pa(1, 3), P2(2, 3), pa(2, 3)}
|8 = {pl(a9 b)s pl(a’ C)v p2(b3 C)v p5(bv C)}

The product has the same domain as above and the extension of predicates is
I7® lg = {pr(1a, 2b), p1(1a, 2¢), pr(1a, 3b), p1(1a, 3c), P2(2b, 3c)}.

We can project this interpretation ¢ha, 2b, 3c} to get
(17 ® Ig)jj1a.20.30) = {P1(1a, 2b), pa(1a, 3c), p2(2b, 3c)}.

The main difference from the previous example is that the projection set corresponds to a
1-1 matching of the domain elementslef Ig. This guarantees that none of the atoms gets
duplicated in the resulting projected product and its size is never larger than the original
interpretations—a fact that is used in proving that our algorithm converges.

In our learning algorithm, negative examples are used to generate clauses in the hypoth-
esis. If these clauses have extra literals then a negative example may be paired with another
negative example in order to remove them. This works correctly as long as examples do not
unify variables. Examples which do unify variables are harder to deal with since projections
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of their products may increase the size of the interpretations. Our treatment below simply
rules out this situation by defining a new semantics where different variables in a clause
must be bound to different domain elements in interpretations. This in turn allows us to
design an algorithm for the task. Later we show that this is not too bad a restriction since
we can use the resulting algorithm to solve the original problem as well.

Finally, note that we only discussed the case of a single clause. A further level of complica-
tion arises when there is more than one clause. Intuitively, the algorithm below approximates
each clause in the target expression using negative examples for that clause. Naturally, the
algorithm also needs to find out which clause a negative example corresponds to, and make
sure that a single clause is not approximated several times by different examples. These
aspects are dealt with formally in the next section.

4. Unique substitution semantics

Motivated by the discussion above we define an alternative semantics forcing different

variables in a clause to be bound to different domain elements in interpretations. The

approach we take is similar to the one by Haussler (1989) where (translated to our setting)
it is shown that a single universally quantified clause is learnable from equivalence and

membership queries. The result that follows shows that in this model Horn expressions are
also learnable. Thus we extend the result in having more than one clause but restrict the
clauses to be Horn.

Definition 4 Let | be an interpretation and € H(P) be a clause with variables X.
We say thaC is d-true inl (and! is ad-model ofC), and denote it by =4 C if for all
1-1 substitution® that map each variable to a distinct objectl inC(6(X)) is true inl,
where the semantics for ground clauses remains as before.

For T € H(P) whereT is a conjunction of clauseg, is d-true in | if and only if all
clauses inl ared-true inl. Let Ty, T, € H(P) thenT; d-impliesT,, denotedl; =4 Ty, if
everyd-model of T, is also ad-model of Ts.

Notice that if the number of objects Inis smaller than the number of variable<drthen
| =4 C. Caution must be taken with the use of standard inference rules when using this def-
inition because of the shift in semantics. For example, using Modus Ponens one can deduce
[Vy, t(y]from T = [VX, pOO] A [VX, Y, (P(X) — q(X, YD] A[YX, Y, (@(X, y) = t(Y)].
However, T b4 [VY, t(y)] sincel = {p(a)} is ad-model of T. Another difference from
the standard semantics is that# it is important that clauses are quantified separately; for
example forl = {q(a, a)} (over domair{a}) we havel }q4 [VX, pOO] A [VX, Y, (P(X) —
q(x, y))] but if clauses share variables we hdve=q [VX, Y, (P(X)) A (P(X) = (X, V)]
For our purposes it suffices to note tha€if can be obtained fror@; by adding literals to
it,andT =4 C; thenT =4 C,. Note also that Lemma 1 and Lemma 2 hold in this model
as well. We modify the learning model accordingly so that equivalence and membership
queries evaluate interpretations according=tp Denote these modified oracles by 'EQ
and M@=,



LEARNING HORN EXPRESSIONS 251

The new semantics defines the notiorlehlsifying a clause. Similarly, we say thiatl-
coversa clause if its antecedent is satisfied iby a 1-1 substitution that maps all variables
of C. Note that this requires thdt has enough objects to be mapped to the variables
of C.

A Direct Product is an operation on interpretations that is well known for characterising
Horn expressions. Products have been used before for learning and they are closely related
to least general generalisations (Plotkin, 1970; Horvath &amud996; Horvath, Sloan,

& Turan, 1997). Letiy, I, ..., |; be interpretations. The direct productlaf I», ..., I;
denoted®(l4, I2, ..., 1}) is an interpretation. The set of objectsdrl 4, I», ..., I;) is the
set of tuples(ay, a, ..., @j) whereg; is an object inl;. The extension of predicates in
®(l4, I, ..., 1)) is defined as follows. Lep be a predicate of arityand let(cy, ..., ¢) be
al-tuple ofelements ag(ly, I2, ..., Ij), wherec, = (&, &, ..., &,). Thenp(cy, ..., Q)
istrue in®(ly, Iz, ..., Iy ifandonlyifforall1 < q < |, p(ay,, &, - .., &,) istrueinlg.

In words,p(cy, . .., ¢) is true if and only if component-wispis true on the original tuples
generatingcy, ..., ¢) in the corresponding interpretations. When= 2 we also denote
®(l2, 12) by 11 ® 1. Examples for products were given in the previous section.

Products are important since they exactly characterise the class of Horn expressions.
Of interest in the current context is the fact that, for propositional expressions, products
become the intersection operation used by the algorithm Prop-Horn (using the standard
embedding of atomic propositions as 0-ary predicate symbols). The following theorem is
essentially due to McKinsey (1943). Related results were developed by Horn (1951) and
greatly expanded in model theory (Chang & Keisler, 1990).

Theorem 1 (McKinsey, 1943). A universally quantified first-order expression is equiva-
lent (underi=) to a universally quantified first-order Horn expression if and only if its set
of models is closed under direct products.

For =4 McKinsey's theorem does not hold. A product of tdemodels ofT may not
be ad-model of T2 However, a similar property holds for tipairing operation motivated
above.

Let I, I, be interpretations, pairing of 14, I, is an interpretation induced from ® 1,
by a subset of the objects that corresponds to a 1-1 matching of the objé¢tand I».

The number of objects in a pairing is equal to the smaller of the number of objdgtd n
Thus a pairing is not unique and one must specify the matching of objects used to create it.
Similar to products we can defilkewise pairings.

An operation similar to pairing has been recently discussed by Geibel and Wysotzki
(1997) in the context of learning relational decision trees. The effort there is to reduce the
size of the least general generalisation of clauses which is a basic operation used to construct
the node tests in the tree.

Lemma 3. LetT € H(P). Then the set of d-models of T is closed under pairings.
Proof. Let I3, I, bed-models of T, andC a clause inT. Assume that a pairing d-

falsifiesC and consider a substitutieh= (6, 6,) such thatC is falsified byl with respect
to 6, wherefy, 6, are the corresponding substitutions mapping to elemenits &f. Since
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a pairing is 1-1, botl#; andé, are 1-1. We therefore get that the antecede@ & true in
I1 w.r.t. 61, and similarly forl,, 6. Moreover, for at least one df, I, the consequent of
C is false under the respective substitution. We get that at least dnelgfd-falsifies the
clause. O

Corollary 1. If J is a pairing of | and b, and J d-falsifies G= H(P) then at least one
of 11, |, d-falsifies G and both d-cover C.

The following lemma shows that for range restricted clauses, pairings characterise Horn
expressions, namely the cla&gP)~. This fact is however not needed for our result that
establishes learnability 6f(P).

Lemma 4. Let T be a conjunction of universally quantified first-order range restricted
clauses. If the set of d-models of T is closed under pairings then T is equiyatetgr
=q) to an expression ift{(P)~ (i.e. it is range restricted and Hojn

Proof: The proof adapts the technique of McKinsey (1943) to the current setting. Let
T =VX,Ci ACy A --- ACsand assume th&@ = C; is not Horn, namely it hag > 1
positive literals, so tha€ = =Py v --- V =Py V Ppy1 V - -+ V Pyyj. Definej “Horn-
Strengthening” (Selman & Kautz, 1996) clauses@each including one of the positive
literals of C, sothatfor1<i < j,C' = =P,V .-V =Py V Pnyi.

We claim that for some, T =4 C' and thereford can be rewritten a§ = VX, C' A
Ca A - - ACs. Inthis way all the non-Horn clauses Bfcan be replaced with Horn clauses.

To prove the claim assume that for BT 44 C' and letl; be ad-model of T which
is not ad-model of C' (which exists sincd 44 C'). Let | be aj-pairing induced from
®(l4, ..., I}) by the objects used it = (61, ..., 0)) whereg is the substitution fol;
which falsifiesC'. For this note that sinc€ is range restricted, all the variables of a clause
appear in all version€' of that clause and hence &jls have the same variables.

We get that with respect t® all atoms appearing in negative literals®fare true inl
(since the component-wise atoms must be true in order to fald)ybut for the positive
literals at least one of the components is false (e.gPfpr, the component corresponding
to I; must be false in order to falsif@'). We therefore get thdt j=4 C, which contradicts
the fact that thel-models ofT are closed under pairings. O

The learning algorithm Al, described in Table 2, is similar in structure to Prop-Horn.
The algorithm generalises this scheme by using pairing (instead of intersection) and other
appropriate operations. In particular, pgbp-ant(1 ), prop-neg|) andprop-candsl ) be as
defined in Section 2.7, and |2t be a set of variables in 1-1 correspondence to the objects
of 1. Then,rel-ant(l), rel-neg’l) andrel-candgl) are derived from their propositional
counterparts by substituting objects with their corresponding variablesXrom

The algorithm maintains an ordered sebf negative interpretations. These are used
to generate the hypothesis by usi-candsgs) for eachs € S. On a positive counter
example, wrong clauses (that are falsified by the example) are removedHfrom

On a negative counter example, the algorithm first minimises the number of objects in
the counter example. This can be done greedily by removing one object at a time and asking
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Table 2 The algorithm Al: LearfH(P) underi=q using EG~d and MQ=d.

1. Maintain an ordered set of interpretatidgsnitialised to@ and letH = rel-candgS).
2. RepeatuntiH =4 T:
(A) Ask an equivalence query to get a counter example in hsgy T.
(B) On a positive counter example(s.t.| =g T) remove wrong clauses (slt.fzq C) from H.
(C) On a negative counter examplés.t.| =g T):
i. Minimise the number of objects ihwhile still negative—(use MQ).
ii. Fori = 1tom (whereS= (s, ..., Sm))
For every pairing) of 5 and|
If J is negative (use MQ) and it has less objects thaor its size is
smaller than that of then
A. Replaces with J.
B. Quit loop (Go to Step 2(C) iv)
iii. If no 5 was replaced then addas the last element &.
iv. Let j be the index of the updategi or the added example (i.en + 1). UpdateH by
removing clauses generated by the previgugf a replace) and adding the clauses
in rel-candgs;) to it.

a membership query. By Lemma 1 and Lemma 2 this yields a correct counter example that
has at mosk objects. The algorithm then tries to find a pairing of this counter example with
one of the interpretatiorss in Sthat results in a negative examplewith size smaller than

that ofs, or a smaller number of objects. This is done by trying all possible matchings of
objects in the corresponding interpretations and appealing to a membership query oracle.
The firsts for which this happens is replaced with the resulting pairing. In case no such
pairing is found for any of thg , the minimised counter examplés added tdS as the last
element. Note that the order of elementsiis used in choosing the firstto be replaced,

and in adding the counter example as the last element. These are crucial for the correctness
of the algorithm. Finally, note that the algorithm does not need to know the valkieitof
works correctly for anyl € H(P) though its complexity depends &n

Example This example illustrates some aspects of the algorithm. Consider
T =1[VX, ¥,z (pu(X, ) P2(Y. D) = Pa(X, 2D] A[VX, Y, (Pa(X, Y) = Pa(X, ¥))]
and the negative example

S = {pl(lv 2)7 p2(27 3)» p3(27 3)» p4(27 3)}

(over domain{1, 2, 3}). The interpretatiors; d-falsifies the first clause of andd-covers
the second clause. No object can be removed Bpwhile keeping it negative. Therefore
if 5, is the first counter example observed it will be the first elemer& of

Consider the operation of the algorithm if the second negative (counter) example is

I = {p1(a, b), p2(b, ©), p2(a, ©), p2(a, d)}
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(over domaina, b, c, d}). If either ofa, b, c is removed from then it is not negative, but
d can be removed to get: = {pi(a, b), p2(b, ¢), p2(a, ¢)} (over domain{a, b, c}). Next
the algorithm will find that the pairinffla, 2b, 3c} generates = {pi1(1a, 2b), p2(2b, 3¢)}
which is negative and has a smaller size thgand hence replacg with J.
Consider instead the operation of the algorithm if the second negative (counter) example
is

I = {p1(a, ©), p2(c, b), pz(b, ©)}

(over domain{a, b, c}). Note that this example is negative for both clause3 ofHow-

ever, if either ofb, ¢ is removedl becomes positive, bt can be removed to get: =

{p2(c, b), p3(b, c)} (over domair{b, c}). Now | falsifies only the second clauseBf Next

the algorithm will find that the pairing2b, 3c} generates = {ps(2b, 3c)} which is neg-

ative and has less objects thanand hence replacg with J. This illustrates thatl may

have less objects than. In this example the size af is also strictly smaller than that of

s so both conditions for replacement hold. In fact, Lemma 8 shows that this is always the
case, but the condition on the number of objects simplifies the analysis. O

The analysis of the algorithm follows the line of argument by Angluin, Frazier, and Pitt
(1992) establishing that similar properties hold in the more general case. Intuitively, the
argument shows that a negative counter example will be “caught” by thesfitlsat d-
covers a clausd-falsified by it. This guarantees that two elementSab notd-falsify the
same clause it (since if this happens some previous counter example must not have been
caught), and hence yields a bound on the siz&.ddince in each step some measurable
progress is made, bounds on the number of queries can be derived.

Lemma5. Let | be a negative counter example after the minimisation of the number of
objects(in Step ZC) i). Assume that the algorithm tests(s Step ZC) ii). If there is a
clause Ce H(P) suchthat T=q C, s d-covers Gand | d-falsifies Cthen the algorithm
replaces s

Proof: Assume the conditions of the lemma hold. FEix and letd; be a substitution
showing thats d-coversC, and6, a substitution showing thatd-falsifiesC. ThenJ, the
pairing of the objects that are bound to the same variablég # (this can be done since
0,1, 6, are 1-1)d-falsifiesC with respect t@ = (61, 62). Therefored is negative forT .

Sincel (-4 C and since its number of objects has been minimised, the number of objects
in | is exactly the number of variables @. It follows that eitherl has less objects than
s (and therefore so do all the pairings agds replaced) in which case we are done] or
ands have exactly the same number of objects. Assume therefore that the latter is the case;
we argue that the size of the pairidgs smaller than that of . To observe that notice first
that in a pairing there is at most one copy of every atorg.iTherefore, a pairing cannot
increase the number of positive literals. Moreover, if any ator oloes not have a copy
in the pairing then its size is strictly smaller.

Consider the clause iel-candgs ) that corresponds 6 and denote it bys. The clause
B can be obtained as follows. Singed-coversC there is a 1-1 mapping from objectssgn



LEARNING HORN EXPRESSIONS 255

to variables irC (this is the inverse of;) so that by following this mapping we can obtain
the antecedent & as a subset otl-ant(s ). To gets, assume this mapping of variables is
used, and pick the element ifl-candgs ) that has the same consequentashere are
two cases: if the consequent®©fis already irrel-ant(s) theng is trivially true (it has the
consequent as part of the antecedent). This happenslitovers but does nat-falsify

C. In the other case, when the consequenta$ not inrel-ant(s), 8 is in rel-candss).
Moreover, sincgs can be obtained fror@ by adding literals to it we have that =4 8 and
therefore it is not removed fromd by any positive counter example. Now, in both cases we
havel =4 B. This clearly holds in the first case singds a tautology. In the second case
this follows sinceg is in the hypothesis anllis a negative counter example.

Note that, sinc€ andg have the same variables,can be used fo as well. It follows
that 8 is not falsified byl with respect t@,. Now, sincel falsifiesC underd, it must be
the case that the consequentoik false inl underd, and since the consequent is the same
in C and g the same holds fog. We therefore get that the antecedenpds not true in
I with respec®,, or in other words there is a literb(X) in 8 such that (6,(X)) is false
in 1. The literall (X) was generated Hdy6, (X)) in 5. Since the pairingl matches objects
according to the variables they are bound to, we get that, WBH€X)) is in s, | (9(X)) is
not in J whered = (61, 6,). Therefore, the size af is smaller than that of . O

Clearly for any clausé€ in T, T =4 C. The Lemma therefore holds for clauses in
T. It is however stronger in that it holds for all clauseémplied by T. This is true for
several other lemmas below. As discussed in Section 5.5 this can be used to prove stronger
“approximation” properties of the algorithm.

Example The following example shows that Lemma 5 does not hold under the normal
semantics, thus motivating the change in semantics. The lemma shows that under the stated
conditions there is a pairing a&f and| that passes the test in Step 2(C) ii. In particular it

has a smaller extension thgn Consider

T =[VX,Y,Z (pu(X, Y) p2(Y, 2) = p3(X)] A[VYX, Y, Z, (P2(X, Y) pr(Y, 2) = pa(X))].
Let
1 ={p1(L, 2), p1(2, 2), P22, 2), pz(2)},

thens! = 1, (denoting versions afby superscript), and assuming wrong consequents were
removed by positive counter examples

H = (pu(X, Y) pa(Y, Y) P2(Y, Y) Pa(y) = Pa(X)).
Let

l2 = {pa(b, b), p2(a, b), p2(b, b), ps(b)},
then

S{ ® l2 = {p1(1b, 2b), p1(2b, 2b), pz(2a, 2b), p2(2b, 2b), p3(2b)}.
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Note that no pairing 0! and|, is negative. Moreover, if we try to minimise the number
of objects in the product directly we have two options, omitting eitteorl?a. If we omit
2athen

s? = {p1(1b, 20), p1(2b, 20), pz(2b, 2b), ps(2b)}
which is isomorphic tcs} so the algorithm makes no progress. If we ontitlien
s = {pu(2b, 20), pa(2a., 2b), p2(2b, 2b), ps(2b))

which is a dual case. In either case the size is the same as teatlofaddition if the
algorithm replaces with a pairing of the same size then it may be tricked into an infinite
loop: by usingls = I; we get thas? ® I3 is isomorphic tes! ® I,.

It is interesting to note thal in this example is a Horn definition (Reddy & Tadepalli,
1997) since both clauses have the same consequent. The algorithm of Reddy & Tadepalli
(1997) learns this class and uses least general generalisations which are similar to products.
Their algorithm uses a finer minimisation step removing one atom at a time from a clause
(in contrast to removing all atoms of a particular object as we do here). While this works
for Horn definitions, constructions by Aizenstein and Pitt (1995) suggest that it may not
work in the general case. O

Lemma 6. Atalltimesin the algorithntor all k, i such thatk< i, and forall C € H(P)
such that T4 C, if 5; d-falsifies C then,sdoes not d-cover C.

Proof: We argue by induction on the construction &f The claim clearly holds for
the empty set. For the inductive step, assume the claim does not hold; we show that a
contradiction arises. Ldtbe the last counter example, and@be the clause that exists if
the claim does not hold.

Consider first the case wheke= s is appended. But in this casel-falsifiesC, and by
Lemma 5s is replaced if tested.

Clearly we only need to argue about cases where effhars, are replaced. Consider
next the case whemg is replaced byJ. By Corollary 1, sincel d-falsifiesC, s, d-covers
C, and this contradicts the inductive assumption.

Consider next the case wheseis replaced byd. Therefore, since d-falsifiesC, (by
Corollary 1) boths and the counter example d-coverC, and at least oné-falsifiesC. If
5 d-falsifiesC we get a contradiction to the inductive assumption. ¢f-falsifiesC then
by Lemma 55, is replaced if tested. O

The following property of the algorithm is useful in extensions developed elsewhere
(Khardon, 1999a). It is also used here to get a tighter bound for the number of queries.

Lemma 7. The following holds at all times in the algorithm. Lets S and D be the
domain of 8 Then s =4 T and for any object ke D, §p\py F=a T-
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Proof: We argue by induction on the construction®fThe claim clearly holds for the
empty set. For the inductive step, consider first the case where is appended. In this
case the claim follows since the number of objects is minimised in Step 2(C) i.

Consider next the case whegds replaced byd. SinceJ is negative] 4 C for some
C such thafl =4 C. LetC be such a clause with the minimum number of variables. Since
J d-falsifiesC, (by Corollary 1) botts and the minimised counter exampled-coverC,
and at least ond-falsifiesC. If 5 d-falsifiesC, by the inductive assumption the number
of objects ins is equal to the number of variables @ (otherwise some object can be
removed). Now,J has at most that many objects since it is a pairing; o5inceC has
the minimum number of variables it follows that if any object is removed ftbthen it is
positive.

If 1 d-falsifiesC then sincel is minimised the number of objects Inis equal to the
number of variables €. Now, J has at most that many objects since it is a pairing.of
As above, sinc€ has the minimum number of variables, no object can be removed from
J. O

As a result we see that one of the conditions in Step 2(C) is superfluous.

Lemma 8. If the algorithm replaces;dy J (in Step ZC) ii) then the size of J is strictly
smaller than that ofis

Proof: Clearly, we only need to consider the case whEhas less objects than Now if

J has the same size gsthen the objects of that are omitted in the pairing do not appear
in the extension of any predicatesn We claim that any such object can be removed from
s ands is still negative, a contradiction to Lemma 7.

To see that, le® = (6,1, 6,) be such that]l &4 Cé for C such thatT =4 C. The
substitutiong6,, 6,) are the corresponding substitutions §oand| respectively, and can
be extracted fron® given the pairing. Note that only objects ihare used ir6 and J
contains a copy of every positive atom truesirand only these atoms. Therefore, for every
atomp( ) in C, p( )@ is true inJ if and only if p( )0, is true ins. This implies that
s = C6O; and the objects not used i can be removed frorg. O

Theorem 2. The clasg<(P) is learnableg(underi=q4) by the algorithm A1 using EQ and
MQF¢. For T e H¥(P) with m clausegthe algorithm makes at mosiE+ Ep equivalence
queries andn + mk<) Ey membership querigsrhere By < ma, Ep < Eya, nis the lar-

gest number of objects in any of the counter exampleda = | P|k? where a is the bound

on arity of predicates. The running time of the algorithm is polynomial in the above bounds
and rk.

Proof: Since all elements df are negative, each owefalsifies at least one clause ©f
By Lemma 6, no two elementifalsify the same clause df and hence at any timg has
at mostm elements.

By Lemma 8 every negative counter example either introduces a new elgroesirictly
reduces the size of sonse By the minimisation of objects, eachhas at mosk objects,
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and the size of any sudhis bounded byP|k?. The number of negative counter examples
En is therefore bounded hy.

After each negative counter example the algorithm updatdsy changing the clauses
of a singles;. Since the number of possible consequents is boundedthis produces at
mosta wrong clauses. Since every positive counter example removes at least one wrong
clause fromH, there are at modEy« positive counter examples. This derives the bound
on the number of equivalence queries.

For the membership queries notice that for each negative counter example we need at
mostn queries for reducing the number of objects, and at muét queries to test pair-
ings.

Considering the running time, the operations on negative examples are polynomial in
the above bounds. For a positive counter exanipthe algorithm has to evaluate each
clause inH on |, and this can be done in tim@(n¥), since clauses i have at mosk
variables. O

By careful recording we can make sure that each consequesitéandss ) is removed
only once and in this way reduce the number of positive counter examples. This can be
done since ifAB — C is not implied byT (and it is removed), then clearkx — C is not
implied by T . It can be seen that for a fixédthe antecedents of clauseséfrcandss ) are
subsets of previous antecedents. Hence once a consequent is remayveasfaresult of a
positive counter example, it need not be generated again when upéhatiignceEp can
be reduced tane. This idea is discussed in detail for the propositional case by Angluin,
Frazier, and Pitt (1992). The resulting algorithm makes at mast 8quivalence queries
andm?akk + nma membership queries.

5. Extensions

In this section we apply Theorem 2 to other settings. In doing so we omit the exact bounds

which can be easily derived (and are polynomial in the same parameters). A related discus-
sion and comparison of various models of learning when queries are not allowed is given

by De Raedt (1997).

5.1. Normal semantics

We can apply the theorem to the normal semantics since expressidff$®) underj=q
can simulate expressions(P) underf=.

Lemma 9. For every Te H¥(P) with m clauses there is an expressioilJ € HX(P)
with at most mkclauses such that for all interpretationsll = T ifand onlyif | =g U (T).

Proof: We constructJ (T) from T by considering every clause separately. For a clause

C in T with j variables generate a set of clautb<C). To do that, consider all partitions

of the j variables; each such partition generates a clause by assigning a single new variable
to all variables in a single class. This covers all possibilities of unifying various subsets of
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Table 3 The algorithm A2: LearrH (P) underl= using EQ and MQ.

o Run algorithm A1 to leart) (T) simulating EGFd and MQ=d (with respect to
U(T)) by using EQ and MQ (with respect T0).
—When Al presents to MQFd presentl to MQ and answer in the same way.
—When A1 presentsl to EQ=d presentH to EQ and return the same
counter examplé (or “yes”) to Al.

« Modify the treatment of positive counter examples in A1. On counter example
remove a claus€ from H if | (= C.

variables ofC to each other. The number of such clauses is equal to the number of partitions
of aj element set (the Bell numb@&) that is obviously bounded by . The requiredJ (T)

is the conjunction of all clauses generated for all clausds dhe variables in every clause

in U(T) are quantified separately. The construction makes sure that all possible ways to
falsify a clauseC in T by a non-injective substitution are covered by an injective substitution
for one of the clauses &f (C). It is easy to check that the claim follows. m|

Hence the algorithm working undety can simply interact with oracles working accord-
ing to = and still learn the same class. We next show that the algorithm can be modified so
that it uses hypotheses interpreted according-tather thar=q. For this the hypothesis
itself need not be changed syntactically. Instead the same expression is used with respect
to =, so that when A1 presenks to EQ=¢ (with respect tdJ (T)) the modified algorithm
simply present$l to EQ (with respect to the targé). If this is done then negative counter
examples £ T and|l &= H) remain counter examples sintésq U (T) (by Lemma 9)
and|l =4 H (sincel &= C implies| =4 C). For positive counter exampleb & T and
| b= H), we have that =4 U(T) (by Lemma 9) but it may be the case that=y H and
| is not a counter example. To handle this the algorithm needs to be modified to evaluate
clauses according te- when removing clauses on a positive counter example. We call this
modified algorithm A2; the modifications are summarised in Table 3.

Since the algorithm is modified it must be verified that Theorem 2 can be applied to show
that A2 succeeds in learning(T). For this, note that the only place where the hypothesis
is used in the argument above is in the proof of Lemma 5, where we must arg@esmeit
removed from the hypothesis. In this case we know that the antecedgris af superset
of the antecedent of a clausell(T) and their consequents are identical. It follows that
T = B. Therefore] &= T implies| & B andp is not removed by the modified process.

Corollary 2. The classH(P) is learnable(under |=) by the algorithm A2 using EQ
and MQ. The algorithm makes at m&@takk equivalence queries and%k® + nmokk
membership queries.

5.2. Using equality

As we now show, another advantagetefy is that it allows for an easy incorporation
of equalities and inequalities relative fe. In particular<*(P) under=4 can simulate
HX(P, =) underl= hence yielding a learning result fét(P, =) under}=.
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Lemma 10. For every T € H*(P, =) with m clauses there is an expressiori(l) e
H¥(P) with at most mk clauses such that for all interpretations I |= T if and only if
| =q U*(T).

Proof: We first show that for eacli € H(P, =) there is an expressic@ equivalent to
T under= such that no clause i@ includes inequalities an@ has the same number of
clauses ag . (Hence inequalities are in some sense useless.) T&deim T consider
each clause separately. For each inequaity x;) in a clauseC replace all occurrences
of x; andx; in C by Xmini,j; and remove the inequality fro@. Repeat this until there are
no more inequalities i.

Now, if | (= T then there is a substitutighand a claus€ that is falsified by it. Consider
any inequality inC. Since the inequality is not satisfie®l maps both its variables to the
same object. Hence all the variablesbfe-mapped to a single variable G are mapped
to a single object by. Since we kept one of these variables as the representative, all the
literals in the corresponding clause@have the same value undeand hence it is falsified
by I.

On the other hand if (& C’ for a clauseC’ in G then one can extend the substitution
to cover variables of the corresponding cla@sm T by mapping all the variables unified
in the generation o€’ to the same object. Clearly,falsifies all literals that are retained
in C” under this substitution. By construction it also falsifies the inequalities, and hence
falsifiesC.

We next constructU *(T) from G by considering every clause separately. For a clause
C in G generate set of clausék’(C). Consider a claus€ in G and the claused (C) as
generated in Lemma 9 ignoring equalities and inequalities. Now consider a positive literal
(xi = X;) in the clauseC. The clause is satisfied under any substitution in wijciindx;
are mapped to the same object. Hence we can removeUr@ all those clauses where
X; andx; were mapped to the same variable. This can be repeated for all equalifids in
generatéJ *(C). The conjunction of all clauses *(C) for all C in G constitutedJ)*(T).

Assumel = G for somel. Thus some claus€ in G is falsified byl under some
substitutiond. Partition the variables df according to the objects they are mapped to in
0, generating a clause from this partition as in the generatidh(€f). We claim that the
resulting claus€* has not been removed frod*(C). This is true since all equalities ©
are not satisfied and thus their variables are mapped to distinct objects. Eteisdalsified
by | under the substitution induced frofn(which is 1-1 for its variables). Sindg* is in
U*(T) this implies thatl &g U*(T).

Finally, assumeé =4 U*(T) for somel . Thus some clausg’ in U*(T) is falsified byl
under some substitutidghmapping distinct variables to distinct objects. Gebe the clause
in G that generate€’, and extend to variables ofC by using the inverse mapping of
the variable partition used when generat®gfrom C. We claim thatl falsifiesC under
the extended substitution. For this first observe that all litera(s ot involving equality
are falsified since they have the same values &3 innder6. Consider next an equality
(xi = x;) in C. All elements ofU (C) in whichx; andx; are mapped to the same variable
have been removed frolh*(C). It follows thatx; andx; are mapped to different variables
in C" and since# maps each variable @' to a unique object the equality is falsified. Hence
all literals of C are falsified, and [~ G. O
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Table 4 The algorithm A3: Learr (P, =) underk= using EQ and MQ.

« Run algorithm A1 using EQ and MQ instead of EQand MQ~d.
e The hypothesi$d of Al is modified syntactically by adding equalities on all
variables used in the clauses. It can be interpreted accordiag to

Here again, the hypothesis of the algorithm can be converted into an expression in
the class being learned. This time there is no need to modify the algorithm, but the
hypothesis is syntactically modified. In particular, this can be done by adding equali-
ties on all the variables in all clauses. That([®Xx, y) p(y, 2) — q(2)) (under=q) will
be translated tgp(x, y)p(y,2) > q(2) vV (X=Yy) v (Xx=2) v (y=2)) or equivalently to
(pX, Y)p(Y, 20(X £ Y)(X#2) (Y #2Z) — q(2)). This is summarised as algorithm A3 in
Table 4.

Corollary 3. The classH (P, =) is learnable(under =) by the algorithm A3 using EQ
and MQ.

5.3. Entailment queries

For learning from entailment (Frazier & Pitt, 1993) examples are clauses in the language.
Here we use ground clauses as examples. This seems natural and corresponds to what is
done in inductive logic programming. It is easy to see that the same ideas apply if examples
are universally quantified clauses.

In the following, we modify the signature of the language so as to include an infinite
number of constant symbols (as the natural numbers) in direct correspondence with the
possible names of domain elements in the interpretations; thus the signataré\isand
in all interpretations the domain is a subset\afin the extended language interpretations
must map constant symbols to domain elements (in addition to specifying a domain and
the extension of predicates). While the number of constants is infinite we will allow inter-
pretations to map only a (finite) subset of the constants. We must therefore define when an
interpretation is suitable for assigning a truth value for expressions in the language.

Definition5  Aninterpretatiorl overP mapping a subsé’ C N as constants suitable
for an expressioil over (P, N) if all constants appearing ifi are inN’.

If | is suitable forT thenT can be assigned a truth value in the standard way. We can how
extend the definition of implication in a natural way. For expressian3; over(P, N) we
say thafT; impliesT; if for every interpretatiort which is suitable for botfi; andTs, if | is
amodel ofT; thenitis also a model df,. Since the truth value of clauses ové, N) does
not depend on constants not appearing in them this is identical with the standard definition.
In the following, we will only discuss the relation = C when| is suitable forC (and
hence omit reference to this point).

We can now define the learning model. liétbe the set of ground clauses obtained
from H(P) by using constants iiN. The expression to be learnell,e H(P), still does
not include constant symbols. FEntailment Membership QueriéEntMQ), the learner
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presents a clausee H and the oracle returns “yes” iff = c. ForEntailment Equivalence
Queries(EntEQ) the learner presents a hypothésis 7 (P) and the oracle returns “yes”
if H = T and otherwise it returns a clauses H that is a counter exampld (= ¢ and
H (£ c or vise versa).

We first observe that membership queries can be replaced with entailment membership
queries. Recall thairop-candsl ) is the propositional operation of Section 2.7.

Lemma 11. Let | be an interpretation over signature P andel’H(P). Then | |~ T if
and only if for some & prop-candsl), T = c.

Proof: Extendl to |’ by interpreting constants that correspond to domain elemetaf
these elements. Clearly,}= T iff I’ = T. Now, for allc € prop-candsl ) the antecedent
of cis satisfied byl " and its consequent is not, and therefbrgz c. Hence, ifT = c, then
"B T.

For the other direction assunté b= T. Therefore it falsifies some clau§eof T under
some substitutiofi. Considec’ = C(0 (X)) the ground instance & obtained by following
0. Clearly, |” }= ¢/, and therefore its antecedent is truelin(and therefore is a subset
of prop-an{l)), and its consequent is not. Now consider the clauséhose antecedent
is prop-anil) and whose consequent is identical to the consequent dthenc is in
prop-candgl) andT =C = ¢ = c. O

Therefore when the algorithm presents a membership query we can ask a sequence of
entailment membership queries and answer “no” if and only if one of them is implied
by T. Moreover, if entailment membership queries are available we can make sure when
creating a hypothesis that its clauses are always implied.Byhis can be done by asking
an entailment membership query for each of the clauseslinandgs). Since clauses
in rel-candg ) are universally quantified they must be translated to ground clauses if we
want to use EntMQ. As the following lemma suggests, this can be done by substituting an
arbitrary distinct constant for every variable in the clause.

Lemma 12. Let T € H(P), C aclause inH(P), and# a substitution that maps each
variable of C to a different constant. Theng C if and only if T = C6.

The proofwhich is omitted is straightforward. Note that by performing this we avothe
dependence inthe running time (needed for positive counter examples). These modifications
are summarised as Algorithm A4 in Table 5.

Corollary 4. The clasgH(P) is learnable(under=) by the algorithm A4 using EQ and
EntMQ.

For EntEQ notice that i = H andc is a counter example clause fbIr then it is the
case tha = candH }£ c. Namely, only one type of counter examples is encountered.

Lemmal3. LetT, H € HX(P).If T = H and cis acounter example ground clause for H
then an interpretation | such thatps T and | = H can be found in time QH ||P|nkn?)
where n is the number of constants in c.
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Table 5 The algorithm A4: LearrH (P) underl= using EQ and EntMQ.

e Run algorithm A2 simulating its oracles as needed and modified as follows.

o Modify the hypothesis generation step of A2. For each clause that A2 intends
to include in the hypothesis, inclu@zonly if T = C.
To test this, substitute an arbitrary distinct constant for every varialletin
getC(0). Use EntMQ to test whethéf = C(#). IncludeC in H if the answer
is “yes”.

o Calls to the oracle EQ are treated as in A2.

e On a call to MQ with interpretatioh answer “no” if and only if for some
¢ € prop-candsl ), T = c (use EntMQ to test this).

Table 6 The algorithm A5: LearrH (P) underf= using EntEQ and EntMQ.

e Run algorithm A4 simulating its oracles as follows.

o Calls to the oracle EntMQ are treated as in A4.

e On a call to EQ with hypothesid, first call EntEQ withH. On a counter
examplec (such thafl = candH [ c) run the procedure of Lemma 13 to
generate an interpretatidnand present as a counter example to A4.

Proof: Let | be an interpretation whose domain includes the objects and where
the extension of predicates includes precisely the positive literals in the anteceaent of
The idea (Frazier & Pitt, 1993; Reddy & Tadepalli, 1998) is to compute the “closure” of
| with respect toH. Clearly,| = T.If | = H then we are done. Otherwise, we can
find a clauseC of H falsified byl under a substitutiof. We claim thatC cannot have
an empty consequent. Assume it does. Then since forward chaining is sound we have
H & (ant(c) — False ) k= c. But this contradicts the fact thais a counter example for
H. Let the ground consequent Gf(¢ (X)) bey; addy to |. Since the domain size i3
the number of atoms that can be added is bounde&@my?. Therefore, this process can be
repeated until no clause &f is falsified byl , and thud = H. Finally, observe that (&= T
sinceH £ ¢ and thus the consequent ofs never added td (since forward chaining is
sound).

The complexity bound follows by observing that in each iteration we can search for a
clause ofH falsified by in time |H|nK. O

The above process is similar to the use of the chase procedure to decide on uniform
containment of database queries (Sagiv, 1988). The lemma implies that EntEQ can be used
to simulate EQ. The modifications required are summarised as Algorithm A5 in Table 6.

Corollary 5. The classH(P) is learnable(under =) by the algorithm A5 using EntEQ
and EntMQ.

5.4. Inductive logic programming

Both interpretations and clauses were used as examples in ILP and the results above are
therefore relevant to this area. The main other feature incorporated into ILP models is
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the use of background knowledge. The background knowl&digean expression over the
signaturg P, N) which is known to the learner before the learning session. A distinction has
been made betweextensional background knowledgkereB is a conjunction of positive
ground literals, anéhtentional background knowledgéhereB may include general Horn
expressions. We show that both types can be handled by our algorithm in the case of learning
from entailment.

We consider the setting as defined by Cohen (1995a). In this setting, an example is meant
as a positive example for some concept in the world (which is the consequent in some
clause inT). In particular an example is a paiE, D) such thatD (for Description) is a
conjunction of positive ground literals aifitlis a single positive ground literal. An example
(E, D) is a positive example foF with respect taB if and only if T A B A D = E. Since
this is equivalenttd@ A B = (D — E) we see that a positive ILP example is similar to an
example clause.

We modify the learning model accordingly. The target H(P) and the background
knowledgeB are fixed by an adversary. The target is hidden from the learnd® sugiven
to the learner. For an ILBquivalence oracl¢lLPEQ), the learner presents a hypothesis
H, and the oracle returns “yes” if and onlyTf A B is equivalent toH A B. Otherwise it
returns an ILP counter example, namely, a [p&ir D) which is positive for one of or H
but not the other. Note thatf is not definite then we need to alld#to denotdralse . An
ILP membership oracldLPMQ) for B andT when presented with a paiE, D) answers
“yes”ifandonly if T AB &= (D — E).

For the extensional case, the idea is to run the same algorithm but modify the examples
slightly. SinceT AB=(D — E)ifandonly if T = (B A D — E), a ILP counter example
(E, D) can be turned into a clause= (B A D — E) which is a counter example fd .

The use of EntEQ is therefore straightforward.

For EntMQ a clause can be seen as a pair corresponding to(D — E); the only
problem one needs to get around in order to apply Corollary 5 is the facBttsapart of
the problem specification and thus we need to make sur@ttats not effect the answers
to our queries. Namely, we want to halle= (D — E)ifandonlyif TAB &= (D — E).

This can be done by using distinct new constants in the queries (that do not appar in
The resulting algorithm A6 is summarised in Table 7.

Corollary6. The clas$i{(P)islearnablglunderk=) relative to an extensional background
knowledge by the algorithm A6 using ILPEQ and ILPMQ.

Table 7 The algorithm A6: Learfi(P) underi= relative to an extensional background knowledge using ILPEQ
and ILPMQ.

e Run algorithm A5 simulating its oracles as follows.

e On a call to EntEQ with hypotheslHs, first call ILPEQ withH. On a counter
example(E, D) (such thaflT A B = (D — E) andH A B |~ (D — E)), present
¢ = (B A D — E)toA5as acounter example.

e On a call to EntMQ with clause, rename the constantsdrso that none of
them appears iB to getc’ = (D — E). PresentE, D) to ILPMQ and return
the same answer to A5.
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For intentional background knowledge #(P) the idea is to have the algorithm learn
the expressiom A B € H(P). The background knowledge can be incorporated into the
algorithm by using the clauses Bito initialise the sefS of interpretations the algorithm
uses. For each clau€e we generate an interpretatisgifrom its antecedent by substituting
a unique object to each variable. Let the set of interpretations so generafgdGiearly,
the clauseC is inrel-candgsc). However, since the order of elements3is important, we
must use these interpretations carefully. The solution we present uses one of the previous
learning algorithms as a subroutine that automatically adapts to this requirement.

The learning algorithm A7 runs in two phases. In the first phase it incorpdsdtee the
hypothesis by using A4 as follows. On an EntMQ for the clause(D — E), it presents
(E, D) to ILPMQ and answers accordingly. On an EQ with hypothékist evaluatesH
on all the interpretations if%. If for somes € &, s &= H, thensis returned to A4 as a
counter example. Otherwise the algorithm moves to the second phase.

In the second phase it runs A5 but using theSsetsulting from the first phase to initialise
the setS of A5. EntMQ are dealt with as in the first phase. On an EntEQ with hypothesis
H, the algorithm presentd to ILPEQ to get a counter exampl&, D) that it returns as a
counter example = (D — E) to A5. The algorithm is summarised in Table 8.

Itis easy to see that after the first phase and throughout the second one the hypothesis of
the algorithm will satisfyH = B andT A B = H. Therefore the complexity of learning
in the second stage is bounded by the complexity of learfimdone in the case with no
background knowledge. The number of EntMQ in the first phase can be bounded using the
number of counter examples in this phase (which is at most the number of clauBgs in
and the analysis as above.

Corollary 7.  The clas$1(P) is learnable(underE=) relative to an intentional background
knowledge i (P) by the algorithm A7 using ILPEQ and ILPMQ.

Clearly, both kinds of background knowledge can be combined though this does not
allow for clauses that include both variables and constants.

Table 8 The algorithm A7: Learr{(P) under= relative to an intentional background knowledge using ILPEQ
and ILPMQ.

1. ComputeSy from the clauses oB.
2. Run algorithm A4 simulating its oracles as follows.
e On a call to EntMQ with clause = (D — E) presentE, D) to ILPMQ
and return the same answer to A4.
e On a call to EntEQ with hypothesld, evaluateH on interpretations in
S; if aninterpretation € § such that &= H is found then return it as
a counter example to A4. Otherwise go to Step 3.
3. Run algorithm A5 initialisingS to be the same as in the last stage of A4, and
simulating its oracles as follows.
e On a call to EntMQ with clause = (D — E) presen{E, D) to ILPMQ
and return the same answer to A5.
e On a call to EntEQ with hypothes}s, first call ILPEQ withH. On a
counter exampl€E, D) (such thaff A B = (D — E) andH A B = (D — E)),
present = (D — E) to A5 as a counter example.
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5.5. Learning to reason

We next show that the algorithm for learning from entailment is robust in the sense that if
the target expression is not Horn then it will find a Horn expression which is as close to it
as possible. In fact we show that the algorithm is a Learn to Reason algorithm (Khardon
& Roth, 1997) with respect to the clag& P). This is formalised using the notion of least
upper bounds that were introduced by Selman and Kautz (1996) and discussed by various
authors (e.g. Frazier & Pitt, 1993; Khardon & Roth, 1996; Del Vel, 1996).

Definition 6 Let G, H be classes of first-order expressions over the signdurén
expressionT € H is the least upper bound & € G in H, if (1) G = T, and (2) for all
T € HsuchthaG = T',itisthecasethab =T =T'.

In the following we fixG to be the class of expressions composed of conjunctions of
range restricted clauses (not necessarily Horn),}na be*(P) for some fixeck. Since
HX(P) is closed under conjunctions and the number of possible clauses is finite it is easy
to see that the least upper bound is well defined and unique. We modify the learning model
so that the target expression isgrbut examples are ground instances of clausés.iror
EntMQ, the learner presen®# (X)), a ground instance of a clau§ee H*(P) (i.e. all
variable are substituted to constants) and the oracle returns “yeB"}i#f C(6(X)). For
EntEQ, the learner presents a hypothésis 7X(P) and the oracle returns “no” if there
is a clauseC € H(P) and a substitutiof such thaflT = C(9(X)) andH = C(6(X)) or
vice versa. In this case it returns such a ground clause as a counter example. Otherwise it
returns “yes”. Notice that it may be the case t@ai H but there is no counter example in
H¥(P) and the oracle returns “yes”. We denote this restricted oracle by EAtEH®))].

Theorem 3. Given access to EntMQ and EntExg(P)] and for any target expression
G € G, algorithm A5 will find an expression K +*(P) that is equivalenfunder =) to
the least upper bound of G HX(P).

Proof: LetT be the least upper bound. The theorem follows by observing that the oracles
behave as if the algorithm was learnifg In particular, by the definition of least upper
bounds, forang € H¥(P), G = Cifand onlyif T = C, and hence EntMQ are answered
correctly according ta'. For EntEQ, recall that the algorithm makes sure BagE= H
whereH is the hypothesis. Therefore, counter examples are suclbstiratc andH - c.

Now, sinceT is the least upper boun@ = T = ¢, andc is a counter example foF as

well. O

This result can be translated into an “on-line” learning scenario where the learner uses its
hypothesis to reason about the world (as express&) Byhen it makes a mistake it finds a
counter example clause that it can use to refine its hypothesis. Our resultimplies that even if
G is not Horn, and despite the fact that we do not have an algorithm tode&ne learning
algorithm can learn a representation that supports correct reasoning with res@efctrto
all expressions iftt(P). Results of this type were previously developed for propositional
logic and called Learning to Reason; Theorem 3 generalises the Learning to Reason result
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for propositional Horn expressions (Theorem 7.1 in Khardon & Roth, 1997). Finally, we
note that since our analysis in Section 4 discussed clalisesh thafl = C rather than
clauses in the expressidn a similar claim can be made for learning from interpretations
under a suitable restriction of EQ.

6. A lower bound

In this section we characterise the Vapnik-Chevonenkis dimension (VC-DikdjB§. It is
known that the VC-Dim of a concept class is a lower bound for the number of equivalence
and membership queries when learning this class (Maass &TW4992). The following
theorem thus shows th& (m|P|k?) queries are necessary. Comparing with our upper
bound ofO(m?| P|k2k3 + nm| P|k2kK) we see that apart from the dependence on the size
of counter examples the main discrepancy is in the exponential dependende on

We start with the necessary definitions (Blumer et al., 1989; Maass &1T1992). Let
Abe asetB C 2 andS C A. ThenIIz(S) = {BN S| B € B} is the set of subsets of
Sthat can be obtained by intersection with element8.off |I15(S)| = 2'S then we say
that B shattersS. Finally, VC-Dim(B) is the size of the largest set shattered®bfor oo if
arbitrary large sets are shattered).

In our caseA is the set of interpretations, aftlis the class+(P) interpreted undej=.
Let H*(P)[m] be the class of expressions#(P) with at mostm clauses.

Theorem 4. If |P| > 2(k + 1 + logm) and all predicates in P have arity a then VC-
Dim(HX(P)[m]) = ©(m|P|k?).

Proof: Leta = |P|k?, and fix anyk variables; the number of positive literals generated
by predicates irP with these variables is at most The number of antecedents is thus
bounded by 2 and the number of consequentsdayTherefore,

e <Y (“iza) < (e“f)m

i=1

and VC-DImHX(P)[m]) < log(|H*(P)[m]]) = O(am).

Forthe lower bound we assume for simplicity that therekar&+log munary predicates,
Lo, L1, ..., Lk, N1..., Niogm, and the rest of the predicates are of asty

We first show that{*(P)[1] can shatter a s& of sizeQ («). The domain in all interpre-
tations inSis {1, ..., k}, and in all interpretations the extensionlof, . . ., L is precisely
L1(1), ..., Lk(k) andLg, Ny, ..., Niogm have an empty extension.

Let Q be the set of ground atoms that can be generated by the non-unary predicates in
P over the domairfl, ..., k}. Each interpretation is will omit exactly one element of.
Note that|S| = |Q| and that if| P| > 2(k + 1 + logm) then|Q| > %|P|ka.

To see that this set of interpretations is shattere@byP)[1] note that using the con-
junctionL1(xg) A -+ - A Lx(X¢) in the antecedent of a clause we can make sure that in any
falsifying substitutiornx; is bound ta for alli.
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Let S € Sbe a subset of the interpretations to be rejected (falsified) by a single clause.
The required clause is of the forh — Lo(x1), whereC is the conjunction of all atoms
that are true in all the interpretations$hwhere object is substituted with the variables.
By construction this includes the conjunctibr(xi) A --- A Lx(Xk). Now, for eacts € S
the antecedent is satisfied bysing the obvious substitution, and therefore the clause is
falsified bys. Fors ¢ S the clause is not falsified since the atom®mmissing ins appears
in the antecedent of the clause (with the corresponding variables substituted for the objects).
For H*(P)[m], we replace each of the interpretations above witinterpretations. This
is done by using th&l( ) predicates to give a label between 0 amé- 1 to each generated
interpretation. In particular, for each€i < m — 1 generate an interpretation by adding
exactly one of the atomhl; (1), N;(2) for eachj according to the binary encoding of
Now, given a sefto be rejected, first divide it intm subsets according to the label. Each
subset can be rejected using the clause as above where we add the encoding of the label to
the antecedent. |

7. Using the propositional algorithm

In this section we show that the algorithm Prop-Horn can be applied more directly to the
relational learning problem. The resulting algorithm is similar to A2. The result here is
slightly weaker than the one using A2 both in terms of the class learnable whitiPis~

and the mistake bound (only slightly worse). It may be of interest however since the proof
is different and is based essentially on a reduction to the propositional case.

We first show that if the domain is fixed théf(P)~ can be simulated by propositional
expressions. In order to relate interpretations to the standard propositional setting we assume
a fixed number of objects and object names 2, .. ., k. For each predicatg ) of aritya
we creat&? propositional variabless, 1, ..., I« k), corresponding to all instantiations
of r( ) over objects in(1, 2, ..., k}. An interpretationl corresponds to an assignment of
values in{0, 1} to the propositional variables in a natural way. Namely, for a tuptH a
objects in{1, ..., k}, the propositional variable, is assigned 1 if and only if(A) € I.

When discussing propositional expressions and the propositional learning algorithm we
implicitly assume that this translation is used.

LetT be a universally quantified Horn expression on a set of variables(Xy, ..., Xk)

T = VX, Ci(X) A Co(X) A --- A Cn(X).

Letd,, ..., 6 be an enumeration of all possible mapping& efariables to objects in an
interpretation with domaifi, . . ., k}. Consider the propositional expression

Tp = C1(61(X)C1(62(X)) - - - C1 (e (X))
Ca(81(X))C2(02(X)) - - - Co(6i (X))
Cin(01(X)Cn(02(X)) - - - Cin (e (X)),

where we have omitted the conjunction symbols. Recallfhas the set of interpretations
with at mostk objects. Forl e Z defineinflate(]) to be the interpretation with the same



LEARNING HORN EXPRESSIONS 269

extension ag but where the number of objects is exadtlyNamely to geinflate(l ) we
add new “phantom” objects tb,

Lemma 14. Let Te HX(P)~, | eZ¥, and let T be the propositional version of T de-
scribed above. Then the following conditions are equivalent

DIET

(2)inflate(l) = T

(3) inflate(1) B Tp.

Proof: Clearly (1) implies (2) and (3) since the falsifying substitutior isuffices. Now

(3) implies (2) since the clause falsifiedTp supplies the falsifying substitution fdr. To

see that (2) implies (1) notice that phantom assignments do not change the truth value of
range restricted clauses. For ahthat maps a variable to a phantom object, and any clause

C that uses this variabl€ (6 (X)) is true since the antecedent®@fis false. O

Lemma 14 suggests thaf(P)~ can be learned by using the propositional algorithm
directly. The learning algorithm will use the propositional hypothesis of Prop-Horn and
will adapt the number of objects in counter examples to be exkdilyusing membership
queries to reduce the number of objects (relying on Lemma 1 and Lemma 2) or using
inflate( ) to set the number of objects to(relying on Lemma 14). This however does
not quite work if arbitrary examples rather than examplegkirare used sincdj, is not
guaranteed to be correct on these. We next show that this difficulty can be overcome by
adapting the algorithm to use a first-order hypothesis.

Assume first thafl € HX(P)~ and the algorithm knows the correct value lof The
algorithm A8 runs Prop-Horn using as the domain and simulating its oracles while
interacting with the first-order oracles. The algorithm uses Prop-Horn’s set of interpretations
Sto generate its own hypothesid, = Agcsrel-candss). (In fact, only range restricted
clauses imrel-candg ) need to be included in the hypothesis since claus@sare range
restricted.) InitiallyS = @ andH is true on any interpretation.

When Prop-Horn asks a membership query (after computing the intersectowitf
an elemensg € S) the queries are passed directly to the membership oracle and answered
in the same way.

When Prop-Horn asks an equivalence query the algorithm recomplutas H =
Asesrel-candgs) and asks an equivalence query. Given a positive counter example the
algorithm evaluates all clauseslihon it, and removes any clause falsified lbfrom H.

Given a negative counter example if it has more thabjects the algorithm first finds
a subset of objects that is sufficient as a counter example. This can be done (as in A2)
greedily by removing one object at a time and asking a membership query. By Lemma 1
and Lemma 2 this yields a correct counter example that has atknobgects. Letl be the
minimal counter example found; the algorithm renames the objecksusing names in
{1, 2,...,k}, and presents = inflate(l) to Prop-Horn as a counter example.

Note that Prop-Horn’s hypothesis is never evaluated (and hence need not be generated).
Its computation is restricted to computing intersections and asking membership queries.
These in fact can be incorporated into A8. Finally, the algorithm can be adapted for the case
when the value ok is not known using a doubling technique. The resulting algorithm A8
is summarised in Table 9.
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Table 9 The algorithm A8: LearfH(P)~ using EQ and MQ (propositional version).

1. Letk = 1.
2. Run algorithm Prop-Horn with domaia, ... ., k} simulating its oracles as needed.
3. On a call to EQ (propositional with fixdd with the setS generating Prop-Horn’s hypothesis,
computerel-candgS) as a hypothesis. Presdrtto EQ to get a counter example
o if | is a positive counter examplé & T) then remove wrong clauses (d.ti= C) from H and repeat
the call to EQ.
o If | is a negative counter example, then minimise the number of objettasing MQ
(asin A2). IfI has at mosk objects then returmflate(l ) as a counter example
to Prop-Horn.
Otherwise, lek = max{2k, number of objects i} and restart Step 2.
4. On a call to MQ (propositional with fixek) with interpretationl , present to MQ and answer
in the same way.

It can be seen that A8 is in some sense a brute force version of A2. While A2 will learn
several copies of clauses if needed (if variables are unified in early examples), A8 always
learns many copies of all clauses. In addition even in the worst case less copies are used in
A2 (Bell's number compared witk¥), and the doubling technique adds another factor of
logk to the number of queries. The use of thélate( ) operation enforces the restriction
toH(P)~.

Theorem 5. The clasgH(P)~ is learnable(underl=) by the algorithm A8 using EQ and
MQ. For T € H¥(P)~ with m clauseghe number of queries is polynomialin |, k%, k*, n,
and the time complexity is polynomial in the above parameters Swiere n is the largest
number of objects in the counter examples.

We first show that if entailment membership queries are also allowed then the algorithm
can be used to learn the claggP)~. For this we modify algorithm A8 as follows. The
setrel-clausesl) is the set of clausefC € rel-candgl) | T & C}. Given a setS of
interpretationsrel-clause$S) can be computed by appealing to an entailment oracle (as
before by substituting constants to variables). Notice that sindg T, 5 falsifies at
least one of the clauses dfand henceel-clausess ) is not empty. The hypothesis of the
algorithm is now computed bl = Agcsrel-clausess).

Lemma 15. The class{(P)~ is learnable(underl=) by the modified A8 algorithm using
EQ, MQ, and EntMQ. For Te HX(P)~ with m clausesthe algorithm is polynomial in
m, |P|, k%, kK, n, where n is the largest number of objects in the counter examples.

Proof: Note that by the use of the entailment oracle we are guaranteed that at all times
T = H, and therefore a counter example is such thgt T andl = H.

Lemma 14 identifies a target expressigyfor the learning problem for Prop-Horn. The
correctness and complexity bound follow from those of Prop-Horn if we can show that
the simulation is correct. It suffices to show that (1) the membership queries are answered
correctly according td, (2) if Prop-Horn asks an equivalence query andlit~ T then
the algorithm will present a counter exampléo Prop-Horn, and (3% is indeed a counter
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example for the internal hypothesis of Prop-Horn and the target expreggidPart (1)
follows immediately by Lemma 14.
For (2) note that ifH # T then a counter example fdf is returned, and some
is passed to Prop-Horn. Note also that as argued above the reduced interpietatan
counter example foH and using Lemma 14 again we get tkas a counter example fat .
For (3), we claim thah the internal hypothesis of Prop-Horn is satisfiedkbgnd thus<
is a counter example. Here we only consider clagsegh thafl, = ¢, and therefore have
Tp = h. Since the internal hypothesis is never created we may assume a modified version
of Prop-Horn that appeals to an entailment oracle and includes only correct clauses in its
hypothesis. This modified version is obviously correct and suffices for the current argument.
Assumex falsifiesh. Then one of the clausesn h is falsified. Lets be the interpretation
that generated and letC be the corresponding clauseldf Clearly, there is a substitution
0, the inverse of the one used for the generatiod,afo thalC is falsified byx, contradicting
the fact thaix is a counter example fdf.
The time complexity of the algorithm is similar to that of A2. The number of queries
is governed by the query complexity of Prop-Horn which is polynomial in the number of
propositional variables and the sizeTgf. The latter isO(m K<) whereT e H*(P)~ hasm
clauses.
Lastly, consider the case whésis not known. We start witk = 1 and run as before unless
we find that a counter example cannot be minimised to kaMgects. We then increage
to be the maximum ofRand the number of objects in wherel is the counter example,
and restart the algorithm. Correctness follows since as long as we do not meet counter
examples that are too large, the propositional learning problem simulates the learning of
T when restricted to interpretations of sike(Essentially the construction df, can be
generalised to havié substitutions when consideringbjects.) We therefore have at most
logk iterations where in each iteration the complexity is bounded as before. O

Finally, to prove the theorem we show that entailment membership queries are not needed:

Proof of Theorem: The modified A8 algorithm uses Prop-Horn as a black box. The role
of Prop-Horn is however reduced to manipulating theSdtlamely, the hypothesis need
not be generated. The manipulation $ftonsists of computing the intersection of two
interpretations and in asking membership queries to decide on the update.

Inthe previous lemma entailment membership queries were used to ensure that all counter
examples are negative. When using the hypothidsis Aqcsrel-candgs ), the algorithm
may get positive counter examples, that are used to remove wrong clausell frohis
can be done in tim@®(n*) for each clause irH. Since the number of wrong clauses in
H is bounded by the size of the se¢$-candss) the same bounds follow (essentially the
entailment membership queries are traded for positive counter examples). O

8. Concluding remarks

We have shown that universally quantified function-free Horn expressions are learnable in
several models of exact learning from queries. This includes learning from interpretations,
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learning from entailment, learning with intentional or extensional background knowledge
and learning to reason. The most expressive class shown learnable allows for an arbitrary
number of equalities to appear in the expressions thus going slightly beyond pure Horn
expressions.

The algorithms presented are polynomial in the number of predicate symbols in the
language and the number of clauses in the target Horn expression but exponential in the
arity of predicates and the number of universally quantified variables. We also derived
lower bounds for these tasks by way of characterising the VC-dimension of this class
of expressions. The main discrepancy between the lower bound and the bounds for our
algorithms is the exponential dependency on the number of variables.

In order to develop the results we introduced the unique substitutions semantics and the
pairing operation that restricted the size of generalised clauses. The pairing operation as
well as the operations of omitting one object at a time from an interpretation while using
MQ can be seen as refined forms of minimising the size of interpretations or the relevant
clauses. A “fine grain” minimisation by omission of one atom at a time is used in the
propositional domain for example by Angluin (1988) for learning monotone DNF, and for
relational problems by Reddy and Tadepalli (1997, 1998). Work by Aizenstein and Pitt
(1995) indicates that this may not always be successful. Our work identifies more “coarse
grain” minimisation steps that are safe for function-free expressions.

The application of these ideas in a practical ILP system would require an interactive setting
where membership queries are answered. Some work in ILP included systems with similar
requirements (Sammut & Banerji, 1986; Muggleton & Buntine, 1992) and our results can be
applied inthese scenarios. Clearly, finding heuristics for reducing the number of queriesis an
important step in this direction. Another possibility is to simulate (entailment) membership
queries by testing against a large set of examples.

There are several natural questions as for improvements of these results. These include
for example allowing constants and function symbols in the learned expressions, improving
the complexity or proving better lower bounds, and allowing for alternation of quantifiers.
Another aspect concerns the learning model. Shapiro’s (1983) system introduced the model
inference problem, where a learner is trying to find a logic program corresponding to an
“intended interpretation”. There are subtle differences between this requirement and the ones
studied in this paper. In addition the set of queries available to the learner is also different.
Clarifying these aspects will be of interest. Finally, some connections of the problems
studied here to work in database theory have been mentioned and further exploration of
these may prove useful.

When considering function symbols in the language it is important to make sure that
learned expressions are useful in the sense that computations with them are decidable
and efficient. Some efforts in this direction (Arimura, 1997; Reddy & Tadepalli, 1998;
Rao & Sattar, 1998) use additional queries (on the order of atoms for acyclic expressions
or subsumption queries) that help identify the syntactic form of the target expression.
Some progress on learning without additional queries was recently made, showing that a
natural generalisation of range restricted expressions, where every term that appears in the
consequent of a clause also appears in its antecedent, is learnable (Khardon, 1999a).
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Notes

1. This restriction has been used before by several authors. Unfortunately, in a previous version of this paper it
was called “non-generative” while in other work it was called “generative” (Muggleton & Feng, 1992). The
term “range-restricted” was used in database literature (see e.g. Minker, 1988).

2. For example leT = (p1(X,Y) = p2(X)), I1 = {p1(1, D}, andl> = {pi1(a, b), p2(a)}. Both |1 andl, are
positive but their produdip; (1a, 1b)} is negative.

3. There are several possibilities here; the one used above seems the simplest. Another possibility is to map all
constants that do not appear in the domain to the object with the smallest index in some lexicographic ordering.
One can also extend the domain so that it includes all constants, many of which will not appear in the extension
of any predicate. This, however, requires that we restrict the expressions to be range restricted.
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