
Learning Functions from Examples

B. K. Natarajan

C M U- R I-TR-87- 1 9

The Robotics Institute
Camegie Mellon University

Pittsburgh, Pennsylvania 15213

August 1987

0 1987 Carnegie Mellon University

0 1987 Carnegie Mellon Universtty

i

Table of Contents
1. Introduction
2. Problem Solving: An Example
3. Preilmlnaries
4. Uniformly Convergent Learnlng
5. Functions over Continuous Spaces
6. Two Famillar Functlon Famllles
7. Conclusion
8. Acknowledgements
9. References

1
2
3
3
8
9
13
13
13

Abstract

This paper concerns algorithms that "learn" functions from examples. Functions on strings of a finite
alphabet are considered and the notion of dimensionality defined for families of such functions. Using this
notion, a theorem is proved identifying the most general conditions under which a family of functions can
be efficiently learned from examples. Turning to some familiar families: we present strong evidence
against the existence of efficient algorithms for learning the regular functions and the polynomial time
computable functions, even if the sue of the encoding of the function to be learned is given. Our
arguments hinge on a new complexity measure - the constraint complexity.

1. Introduction
This paper concerns algorithms that "learn" functions from examples. In the main, it is a sequel to

the material in [Natarajan 1987 and contains the results presented in [Natarajan 1987bl. The problem
has been of interest over the years to workers in artificial intelligence, pattern recognition and numerical
analysis. Specifically, we are interested in computing uniformly good approximations to an unknown
function, based on its behaviour on a few sample points. This problem is known as interpolation in
numerical analysis, pattern matching in pattern recognition and concept learning (amongst others) in
artificial intelligence. As our motivation for this study was drawn from artificial intelligence, we will use the
term "learning" instead of the other two.

We begin with an example to motivate our work. Consider the problem of learning integral calculus.
Given a table of integrals, one has all the information theoretically required to become an expert. Yet,
worked examples and practice problems seem to be necessary before one acquires any facility over the
domain. We formalize this problem and show that unless P = NP, examples play an important role in such
learning. Our formalism covers many other domains such as learning to solve puzzles, play games etc.
We then argue that it is convenient to view our formalism as an algorithm that learns functions from
examples.

The problem of inferring Turing machines from sample computation traces has been studied before
[Biermann 19741, but issues of feasibility or correctness have not been addressed. More recently, a
general framework for uniformly convergent learning of simple concepts was proposed [Valiant 19841.
Based on this framework, some general results on learning geometric concepts and boolean functions
followed [Blumer et al. 1986, Natarajan 1987. Within the same framework, we consider length preserving
functions on strings of a finite alphabet. We define the notion of dimensionality for families of such
functions and give a general theorem that states that a family of such functions can be efficiently learned
if and only if it is of polynomial dimension. This is an important contribution of the paper. Our approach is
similar to the one in [Natarajan 1987 and aims at ease of understanding and intuitive appeal. Turning to
functions on continuous spaces, we extend the results on learning boolean-valued functions [Blumer et al.
19861 to general functions.

We then consider two familiar function families: the regular functions and the polynomial-time
computable functions. Since these families are not of polynomial dimension, we consider parametrized
subsets of these families, the parameter being the bound on the size of the encodings of the functions.
We measure the encoding size as the number of states in the deterministic finite automaton computing
the function for regular functions, and as the sue of the program in some admissible programming system
for the polynomlal-tlme Computable functions. We then look for learning algorithms that run in time
poynomial in the sue bound. (Summarizing the above, when attempting to learn an unknown function, is
it sufficient to know that the function is regular (or polynomial-time computable) and that it has a short
encoding, in order to learn it efficiently?)

For the regular functions, we show that such an algorithm does not exist, unless NP = RP. Our

2

argument is based on an earlier result on the complexity of ordering the regular sets [Gold 1978, Angluin
19781.

For the polynomial-time computable functions, we argue that it is unlikely that such an algorithm
exists. Our argument is not reducible to the condition "unless NP=RP", but is almost as strong, and
proceeds as follows. To start with, we introduce the interesting notion of the Constraint Complexity of a
set of examples - a measure of the information carried by the set. This is the second important
contribution of the paper. As a backdrop, we prove many interesting results with this tool, including a
short and intuitive proof of the dimensionality theorem mentioned earlier. We then argue that since the
traditional notion of Kolmogorov complexity is a special case of our notion and there are no known
algorithms for efficiently computing the polynomial-time bounded Kolmogorov complexity, it is unlikely that
we can construct one for our measure. From this we deduce that an efficient learning algorithm for the
polynomial-time functions is rather unlikely.

2. Problem Solving: An Example

expressed as follows.
Many pmblems such as learning integral calculus, learning to solve puzzles, games etc can be

A problem domain D is the triplet (LNJV) where
(a) L, the problem set, is any set of strings.

(b) M is a finite and fixed set of operators ml,..mk where each mi is a function from L to L.

(c) N is the goal predicate, a boolean-valued function on L. A problem p in L is solved if N(p) = 1.

If D were the domain of integral calculus, L would be all integrals, M a table of integrals, and N the
rule "problem is solved iff it does not contain integral signs".

A solution of any problem p is a@), where Q is any sequence of operators from M such that N(a(p)) =

1. A problem solver for a domain is an algorithm that takes as input a problem and produces as output a
solution of the problem.

Our interest Is to construct a meta-algorithm for any given set of domains H , that would take as input
a domain D from H and, after some pre-computation, behave like a problem-solver for D. We now show
that if P # N P , even the simplest of domains will not possess an efficient meta-algorithm, unless the
meta-algorithm is allowed to see solved examples for its input domains.

Example: Consider the set of domains H defined as follows: Any D = (L f l f l) in H is such that
(a) the problem set L = (x#ylx,y E (0,1]* and # is a special symbol).

(b) operator set M = (ml, Q. ?), where
forx,y E (O,l)*,u E (0,i)

ml(x#ay) =
-(X#ay) = x w ,
m3(x#Y) = #xY.

3

(c) N is a boolean function constructed as follows. Let N' be a boolean function of n variables
and letp E L.

N(p) = if bl= n+l, strip off the # and evaluate N' on the resulting boolean vector.
= 0 otherwise.

In essence, each domain in H is characterized by the boolean function that is its goal predicate. Let
D = (L f l J V) in H and let N be a function of n variables. Now, if a is a satisfying assignment of N, then a is
a solution to every problem of length n+l in L. If N is not satisfiable, then no problem in L has a solution.
Hence, every domain in H trivially has a problem-solver, but a meta-algorithm on H is going to have to
decide on the satisfiability of boolean formulae. Clearly, an intractable problem. On the other hand, if the
meta-algorithm is allowed to see solved examples for the input domain, then it can trivially decide whether
or not the goal predicate has a satisfying assignment, and then act accordingly.

If the meta-algorithm is allowed to see a few examples, say pairs of the form (problem, solution), and
then be required to compute the function that maps each problem to its solution, the entire process can
be viewed as learning a good approximation to a function from examples of its behaviour. This is exactly
the problem we study below.

3. Preliminaries
Without loss of generality, let C be the binary alphabet and C* the set of all binary strings. We

consider functions from C to C. An example of a functionf is a pair (x,f(x)). A learning algorithm is an
algorithm that attempts to infer a function from examples for it. The learning algorithm has at its disposal
a routine EXAMPLE, that at each call produces an example for the function to be learned. The probability
that a particular example (x y) will be produced by a call of EXAMPLE is P(x), as given by the probability
distribution P . Also, the probability that the learned function will be queried on a particular string x is P(x).
The distribution P can be arbitrary and unknown.

We define a fami/y of functions F to be any set of length preserving functions from C to C. The
n"-subfamily Fn of a family F, is the family of functions induced by F on F. Specifically, if F =f1,f2, ..&..,
then F,, = gl,g2 ,... gi ,... where gi is defined as follows.

gdx) =&{x) if Ixl =n
undefined otherwise

4. Uniformly Convergent Learning
4.1 Learnability

Following [Valiant 19841, we say that a family of functions is learnable if there exists a uniformly
convergent learning algorithm for it. Specifically, a family of functions F is learnable if there exists a
learning algorithm that

(a) takes as input integers n and h.

4

(b) makes polynomially many calls of EXAMPLE, both in the adjustable error parameter h and in the
problem size n. EXAMPLE produces examples of some function in F,,.

(c) For all functions f in F,, and all probability distributions P on C", with probability (1-l/h) the
algorithm outputs a function g in F,, such that c P(x) I llh

* E s
where S = (XI M = n andflx) f g(x))

Furthermore, if the learning algorithm runs in time polynomial in n and h, we say that the family is
polynomial-time learnable.

We need the following definitions as well.

A function f is consistent with a set of examples S if (xy) E S impliesflx) = y.

An ordering 0, of a sub-family F,, is an inclusive, onto mapping from sets of examples to F,,.
Specifically,

(a) 0,: 2p& + F,,.
(b) inclusive: For any S s Z"xI;", if there existsf E F,, consistent with S, then O,,(S) is defined

(c) onto: For all f in F,,, there exists S s Z%Zn such that O,,(S) = f.
and is consistent with S.

An ordering 0 of a family F is a sequence of sub-orderings 0,. 02, ..., On, ... such that 0, is an ordering
of F,,, the n*sub-family of F . An ordering 0 is a polynomial-time ordering if there exists a polynomial T(n)

such that each sub-ordering Oi of 0 runs in time T(n) on inputs of length n.

The width of an ordering 0 of a sub-family F,, is the least integer w such that for allfin F,, there exists
a set S of w or fewer examples for which O(S) =f.

The dimension of a sub-family F,, is the least integer d for which there exists an ordering of F,, of
width d. A family F is of dimension D(n) if there exists an ordering 0 of F such that for all n, the
n%ub-ordering 0, of 0 orders F,, in width D(n) or less. If D(n) is a polynomial in n, F is said to be of
polynomial dimension and 0 of polynomial width.

A set S of examples is shattered by a family F if for any S, E S there exists f E F such that f is
consistent with S, but not consistent with any non-trivial subset of S-S,.

Remark If @,,I 2 2kfor some k, then the dimension of F,, 2 kl(2n).

We are now ready for our first result.

Lemma 1: Let F,, be a subfamily of dimension d. Then there exists a set S of d examples that is
shattered by F,,.

5

Proof: Let 0 be an ordering for F,,. We first modify 0 to obtain 0' as follows.

Let C , , C , ,..., Ci ,... be sets of examples in
increasing size and in some canonical order.
for C,. C2....do

function O1(G:set of examples)

i f O(Ci) is consistent with G
then return O(Ci).

od
end

It is easy to see 0' is an ordering for F,, as well. Pick a functionfin F,, such that
v S: O~(Q =fimplies KI 2 d.

Let S be a set such thatf= 0(Q. Now Kl 2 d. Suppose there exists a set S, c S such that any g in F,,
consistent with S, is also consistent with some non-trivial subset of S-S,. Then, O1(S1) = 01(S2) for some
S, c S2 c S. Modify 0' to O2 as follows.

02(G) = O1(Q if G = S2
O1(G) otherwise.

Now O2 is also an ordering of F,, except that there is now a set S,. E21 < El such that 02(S2) = f. We can
repeat this process for other functions in F,,, eventually reducing the width of the ordering. Since the
width cannot be reduced below d, there must be some set of size d or greater that is shattered by F,,.
Which implies that there is a set of size d shattered by F,,. Hence the lemma.

Corollary F,,l 2 2k for some R implies that 3 S, IS1 2 k/(2n) that is shattered by F,,. 0

We are now ready for our main theorem.

Theorem 1 : A family of functions F is learnable if and only if it is of polynomial dimension.

Proof: (If) Let 0 be an ordering for F of width D(n), where D(n) is some polynomial in n. The
following is a learning algorithm for F.

Algorithm 1

Input: n,h .

begin
Call EXAMPLE 2hn(D(n)+l) times.
Let S be the set of examples obtained.
output 0(Q.

end

Algorithm 1 is correct as reasoned below. Letfin F,, be the function to be learned, i.e, the function
for which EXAMPLE provides examples and let P be the probability distribution on P. For any g in F,,,
define the residue rs of g as follows.

6

where S, = (xl>(x) f f i x)) .

Cf= (glg E F,andr, > l/h)
Let Cf be the set given by

i.e., C’ is the set of functions in F, that differ from the function to be learned with probability exceeding
(l/h). The probability that Algorithm 1 outputs a function from Cr should be bounded by (l/h). The
probability that m calls of EXAMPLE will produce examples all consistent with some particular function in
Cf is bounded by (1-l/hy“. Now,

IC) I IF,,I I

Hence the probability that m calls of EXAMPLE will produce examples all consistent with any one function
in C’is bounded by 2 ~ n) (1 - l / h ~ . Therefore, if m satisfies

and Algorithm 1 calls EXAMPLE m times, Algorithm 1 will be within the allowable error with high
probability. Simpliying, we get

m > h(2nD(n) + lo&)),
which is satisfied for m = 2hn(D(n)+l) as in Algorithm 1. Hence, Algorithm 1 leams F and since D(n) is
polynomial in n, F is learnable.

22”0‘”’(1-1/h)” s l/h

(only if) Let F be of super-polynomial dimension D(n) and let A claim to be a learning algorithm for F.
Let A call EXAMPLE (nhy times on input n, h. Pick n, h such that

By Lemma 1, there exists a set S of D(n) examples that is shattered by F,,. Place the uniform probability
distribution

d = D(n) > (nh)k/(1-2/h).

P(x) = l/d if (x y) E s
= 0 otherwise

on S and run A on it. Now, on any m = (nh)k calls of EXAMPLE, A will see at most m elements of S. Let S,

be the set of examples seen. Let g be the function output by A and let f be the function to be learned.
Since S is shattered by F,,, there at least (* possibilities for f that are consistent with the examples
seen by A. On each element of (SSl), g will differ with at least half the possibilities forf. Therefore, the
total number of differences over all the possibilities for f is at least (2d-m(d-m)/2), and the average is
(d-m)/2. This average must be attained or exceeded on at least one possibility for f. Hence, there exists
a functionffor which the function g output by A always differs from f on at least (d-m)/2 of the elements of
S. The probabilistic weight of this difference is

which is more than the allowable. Hence A does not learn F .
(d-m)/2d > 1/2 - (1-2/h)/2 > llh,

This completes our proof.

Finally, we present a resource bounded version of Theorem 1. Theorem 2 concerns time
complexity, but other resource bounds may be treated similarly.

7

Theorem 2: A family of functions F is polynomial time learnable if and only if F has a polynomial-
time ordering of polynomial width.

Proof: Straightforward extension of Theorem 1. 0

Remarks The results presented in [Blumer et at. 1986, Natarajan 1987 concern learning sets from
samples of their elements. It is easy to see that sets are encodable as boolean-valued functions and
hence can be treated as a special case of our theorem. Conversely, a function from (0,l)" to (0,l)" can
be viewed as a combination of n boolean-valued functions on (O,l)n, and hence learning functions can be
viewed as a special case of learning sets.

In our development, we used a discrete metric to measure the distance between two functions on an
input string - two functions agreed on a string or did not. It is worth mention that our arguments carry
through for any standard metric.

The following is a resource bounded, weak form of Theorem 1.

Theorem 2: A family of functions F is polynomial time learnable (1) if F has an ordering of
polynomial width computable in polynomial time. (2) only if F has an ordering of polynomial width
computable in random-polynomial time.

Proof: Straightforward extension of Theorem 1. 0

For any family of functions F , let dim(F) denote the dimension of F . Let A and B be two families of
4.2 Properties of the Dimension

functions such that dim(A), dim(B) 2 1.

Lemma 2: If C = A n B , then dim(C) I min(dim(A), dim(@).

Proof: Immediate. 0

Let A and B be two families from X, + Y, and X2 + Y2 respectively. Then C = A x B is the family of
functions from X, x X2 + Y, x Y2 such that each function in C is the product of some two functions in A
and 13. i.e

C = (a x b l a E A , b E B)
where a x b is defined as follows:
For all (xl, x2) E x1xx2,
(a x m, 9 3) = (&,I. b(x2))

Lemma 3: If C = A x B , then dim(C) I dm(A).dim(B)

Proof: Straightforward. 0

Lemma 4: If C = A u B then dim(C) 5 max(dim(A),dirn(B))+l.

8

Proof: Without loss of generality, let dim(A) 2- dim(B). Combine the minimum width orderings OA, 0,
for A and B to obtain an ordering 0, for C as follows.
function 0, (S: set of examples)

begln
i f IS1 I dim(A)

then return OAQ
else return OB(S)

end

Clearly, 0, is an ordering for C of width dim(A) + 1.

Lemma 5: Let A= (al, a2, ... ai, ...,) be a family of (0,l)-valued functions and let be the family

(Z,,Z2 ,... Z?..,) where sii = l-ai. Then, dim(A) = dim(x).

Proof: Immediate. 0

5. Functions over Continuous Spaces
5.1 Learnability

As our results are derived using information theoretic methods, it is impossible to extend them
directly to continuous spaces where each example can be of infinite length. On the other hand, the results
in [Blumer et al 19861 for learning boolean-valued functions are obtained using some classical results in
probability theory and are valid over continuous spaces. Hence, we will concentrate our efforts on
extending their results to arbitrary functions.

As in [Blumer et al. 19861, we define the Vapnik-Chervonenkis dimension dVc(F) of a family F as
follows.

For any set of examples S, define the set Il#) as the set of all subsets of S obtained by intersecting

IlAS) = (RI R E; S, and 3 f E F such that f agrees with S on R and disagrees with S on S-R.
S with the functions in F. i.e

If ITAS) = 2s, we say that F shatters S. dJF) is the smallest integer d such that no set of cardinality d+l is
shattered by F .

Since we no longer need the notion of a sub-family, we modify our definition of learnability
accordingly. In particular, a family of functions F is learnable if there exists an algorithm that

(a) takes as input an integer h,

(b) makes polynomially many calls of EXAMPLE, polynomial in the adjustable error parameter h.

(c) as in the earlier definition of learnability.

With these definitions in hand, we can state the following theorem.

Theorem 3: For any finite alphabet Z, a family of functions from C to C is learnable if and only if it is

9

finite Vapnik-Chewonenkis dimension.

Proof: The proof of this theorem is similar to the proof of the corresponding theorem for boolean
valued functions [Blumer et al. 1986).

5.2 Properties of the Dimension

Lemma 4 needs to be rewritten as follows.
Lemmas 2, 3, and 5 stand in their present form for the Vapnik-Chervonenkis dimension as well.

Lemma 4': If C = A u B then dvc(C) I dvc(A)+dvc(B).

Proof: Let &(A) = dA and dvc(B) = dB. Let S be any Set of examples such that Is1 = s > dA +dB. Since
C = A U B ,

n&) = nA(S, nB(Q
Hence,

By Lemma 1 of [Vapnik and Chervonenkis 19711,
IndL$)l I InA(&s)I + lrJ.B(QI

and

Hence

< 2s.
Hence C cannot shatter S if Is1 > dA +ds implying that dvc(C) I dA +dB as claimed.

6. Two Familiar Function Families
We now turn our attention to two familiar function families - regular sets and the polynomial-time

computable functions. Our interest here is to construct learning algorithms for these families. Since
these families are of exponential dimension, we modify our definition of learnability to be meaningful in
this context. The motivation behind our definition is as follows. Suppose that we are trying to learn an
unknown function from examples and are told only that the function is regular (or computable in
polynomial time) and is accepted by an deterministic finite automaton of d states (has an encoding of
length d). Is this information sufficient to enable us to efficiently learn the function?

Let F be a family of functions with a measure on the size of the encodings for each function in the
family. For any integer d, let fid, fZd, ..hd,... be the functions in F of size d. Then, for any n, the

10

nth-subfamily Fmd of F with respect to d is the set of functions g1,g2, ...,gi,... where

gi(x) =f?(x) if Ixl = n
= undefined othetwise

The family F is learnable if there exists an algorithm A that
(a) takes as input: problem size n, error parameter h and output size d.

(b) runs in time polynomial in n, h, d. EXAMPLE provides examples for some function in Fmd.

(c) for all functionsf in F t and all probabiliiy distributions P on F, with probabilay (1-l/h) the
algorithm outputs a function g in F t such that c P(x) 5 l lh

X E s
where S = (X I Ixl = n andflx) # g(x))

We say that A learns F

From Theorem 2 we know that in order to construct a learning algorithm for F in the above sense, we
only need construct an efficient ordering for F, Le, given a set S of examples for some function in F t , we
should be able to efficiently compute a function in F$ consistent with S.

6.1 Regular Functions
We extend the notion of regular sets to that of regular functions, by considering Mealy machines

[Hopcroft & Ullman 19791 instead of acceptheject finite automata. Specifically, we associate a character
of the alphabet with transition of the automaton and this character is output each time that transition is
completed. The function value for a string is the output obtained by running the automaton on the string.
Our regular functions are from C to C and are length preserving.

We now consider the issue of efficiently ordering the regular sets. Define the encoding size of a
regular function to be the size of the minimal automaton that computes the function. We need to answer
the following question: given a set of examples S and an integer d, find a deterministic finite automaton of
size d, consistent with S. This is equivalent to finding the minimal deterministic finite automaton consistent
with the given set of examples. Unfortunately, this problem is NP-complete as shown by [Gold 1978;
Angluin 19781. Consequently, we conclude that R is unlikely that the regular functions are learnable as
claimed below.

Claim: If the regular functions are learnable as defined above, then P=RP.

Proof: If the regular functions were learnable, then we could order them in random polynomial time.
But, as reported in [Gold 19781, ordering the regular functions is an NPamplete problem. Hence the
claim.

6.2 The Polynomial-time Computable Functions

some tools for our arguments, we first look at the family of all computable functions.
We consider the family of all length preserving, polynomial-time computable functions. To develop

11

Consider the problem of ordering the computable functions. Let the encoding size of a function be
the size of the shortest program computing the function in some admissible programming system, say the
Turing machine system. We need to be able to compute: given a set of examples S and an integer d,

find a program of size d consistent with S - a problem that is equivalent to computing the minimal program
consistent with S. This leads us naturally to the notion of the constraint complexity G(S) of a set S of
examples.

where Mu is the universal program. In words, G(S) is the size of the shortest program consistent with S.

Contrast this with the definition of the Kolmogorov complexity of a string x, [Hartmanis 19831.

If S is a set of examples for a functionf, GQ aims at measuring the amount of information aboutfcarried
by S. This is brought out in the following propositions.

G(S) = min d 3 z, Izl=d and V (xy) E S: M,(zj)=y

K(x) = min d 3 z, I z l d and MJz) = x.

Proposltlon 1 : For any string x

G((Old, x)) I K(x) < G((@, x)) +log(Lxl).

Proposltlon 2: If S is a set of examples for a program p , then,
C(S) I Ipl
G(S) I K(p) +c

where c is a small constant.

Proposition 2 tells us that the information carried by a set of examples is bounded by the shortest
description for the program generating the examples. Extend the notation G(S) to GV) where f is a
function, as follows: GV) is the length of the smallest program consistent with any set of examples forf,
i.e., GV) is the length of the shortest program computingf.

Proposltlon 3: Letf, g be two functions on @. Thenfand g differ on at least IGV)-G(g)l/2n strings.

Proof: Without loss of generality, let GV) < C(e) and letfand g differ on fewer than (G(f)-G(g))/2n

strings. If pi is the minimal program for f, construct a program pg for g by simply tagging on a table of
differences to pp The length of this tag is at most 2n(G@C(g))/2~1 = C@C(g) and hence ps is a program
for g that is shorter than G(g). A contradiction and hence the proposition.

To illustrate the power of the notion of constraint complexity, we prove the following version of the
only if part of Theorem 1.

Theorem 1': Let F be a family of functions and let F, be of dimsension D(n). Then, no algorithm
that calls EXAMPLE T(n) times where lim nT(n)/D(n) = 0, can learn F.

n+-

Proof: Let A be a learning algorithm for F calling EXAMPLE T(n) times, where lim nT(n)/D(n) = 0.

Pick n such that 2nT(n)+lAl&D(n). Since Fn is of dimension D(n), IF4 > 2O(") and hence there exists a
R + o o

12

functionfin F,, such that GV) 2 D(n)>)T(n). But, for any set S of T(n) examples forj, C(S) I 2nT(n) and
hence any function g output by A is such that G(g) I G(S) +HI I 2nT(n) +lAl&(n). By Proposition 3, g
differs fromfon too many strings, and hence A cannot learn F for the uniform distribution on Zn.

As the reader might expect, the constraint complexity of sets of examples is badly noncomputable,
displaying many of the strong properties of Kolmogorov complexity.

Propositlon 4: The set (SI S is a set of examples and G(S) 2 1SV2) is immune, Le., there exists no
computable set that enjoys an infinite intersection with the above set.

Proof: Similar to the corresponding result for Kolmogorov complexity. See [Natarajan 19851 for
example.

Returning to the realm of polynomial-time computable functions, we introduce the time-bounded

G*(n)(S) = min 3 z, I z l d and V (xy) E S: M,nn)(z,x) = y,
constraint complexity. For a set of examples S and time bound T(n),

where MuT(n) is the T(n) time bounded universal program. Hence, to order the functions computable in
T(n) time, we need to able to compute GT(n)(.S) for any set S of examples. Unfortunately, the best
algorithm known is

Proposition 5: GT(”)(S) is computable in non-deterministic time ISIT(E1).

Proof: Since G(S) I (El + c) for some constant c, simply guess a string of that length and verify
consistency with S.

If T(n) were a polynomial in n, Gnn)(S) is computable in non-deterministic polynomial time, NP. As
argued below, we do not know if we can push it into random polynomial time RP, or deterministic
polynomial time P .

Proposition 6: If T(n) is a polynomial, GT(”) is computable in NP, but not known to be in P or RP.

Proof: From Proposition 1 and the fact that it is not known whether polynomial-time Kolmogorov
complexity is in RP or P. 0

In the light of the above, we cannot give a deterministic polynomial time ordering for the polynomial-
time computable functions. In fact, we cannot even offer a randomized polynomial-time algorithm.
Consequently, we cannot give a deterministic polynomial-time learning alogorithm for the poynomial-time
computable functions. Indeed, it seems unlikely that such an algorithm exists. We can, however, give a
non-deterministic polynomial-time algorithm as follows.

13

Algorithm 2

Input: problem size n, error parameter h,
output size d and time bound nk.

begln
Call EXAMPLE dh times. Guess a string of length d
and verify that MUn (d,) is consistent with the
examples seen.
If so, output the string.

k

end

7. Conclusion
This paper concerns algorithms that learn functions from examples. We considered length

preserving functions on strings of a finite alphabet and defined the notion of dimensionality for families of
such functions. Using this notion, we proved a general theorem that identifies the conditions under which
a family of such functions can be efficiently learned. This theorem was extended to functions on
continuous spaces by generalizing the notion of the Vapnik-Chervonenkis dimension introduced in
[Blumer et al 19861. We then considered the families of regular functions and the polynomial time
computable functions. We showed that efficient algorithms for learning the regular functions do not exist.
We also argued that it is unlikely that efficient algorithms exist for the polynomial-time computable
functions. In doing so, we introduced the notion of the constraint complexity of a set of examples, a
notion that is not only intuitively pleasing, but a useful tool as well.

8. Acknowledgements
I thank T.M. Mitchell for giving freely of his time.

9. References
Angluin, D, (1978) "On the Complexity of Minimum Inference of Regular Sets", Information and Control,

39, ~~337-350.

Biermann, A.W., (1 974), "On the Inference of Turing Machines from Sample Computations", Artificial
Intelligence, vo13, pp181-198.

Biermann, A.W., and Feldman, J.A., (1972) "On the Synthesis of Finite State Machines from Samples of
their Behavior", /E€€ Transactions on Computers June, pp592-596.

Blumer A., Ehrenfeucht, A., Haussler D., & Warmuth, M., (1986), "Classifying Learnable Geometric
Concepts with the Vapnik-Chervonenkis Dimension", ACM Symposium on Theory of Computing,
pp273-282.

14

Gold, E.M., (1978), "Complexity of Automaton Identification from Given Data", lnformation and Control,
37, ~~302-320.

Hartmanis, J., (1 983), "Generalized Kolmogorov Complexity", IEEE Symposium on Foundations of
Computer Science.

Hopcroft, J.E., and Ullman, J.D., "Introduction to Automata Theory, Languages and Computation",
Addison-Wesley, 1979.

Mitchell, T.M., Keller, R.M., and Kedar-Cabelli, S.T., (1980), "Explanation Based Generalization: A
Unifying View", Machine Learning, Vol 1 , No 1, January.

Natarajan, B.K., (1985) "The Homogenous Capture of Random Strings", Cornell U. CS Tech. Report.

Natarajan, B.K., (1987) "On Learning Boolean Functions", ACM Symposium on Theory of Computing,
~~296-304.

Natarajan, B.K., (1 987b), Machine Learning Lecture, Dept. of Computer Science, Camegie-Mellon
University.

Valiant, L.G., (1984) "A Theory of the Learnable", ACM Symposium on Theory of Computing, pp436-445.

Vapnik, V.N., and Chervonenkis, A.YA., (1971), "On the Uniform Convergence of Relative Frequencies of
Events to their Probabilities", Theory of Probability and its Applications, ~0116, No. 2, pp264-280.

