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ABSTRACT

A growing body of research suggests that embodied gameplay, prevalent not just
in human cultures but across a variety of animal species including turtles and
ravens, is critical in developing the neural flexibility for creative problem solv-
ing, decision making, and socialization. Comparatively little is known regarding
the impact of embodied gameplay upon artificial agents. While recent work has
produced agents proficient in abstract games, these environments are far removed
from the real world and thus these agents can provide little insight into the advan-
tages of embodied play. Hiding games, such as hide-and-seek, played universally,
provide a rich ground for studying the impact of embodied gameplay on represen-
tation learning in the context of perspective taking, secret keeping, and false belief
understanding. Here we are the first to show that embodied adversarial reinforce-
ment learning agents playing Cache, a variant of hide-and-seek, in a high fidelity,
interactive, environment, learn generalizable representations of their observations
encoding information such as object permanence, free space, and containment.
Moving closer to biologically motivated learning strategies, our agents’ represen-
tations, enhanced by intentionality and memory, are developed through interaction
and play. These results serve as a model for studying how facets of vision de-
velop through interaction, provide an experimental framework for assessing what
is learned by artificial agents, and demonstrates the value of moving from large,
static, datasets towards experiential, interactive, representation learning.

1 INTRODUCTION

We are interested in studying what facets of their environment artificial agents learn to represent
through interaction and gameplay. We study this question within the context of hide-and-seek, for
which proficiency requires an ability to navigate around in an environment and manipulate objects
as well as an understanding of visual relationships, object affordances, and perspective. Inspired
by behavior observed in juvenile ravens (Burghardt, 2005), we focus on a variant of hide-and-seek
called cache in which agents hide objects instead of themselves. Advances in deep reinforcement
learning have shown that, in abstract games (e.g. Go and Chess) and visually simplistic environments
(e.g. Atari and grid-worlds) with limited interaction, artificial agents exhibit surprising emergent
behaviours that enable proficient gameplay (Mnih et al., 2015; Silver et al., 2017); indeed, recent
work (Chen et al., 2019; Baker et al., 2020) has shown this in the context of hiding games. Our
interest, however, is in understanding how agents learn to represent their visual environment, through
gameplay that requires varied interaction, in a high-fidelity environment grounded in the real world.
This requires a fundamental shift away from existing popular environments and a rethinking of how
the capabilities of artificial agents are evaluated.

Our agents must first be embodied within an environment allowing for diverse interaction and pro-
viding rich visual output. For this we leverage AI2-THOR (Kolve et al., 2017), a near photo-realistic,
interactive, simulated, 3D environment of indoor living spaces, see Fig. 1a. Our agents are param-
eterized using deep neural networks, and trained adversarially using the paradigms of reinforce-
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Figure 1: A game of cache within AI2-THOR. a Multiple views of a single agent who, over time, explores
and interacts with objects. b-f The five consecutive stages of cache. In c the agent must choose where to hide
the object at a high level, using its map of the environment to make this choice, while in d the agent must choose
where to hide the object from a first person viewpoint. In e the object being manipulated is a tomato.

ment (Mnih et al., 2016) and self-supervised learning. After our agents are trained to play cache,
we then probe how they have learned to represent their environment. To this end we distinguish
two distinct categories of representations generated by our agents. The first, static image represen-
tations (SIRs), correspond to the output of a CNN applied to the agent’s egocentric visual input.
The second, dynamic image representations (DIRs), correspond to the output of the agents’ RNN.
While SIRs are timeless, operating only on single images, DIRs have the capacity to incorporate the
agent’s previous actions and observations.

Representation learning within the computer vision community is largely focused on developing
SIRs whose quality is measured by their utility in downstream tasks (e.g. classification, depth-
prediction, etc) (Zamir et al., 2018). Our first set of experiments show that our agents develop low-
level visual understanding of individual images measured by their capacity to perform a collection
of standard tasks from the computer vision literature, these tasks include pixel-to-pixel depth (Sax-
ena et al., 2006) and surface normal (Fouhey et al., 2013) prediction, from a single image. While
SIRs are clearly an important facet of representation learning, they are also definitionally unable
to represent an environment as a whole: without the ability to integrate observations through time,
a representation can only ever capture a single snapshot of space and time. To represent an envi-
ronment holistically, we require DIRs. Unlike for SIRs, we are unaware of any well-established
benchmarks for DIRs. In order to investigate what has been learned by our agent’s DIRs we develop
a suite of experiments loosely inspired by experiments performed on infants and young children.
These experiments then demonstrate our agents’ ability to integrate observations through time and
understand spatial relationships between objects (Casasola et al., 2003), occlusion (Hespos et al.,
2009), object permanence (Piaget, 1954), and seriation (Piaget, 1954) of free space.

It is important to stress that this work focuses on studying how play and interaction contribute to
representation learning in artificial agents and not on developing a new, state-of-the-art, method-
ology for representation learning. Nevertheless, to better situate our results in context of existing
work, we provide strong baselines in our experiments, e.g. in our low-level vision experiments we
compare against a fully supervised model trained on ImageNet (Deng et al., 2009). Our results pro-
vide compelling evidence that: (a) on a suite of low level computer vision tasks within AI2-THOR,
static representations learned by playing cache perform very competitively (and often outperform)
strong unsupervised and fully supervised methods, (b) these static representations, trained using
only synthetic images, obtain non-trivial transfer to downstream tasks using real-world images, (c)
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unlike representations learned from datasets of single images, agents trained via embodied game-
play learn to integrate visual information through time, demonstrating an elementary understanding
of free space, objects and their relationships, and (d) embodied gameplay provides a natural means
by which to generate rich experiences for representation learning beyond random sampling and rel-
atively simpler tasks like visual navigation.

In summary, we highlight the contributions: (1) Cache – we introduce cache within the AI2-THOR
environment, an adversarial game which permits the study of representation learning in the context
of interactive, visual, gameplay. (2) Cache agent – training agents to play Cache is non-trivial. We
produce a strong Cache agent which integrates several methodological novelties (see, e.g., perspec-
tive simulation and visual dynamics replay in Sec. 4) and even outperforms humans at hiding on
training scenes (see Sec. 5). (3) Static and dynamic representation study – we provide comprehen-
sive evaluations of how our Cache agent has learned to represent its environment providing insight
into the advantages and current limitations of interactive-gameplay-based representation learning.

2 RELATED WORK

Deep reinforcement learning for games. As games provide an interactive environment that enable
agents to receive observations, take actions, and receive rewards, they are a popular testbed for RL
algorithms. Reinforcement learning has been studied in the context of numerous single, and multi,
agent games such as Atari Breakout (Mnih et al., 2015), VizDoom (Lample & Chaplot, 2017), Go
(Silver et al., 2017), StarCraft (Vinyals et al., 2019), Dota (Berner et al., 2019) and Hide-and-Seek
(Baker et al., 2020). The goal of these works is proficiency: to create an agent which can achieve
(super-) human performance with respect to the game’s success criteria. In contrast, our goal is to
understand how an agent has learned to represent its environment through gameplay and to show
that such an agent’s representations can be employed for downstream tasks beyond gameplay.

Passive representation learning. There is a large body of recent works that address the problem of
representation learning from static images or videos. Image colorization (Zhang et al., 2016), ego-
motion estimation (Agrawal et al., 2015), predicting image rotation (Gidaris et al., 2018), context
prediction (Doersch et al., 2015), future frame prediction (Vondrick et al., 2016) and more recent
contrastive learning based approaches (He et al., 2020; Chen et al., 2020b) are among the successful
examples of passive representation learning. We refer to them as passive since the representations
are learned from a fixed set of images or videos. Our approach in contrast is interactive in that the
images observed during learning are decided by the actions of the agent.

Interactive representation learning. Learning representations in dynamic and interactive environ-
ments has been addressed in the literature as well. In the following we mention a few examples.
Burda et al. (2019) explore curiosity-driven representation learning from a suite of games. Anand
et al. (2019) address representation learning of the latent factors used for generating the interac-
tive environment. Zhan et al. (2018) learn to improve exploration in video games by predicting the
memory state. Ghosh et al. (2019) learn a functional representation for decision making as opposed
to a representation for the observation space only. Whitney et al. (2020) simultaneously learn em-
beddings of state and action sequences. Jonschkowski & Brock (2015) learn a representation by
measuring inconsistencies with a set of pre-defined priors. Pinto et al. (2016) learn visual repre-
sentations by pushing and grasping objects using a robotics arm. The representations learned using
these approaches are typically tested on tasks akin to tasks they were trained with (e.g., a differ-
ent level of the same game). In contrast, we investigate whether cognitive primitives such as depth
estimation and object permanence maybe be learned via gameplay in a visual dynamic environment.

3 PLAYING CACHE IN SIMULATION

We situate our agents within AI2-THOR, a simulated 3D environment of indoor living spaces within
which multiple agents can navigate around and interact with objects (e.g. by picking up, placing,
opening, closing, cutting, switching on, etc.). In past works, AI2-THOR has been leveraged to
teach agents to interact with their world (Zhu et al., 2017; Hu et al., 2018; Huang et al., 2019; Gan
et al., 2020b; Wortsman et al., 2019; Gordon et al., 2017), interact with each other (Jain et al., 2019;
2020) as well as learn from these interactions (Nagarajan & Grauman, 2020; Lohmann et al., 2020).
AI2-THOR contains a total of 150 unique scenes equally distributed into five scene types: kitchens,
living rooms, bedrooms, bathrooms, and foyers. We train our cache agents on a subset of the kitchen
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Figure 2: Overview of the neural network architecture for the Cache agent. The trainable components are
shown in yellow, the inputs and outputs in pink, and the intermediate outputs in blue. Refer to text for details.

and living room scenes as these scenes are relatively large and often include many opportunities for
interaction; but we use all scenes types across our suite of experiments. Details regarding scene
splits across train, validation, and test for the different experiments can be found in Sec. A.1.

In a game of cache, two agents (a hider and a seeker) compete, with the hiding agent attempting
to place a given object in the environment so that the seeking agent cannot find it. This game is
zero-sum with the hiding agent winning if and only if the seeking agent cannot find the object.
We partition the game of cache into five conceptually-distinct stages: exploration and mapping
(E&M), perspective simulation (PS), object hiding (OH), object manipulation (OM), and seeking
(S); see Figures 1b to 1f. A game of cache begins with the hiding agent exploring its environment
and building an internal map corresponding to the locations it has visited (E&M). The agent then
chooses globally, among the many locations it has visited, a location where it believes it can hide
the object so that the seeker will not be able to find it (PS). After moving to this location the agent
makes a local decision about where the object should be placed, e.g. behind a TV or inside a drawer
(OH). The agent then performs the low-level manipulation task of moving the object in its hand to
the desired location (OM), if this manipulation fails then the agent tries another local hiding location
(OH). Finally the seeking agent searches for the hidden object (S). Pragmatically, these stages are
distinguished by the actions available to the agent (see Table G.1 for a description of all 219 actions)
and their reward structures (see Sec. C.5). For more details regarding these stages, see Sec. B.

4 LEARNING TO PLAY CACHE

In the following we provide an overview of our agents’ neural network architecture as well as our
training and inference pipelines. For space, comprehensive details are deferred Sec. D.

Our agents are parameterized using deep convolutional and recurrent neural networks. In what fol-
lows, we will use θ ∈ Θ as a catch-all parameter representing the learnable parameters of our model.
Our model architecture (see Fig 2) has five primary components: (1) a CNN that encodes input ego-
centric images from AI2-THOR into SIRs, (2) a RNN model that transforms input observations into
DIRs, (3) multi-layer perceptrons (MLPs) applied to the DIR at a given timestep, to produce the
actor and critic heads, (4) a perspective simulation module which evaluates potential object hiding
places by simulating the seeker, and (5) a U-Net (Ronneberger et al., 2015) style decoder CNN used
during visual dynamics replay (VDR), detailed below.

Static representation architecture. Given images of size 3×224×224, we generate SIRs using a
13-layer U-Net style encoder CNN, CNNθ. CNNθ downsamples input images by a factor of 32 and
produces an our SIR of shape 128×7×7.

Dynamic representation architecture. Unlike an SIR, DIRs combine current observations, histor-
ical information, and goal specifications. Our model has three recurrent components: a metric map,
a 1-layer convolutional-GRU CGRUθ (Cho et al., 2014; Kalchbrenner et al., 2016), and a 1-layer
LSTM LSTMθ (Hochreiter & Schmidhuber, 1997). At time t ≥ 0, the environment provides the
agent with observations ot including the agent’s current egocentric image it and goal gt (e.g. hide
the cup). CNNθ inputs it to produce the SIR st = CNNθ(it). Next the CGRU processes existing
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information to produce the (grid) DIR h̃t = CGRUθ(st, ot, ht−1) of shape 257×7×7. h̃t is then pro-

cessed by the LSTM LSTMθ to produce the (flat) DIRs (ho
t , h

c
t) = LSTMθ(h̃t, ot, ht−1) where ho

t , h
c
t

are the so-called output and cell states of the LSTM with length 512. Finally the agents’ metric map
representation mt−1 from time t − 1 is updated by inserting a 128-dim tensor from CNNθ into the
position in the map corresponding to the agent’s current position and rotation, to produce mt. The

historical information ht for the next step now includes (h̃t, h
o
t , h

c
t ,mt).

Actor-critic heads. Our agents use an actor-critic style architecture, producing a policy and a value
at each time t. As described in Sec. 3, there are five distinct stages in a game of cache (E&M, PS,
OH, OM, S). Each stage has unique constraints on the space of available actions and different reward
structures, and thus require distinct polices and value functions – obtained by distinct 2-layer MLPs
taking as input the DIR ho

t described above.

Perspective Simulation. Evidence suggests that in humans, perspective taking, the ability to take
on the viewpoint of another develops well after infancy (Trafton et al., 2006). While standard RNNs
can perform sophisticated tasks, there is little evidence to suggest they can perform the multi-step if-
then reasoning necessary in perspective taking. Inspired by AlphaGo’s (Silver et al., 2017) intuition
guided Monte-Carlo tree search and imagination-augmented RL agents (Racanière et al., 2017) we
require, in the perspective simulation stage, that our hiding agent evaluate prospective hiding places
by explicitly taking on the seeker’s perspective using internal mental rollouts (see Fig. 3c).

To this end, the metric map is processed by a CNN to produce an internal map representation M1,
which is used to coarsely evaluate potential hiding locations, see Fig. 3b. For a subset of these
locations ℓ, M1 is processed (along with ℓ) to produce a new representation M ℓ. Intuitively, M ℓ

can be thought of as representing that agent’s beliefs about what the environment would look like
after having hidden the object at position ℓ. A “mental” seeker agent defined using an LSTM (not
shown in the model figure for simplicity) then moves about M ℓ and obtains observations as slices
of M ℓ, see Fig. 3c. The quality of a potential hiding location is then quantified by the number of
steps taken by the “mental” seeking agent to find the hidden object. After scoring hiding locations
in this way, the agent randomly samples a position to move to (beginning the OH-stage) with larger
probability given to higher scoring positions.

Training and losses. Our agents are trained using the asynchronous advantage actor-critic (A3C)
algorithm (Mnih et al., 2016) with generalized advantage estimation (GAE) (Schulman et al., 2015)
and several (self) supervised losses. As we found it critical to producing high quality SIRs, we
highlight our visual dynamics methodology below. See Sec.C for details on all losses.

Visual dynamics replay. During early experiments, we found that producing high quality SIRs
using only existing reinforcement learning techniques to be infeasible as the produced gradients
suffer from high variance and so signal struggles to propagate through the many convolutional layers.
To correct this deficiency we introduce a technique we call a visual dynamics replay (VDR) inspired
by experience replay (Mnih et al., 2015) and intrinsic motivation (Pathak et al., 2017). In VDR,
agent state transitions produced during training are saved to a separate process where an encoder-
decoder architecture (using CNNθ as the encoder) is trained to predict a number of targets including
forward dynamics, predicting an image from the antecedent image and action, and inverse dynamics,
predicting which action produced the transition from one image to another. Given triplet (i0, a, i1),
where i0, i1 are the images before and after an agent took action a, we employ several self-supervised
tasks including pixel-to-image predication. See Sec. C.2 for more details.

5 EXPERIMENTS

Our experiments are designed to address three questions: (1) “has our cache agent learned to pro-
ficiently hide and seek objects?”, (2) “how do the SIRs learned by playing cache compare to those
learned using standard supervised approaches and when training using other interactive tasks?”, and
(3) “has the cache agent learned to integrate observations over time to produce general DIR repre-
sentations?”. For training details, e.g. learning rates, discounting parameters, etc., see Sec. C.

Playing cache. Figures 3a to 3f qualitatively illustrate that our agents have learned to explore,
navigate, provide intuitive evaluations of hiding spaces, and manipulate objects. Figures 4a and 4b,
show quantitatively that hiders from later in training consistently chose hiding places that our seekers
are less likely to find. Also, for hiding spots generated by human experts and by an automated brute
force approach, seekers from later in training more frequently find the hidden objects. Interestingly,
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Figure 3: Cache agent. Actions and decisions made during a game of cache. a Hider’s trajectory during
exploration. Insets show first person views before and after an open action. b Heatmap displaying the agent’s
initial beliefs of high quality hiding locations. Insets show how this heatmap varies when the seeking agent’s
start position is changed. c Initial beliefs in b are refined by the agent performing explicit mental rollouts of
the seeking agent. Three trajectories, stopped after 30 steps, are highlighted. Faint white lines are paths from
other simulated trajectories. Insets show rollouts when varying the hiding location and agent starting location.
d After choices made in b/c, a hiding location for the object must be chosen in pixel space. Top row shows
the estimated probability that the object can be placed in a location. The bottom row shows the probability,
averaged over the episode, of our agent trying to hide the object in a location. e The object’s trajectory through
space is shown as the agent places it between two trash cans. f Top down view of the seeker.

the seeker is able to locate objects hidden by humans and the brute force approach with a similar
level of accuracy. Surprisingly, as shown in Table 4c, human seekers find objects hidden by humans
and by our hiding agent at similarly high rates: on training scenes human seekers find our agent’s
objects 77% of the time and their fellow humans hidden objects 80% of the time, on test scenes
humans are more successful at finding our agent’s objects (90% success rate). Finally note that
the (effectively random) h0 agent hides objects generally very near its starting location and such
positions are very frequently found by all agents. Somewhat surprisingly, the s1e6 agent appears
very slightly worse at finding such positions than the seeker s0 agent. This can be explained by the
s1e6 agent having learned to not expect such an audacious hiding strategy.

Static tasks. We evaluate SIRs on a suite of standard computer vision targets such as monocular
depth estimation by freezing the SIRs and training decoder models. These evaluations are performed
on synthetic (AI2-THOR) data as well as natural images, which can be considered as out of domain.
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Figure 4: Evaluating the cache agent. a,b Frequency that seekers from three points during training (after 0,
1·106, and 4.5·106 training episodes) find objects hidden by: hiders from the same training points, an automated
exhaustive approach (E=easy, M=medium, H=hard), and humans. Error bars denote 95% CIs. c Results of
our best hider (h4.5e6) and seeker (s4.5e6) competing with humans. Here the mean frequency of finding the
hidden object is reported (with 95% CIs) along with the mean number of steps the seeker took to find the hidden
object (with 95% CIs).

Predictions with synthetic images - We use SIRs to predict geometry and appearance-based targets
namely depth, surface normals, object class, object depth and object normals, as well as affordance-
based targets namely traversable surfaces and object openability. On the test set, our (Cache) SIR
consistently outperforms multiple baselines (Fig 5) including: Auto Encoder on AI2-THOR im-
ages, a Navigation agent within AI2-THOR, and Classifier – a CNN trained to classify objects in
AI2-THOR images. Importantly, the Cache SIRs compare favorably (statistically indistinguishable
performance for 4 tasks and statistically significant improvement for the remaining 2) to SIRs pro-
duced by a model trained on the 1.28 million hand-labelled images from ImageNet (Deng et al.,
2009), the gold-standard for fully-supervised representation learning with CNNs. Note that our SIR
is trained without any explicitly human labeled examples.

Predictions with natural images - As images from AI2-THOR are highly correlated and synthetic,
we would not expect cache SIRs to transfer well to natural images. Despite this, Fig. 6 shows that
the cache SIRs perform remarkably well: for SUN scene classif. (Xiao et al., 2010) as well as the
NYU V2 depth (Nathan Silberman & Fergus, 2012) and walkability tasks (Mottaghi et al., 2016), the
cache SIRs outperform baselines and even begin to approach the ImageNet SIR performance. This
shows that there is strong promise in using gameplay as a method for developing SIRs. Increasing
the diversity and fidelity of synthetic environments may allow us to further narrow this gap.

Dynamic tasks. While CNN models can perform surprisingly sophisticated reasoning on indi-
vidual images, these representations are fundamentally timeless and cannot hope to model visual
understanding requiring memory and intentionality. Through experiments loosely inspired by those
from developmental psychology we show that, memory enhanced representations emerge within our
agents’ DIRs when playing cache. In the following experiments, we ensure that objects and scenes
used to train the probing classifiers are distinct from those used during testing. For a description of
all baseline models, see Sec G.

Developmental psychology has an extensive history of studying childrens’ capacity to differentiate
between an object being contained in, or behind, another object (Casasola et al., 2003). Following
this line of work, our hider is made to move an object through space until the object is placed within,
or behind, a receptacle object (see Fig. 7a). The DIR is then used to predict the relationship between
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Figure 6: SIR evaluation on natural images. Quantitative and qualitative results for natural image tasks.

the object and the receptacle using a linear classifier. Cache DIRs dramatically outperform other
methods obtaining 71.5% accuracy (next best baseline obtaining 63.4%).

Two and a half month old infants begin to appreciate object permanence (Aguiar & Baillargeon,
2002) and are surprised by impossible occlusion events highlighting the importance of permanence
as a building block of higher level cognition, and begin acting on this information at around nine
months of age (Hespos et al., 2009). Inspired by these studies, we first find that (Fig. 7b) a linear
classifier trained on a cache DIR is able to infer the location of an object on a continuous path after
it becomes fully occluded with substantially greater accuracy (64%) than the next best competing
baseline (59.6%). Second (Fig. 7c), we test our agents’ ability to remember and act on previously
seen objects. We find that our seeker’s DIR can be used to predict whether it has previously seen
a hidden object after being forced to rotate away from it, having the object vanish, and taking four
additional steps. Surprisingly we see that the seeker has statistically significantly larger odds of
rotating back towards the object after seeing it than a control agent (mean difference in log-odds of
rotating back towards the object vs. rotating in the other direction between treatment and control
agents 0.08, 95% CI ±0.02) demonstrating its ability to act on its understanding of object perma-
nence. Numerical markers denote the number of steps since the agent has seen the object.

Piaget argues that the capacity for seriation, ordering objects based on a common property, develops
after age seven (Piaget, 1954). We cannot hope that our agents have learned a seven year old’s
understanding of seriation but we hypothesize that rudimentary seriation should be possible among
properties central to cache. One such property is free space, the amount of area in front of the
agent that could be occupied by the agent without collision. We place our agent randomly within
the environment, rotate it in 90◦ increments (counter-) clockwise, and save SIRs and DIRs after
each rotation (see Fig. 7d). We then perform a two-image seriation, namely to predict, from the
representation at time t, whether the viewpoint at the previous timestep t − 1 contained more free
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Figure 7: DIR evaluation. Schematic illustrations, example images from AI2-THOR and numerical results of
our psychologically motivated experiments. All results are for the test set with 95% confidence intervals. See
Sec. F for definitions of plot labels and Sec. 5 for a description of these experiments. Note: (i) X-coordinates
in our line charts are offset slightly from one another so as to improve readability. (ii) Our plots show the
performance of the representations as the amount of data used in training the probing linear classifier increases;
but in the main text, we report only the values corresponding to the largest training set sizes considered.

space. Our cache DIR is able to perform this seriation task with accuracy significantly above chance
(mean accuracy of 84.92%, 95% CI ±2.27%) and outperforms all baselines.

6 DISCUSSION

Modern paradigms for visual representation learning with static labelled and unlabelled datasets
have led to startling performance on a large suite of visual tasks. While these methods have revo-
lutionized computer vision, it is difficult to imagine that they alone will be sufficient to learn visual
representations mimicking humans’ capacity for visual understanding which is augmented by in-
tent, memory, and an intuitive understanding of objects and their physical properties. Without such
representations it seems doubtful that we will ever deliver one of the central promises of artificial
intelligence, an embodied artificial agent who achieves high competency in an array of diverse, de-
manding, tasks. Given the recent advances in self-supervised and unsupervised learning approaches
and progress made in developing visually rich, physics-based embodied AI environments, we be-
lieve that it is time for a paradigm shift via a move towards experiential, interactive, learning. Our
experiments, in showing that rich interactive gameplay can produce representations which encode
an understanding of containment, object permanence, seriation, and free space suggest that this di-
rection is promising. Moreover, we have shown that experiments designed in the developmental
psychology literature can be fruitfully translated to understand the growing competencies of arti-
ficial agents. Looking forward, real-world simulated environments like AI2-THOR have focused
primarily on providing high-fidelity visual outputs in physics-enabled spaces with comparatively
little effort being placed on developing other sensor modalities (e.g. sound, smell, texture, etc.).
Recent work has, however, introduced new sensor modalities (namely audio) into simulated envi-
ronments (Chen et al., 2020a; Gan et al., 2020a) and we suspect that the variety and richness of
these observations will quickly grow within the coming years. The core focus of this work can eas-
ily be considered in the context of these emerging sensor modalities and we hope in future work to
examine how, through representation and gameplay, an artificial agent may learn to combine these
separate sensor streams to build a holistic, dynamic, representation of its environment.
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A APPENDIX

A.1 VIRTUAL ENVIRONMENT AND PREPROCESSING

While AI2-THOR can output images of varying dimensions and quality we find that simulating images of
size 224×224 with the “Very Low” quality setting provides a balance of image fidelity and computational
efficiency. AI2-THOR provides RGB images with the intensity of each channel encoded by an integer taking
values between 0 and 255. Following standards used for natural images, we preprocess these images by first
scaling the channels so that they are floating point numbers between 0 and 1 after which we normalize the R,
G, and B channels with means 0.485, 0.456, 0.406, and standard deviations 0.229, 0.224, 0.225. Agents are
constrained to lie on a grid with 0.25 meter increments and may face in one of four cardinal directions with
0◦ being north and 90◦ being east. The agent’s camera is set to have a field of view of 90◦, is fixed at an
angle 30◦ below the horizontal, and lies at a height of 1.5765 meters when standing and 0.9015 meters when
crouching. Following conventions in computer graphics, the agent’s position is parameterized a single (x, y, z)
coordinate triple with x and z corresponding to movement in the horizontal plane and with y reserved for
vertical movements. Other than when standing and crouching, our agent’s vertical position is fixed. Letting Z

denote the integers, an agent’s position is uniquely identified by a location tuple (x, z, r, s) ∈ (0.25·Z)×(0.25·
Z)×{0, 90, 180, 270}×{0, 1} where x, z are as above, r denotes the agent’s rotation in degrees, and s equals 1
if and only if the agent is standing. It will be useful in the following to be able to easily describe subcomponents
of a location tuple, to this end we let proj−x : R4 → R

3 be the projection removing the first coordinate of
a location tuple so that proj−x(x, z, r, s) = (z, r, s), and similarly for proj−z, proj−r, proj−s. AI2-THOR
contains a total of 150 scenes evenly grouped into five scene types, kitchens (1-30), living rooms (201-230),
bedrooms (301-330), bathrooms (401-430), and foyers (501-530). Excluding foyers, which are reserved for
our dynamic image representation experiments and used nowhere else, we consider the first 20 scenes of each
scene type to be train scenes, the next five of each type to be validation scenes, and the last five of each type to
be test scenes. When training our cache agents we only use kitchen and living room scenes as these scenes are
relatively large and often include many opportunities for interaction.

B CACHE STAGES

In cache the hiding agent, or hider, attempts to place a goal object in a given AI2-THOR scene such that the
seeking agent, or seeker, cannot find it. This goal object is one of five standard household items, see Fig. G.1,
being either a loaf of bread, cup, knife, plunger, or tomato. Recall that we divide the game of cache into the five
stages Sstages = {E&M, PS, OH, OM, S}. The hider participates in the first four of these stages and the seeker
in the last stage. Each of these stages is associated with a distinct discrete collection of possible actions, see
Table G.1. When a stage s ∈ Sstages is instantiated, so that the scene has been chosen and all goals specified,
we call this instantiation an s-episode. During an s-episode, an agent takes actions, each taking a single unit
of time called a step, until the goal state has been reached or a maximum number of steps, Nmax steps

s , has been
taken. Episodes begin with time t = 0 and t advances by 1 after every action regardless of whether or not
that action is successful. Note that these episodes must be sequentially instantiated and we call a collection of
sequentially instantiated episodes ending with an S-episode a game of cache.

In the following we describe these stages in detail along with the metrics we use to track the quality of the
learned policies and assign rewards. In order to describe these metrics we require the following sets. First
let Svisited

H,t (Svisited
S,t ) be the set of all location tuples visited by the hider (seeker) by time step t of its episode.

Similarly we let Sopened

H,t (Sopened

S,t ) be the set of all objects the hider (seeker) has opened by time step t. Finally

we let Sextrap.

H,t be the set of all location tuples that can, assuming the agent can move through objects, be reached

by starting at some location in Svisited
H,t and moving the agent ahead by 0.25m and then either staying put, moving

left by 0.25m, or moving right 0.25m.

B.1 EXPLORATION AND MAPPING (E&M)

A game of cache begins with an E&M episode. During this episode, the agent may traverse the scene and
interact with objects while building a representation of its environment for up to Nmax steps

E&M = 200 steps. In our
implementation, this representation is a metric map, see the model architectures section below, which is then
available in the subsequent PS- and OH-episodes. Let S reachable be the set of all feasible location tuples in a
given episode and, similarly, let N openable be total number of objects that can be opened. We evaluate the quality
of exploration with three metrics:

Qcoverage = | proj−r(S
visited
H,200)|/| proj−r(S

reachable)|,

Qcoverage+ = | proj−r(S
extrap.

H,200) ∩ proj−r(S
reachable)|/| proj−r(S

reachable)|, and

Qopen% = |Sopened

H,200|/N
openable.
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Qcoverage and Qcoverage+ evaluate the agent’s ability to traverse the entire scene while Qopen% evaluates how fre-
quently the agent interacts with its environment.

B.2 PERSPECTIVE SIMULATION (PS)

After exploration the hider is allowed to consult the representation it has developed of its environment and must,
from that representation, pick a single location tuple to which the agent will then be moved. As we do not give
the agent a global reference frame it must choose this location tuple by specifying a location relative its final
position after the E&M episode. As the hiding agent is not constrained to pick a valid location tuple, it may,
for instance, choose a location that is outside of the scene or already occupied by an object, such a choice is
considered a failed action. As the quality of a choice of location tuple in this episode is tied intimately with the
outcome of the OH-episode we will measure the progress of training for both episodes using the same metrics
described in the section below.

B.3 OBJECT HIDING (OH)

In the OH-episode the agent has been moved to a location tuple determined in the PS-episode and is now holding
the goal object. In this episode the agent is not allowed to perform any navigational actions beyond standing or
crouching, but may interact with objects by opening or closing them. Most importantly, the agent must choose a
location in its current view at which it should hide the item. To discretize the possible hiding locations recall that
the images available to agents are of size 224×224. Viewing C = {1, ..., 224}2 as a grid of pixel coordinates,
let (Cij)1≤i,j≤7 be a partitioning of C into a 7×7 grid so that Cij = {(32 · i+ k, 32 · j + l) | 1 ≤ l, k ≤ 32}
is of size 32×32. When specifying a location in which to hide the object, the agent picks one of these grid
locations along with one of the positional keywords in the set Smodality = {ONTOP, CONTAINEDIN, BEHIND}.
After choosing a location we begin an OM-episode, described below, during which the agent attempts to move
the object through space and to the specified location. In order to reduce the complexity of specifying plausible
object locations, potentially difficult when, e.g., specifying a final location behind another object, we consider
an object to have been successfully placed at the grid location Cij , when using the CONTAINEDIN, BEHIND

keywords, even in those cases that it moved to C(i−1)j , C(i+1)j instead. If OM-episode is successful given
this relaxation, all future actions specifying object locations are considered failures. If the OM-episode is
unsuccessful the hiding agent may continue to specify locations, causing the item to be picked up and a new
OM-episode to begin, until manipulation is successful. If the hiding agent fails to successfully place the object
within Nmax steps

OH = 15 steps the object is returned to its default position in the agent’s hand and then simply
dropped. Otherwise, the agent may continue to take other actions, closing a cabinet into which it has placed an
object for instance, or specify that it is done by performing the ReadyForSeeker action.

Objectively quantifying a hiding location is difficult as the quality of a location is coupled with psychology and
artifacts of perception. Indeed, the phenomenon of an object being lost “in plain sight” suggests that seemingly
irrational hiding strategies may be highly successful. Nevertheless, we require some automated metric with
which to measure the quality of a hidden object and, for this purpose, define the following three metrics. First
we let N visible from be the number of feasible location tuples from which any portion of the goal object can be
seen at any distance. To complement N visible from with a measure that takes the seeking agent’s start location
into account, we let NBFS steps be the number of steps it takes a breadth first search (BFS) agent, starting at the
seeking agent’s start location, to find the goal object. A single step for the BFS agent corresponds to teleporting
to the location tuple closest to the seeker’s start position that has not yet been visited by the BFS agent and
checking if the goal object can be seen from any rotation, crouching or standing, from that location. The
BFS agent is allowed to see through openable objects and the goal object is considered found if any portion
of the object can be seen at any distance. If the BFS agent cannot find the object then NBFS steps equals the
maximum number of steps, | proj−r(proj−s(S

reachable))|, in which case we let δBFS found object equal 0, otherwise

δBFS found object equals 1. Finally we also define the proportional versions of two of the above metrics.

Qvisible from% = N visible from/|S reachable|, and

QBFS steps% = NBFS steps/| proj−r(proj−s(S
reachable))|.

B.4 OBJECT MANIPULATION (OM)

In the object manipulation episode the agent is set at a fixed location tuple holding the goal object and is given
a grid location 1 ≤ i, j ≤ 7 along with the positional keyword MODALITY ∈ Smodality. During this episode
the agent can interact with objects by opening them, move the object held in its hand in one of six axis-aligned
directions, or drop the goal object. The object manipulation episode is considered successful if, after dropping
the goal object, the goal object is in the correct grid position specified by i, j and respects the constraints
imposed by MODALITY. In particular, after the manipulator has dropped the object, we obtain from AI2-
THOR the sets SONTOP pix. = {coordinates of pixels corresponding to the object that are visible from the agent’s

current viewpoint}, SBEHIND pix. = {pixel coordinates of the object that are visible only after making all other
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objects in the scene invisible}, and the value δCONTAINEDIN ∈ {0, 1} which equals 1 if and only if the goal object

is contained within another object. If δCONTAINEDIN = 1, then we let SCONTAINEDIN pix. = SONTOP pix. ∪ SBEHIND pix.,
otherwise SCONTAINEDIN pix. = ∅.

If |SONTOP pix.| + |SBEHIND pix.| ≤ 10, the episode is considered a failure. Otherwise, success depends on which

MODALITY was specified and on the quantity M = maxi,j max(|Ci,j∩SONTOP pix.|, |Cij∩SBEHIND pix.|, |Ci,j∩
SCONTAINEDIN pix.|), i.e. maximum number of pixels in any single modality and grid location.

If MODALITY = ONTOP then the episode was successful if |Cij ∩ SONTOP pix.| ≥ 0.95 ·M , i.e. if there are at
least 95% as many pixels in the specified location and modality as in in the grid location and modality with the
most of the object’s pixels.

Similarly if MODALITY = BEHIND (or MODALITY = CONTAINEDIN) then the episode was successful if
|Cij ∩ SBEHIND pix.| ≥ 0.95 ·M (or |Cij ∩ SCONTAINEDIN pix.| ≥ 0.95 ·M ).

To track the progress of this episode we simply record successes, namely we let δhit target ∈ {0, 1} equal 1 if and
only if object manipulation was successful.

B.5 SEEKING (S)

In the seeking episode the seeking agent is tasked with finding the object hidden by the hiding agent. The
seeking agent begins from the same location tuple as the hiding agent began in the E&M-episode and given a
budget of Nmax steps

S = 500 steps before the episode is considered a failure. During these 500 steps the seeking
agent may perform any of the actions allowed in the exploration and mapping episode along with one additional
action, ClaimVisible. If the seeking agent performs the ClaimVisible action successfully the seeking
agent has successfully found the goal object and the episode ends.

Just as when attempting to automatically measure the quality of a hiding location, developing objective mea-
sures of the quality of a seeking policy is challenging. As described previously, a seeking strategy that is
highly successful against one hiding strategy may be fatally flawed when faced with another. To remove any
dependence on a hiding agent obtained through reinforcement learning we generate, through an exhaustive,
brute force approach, three collections of hiding locations for each scene s and object o, Seasy pos.

s,o , Smed. pos.
s,o ,

and Shard pos.
s,o . To define these collections we use AI2-THOR to, for each goal object o and scene s, gener-

ate a collection Lo,s = {ℓo,s,i | 1 ≤ i ≤ No,s} of No,s ≫ 0 possible hiding locations. For each ℓo,s,i
we compute vo,s,i which equals the Qvisible from% metric defined above for the given hiding location. Letting
Vo,s = {vo,s,i | 1 ≤ i ≤ No,s}, we consider a hiding position ℓo,s,i hard if vo,s,i is within the lower fifth
percentile of Vo,s values, medium if vo,s,i ≤ 0.15 and vo,s,i is between the fifth and 20th percentiles, and

finally easy if it is neither hard nor medium difficulty. The set Seasy pos.
s,o , and similarly for Smed. pos.

s,o and Shard pos.
s,o ,

is then a randomly sampled collection of, approximately, 20 easy locations from Lo,s. We then quantify the
quality of a seeking policy by computing the success rate of the seeker when the hiding locations are restricted
to those from each of the above three sets.

C TRAINING DETAILS AND LOSSES

We train our cache agent using eight GPUs with one GPU reserved for running AI2-THOR processes, one
reserved for VDR, and the other six dedicated to training with reinforcement and self-supervised learning. Each
of the cache stages generates its own losses, detailed below, which are minimized by HOGWILD! (Recht et al.,
2011) style unsynchronized gradient descent to train model parameters. Reinforcement learning in the E&M,
OH, OM, and S stages is accomplished using the asynchronous advantage actor-critic (A3C) algorithm (Mnih
et al., 2016) with generalized advantage estimation (GAE) (Schulman et al., 2015). For the A3C loss we let the
discounting parameter γ = 0.99 (except for in the OH-stage where γ = 0.8), the entropy weight β = 0.01, and
GAE parameter τ = 1. We use the ADAM optimizer (Kingma & Ba, 2015) with AMSGrad (Reddi et al., 2018),
moving average parameters β1 = 0.99, β2 = 0.999, a learning rate of 10−3 for VDR, and varying learning
rates for the different cache stages (10−4 for the E&M, OH, OM, and S stages, 5 · 10−4 for the PS-stage).

In the following we give an overview various training details, namely: (1) data augmentation, (2) (self) super-
vised losses, (3) and reward structures for the E&M, OH, OM, and S stages necessary for computing the A3C
loss.

C.1 TRAINING DATA AUGMENTATION

To increase diversity of the images seen by our cache agents during training, we apply two forms of data
augmentation to AI2-THOR.

16



Published as a conference paper at ICLR 2021

Random world rotation. Recall that our AI2-THOR cache agents are constrained to 90◦ rotations and move
on a 0.25m×0.25m grid. while this is beneficial in that it abstracts many of the technical complexities of
movement in true robotics, it has the disadvantage of reducing the variety of images that can be seen by our
agent. In particular, the default orientation of the agent is “axis aligned” such that it is generally moving parallel
to walls and objects and thus it will not see objects and rooms from a large variety of orientations. To remedy
this limitation while still maintaining grid-constrained movement, we, with a 50% probability at the start of
every new game of cache, randomly rotate the agent by some degree in {0, . . . , 359}. After this initial rotation
the agent moves along a 0.25m×0.25m grid as usual but, because of this rotation, it will now observe objects
at a variety of different orientations.

Image augmentation. To improve generalization, it is common with the computer vision literature to apply
random transformations to images before giving them as input to neural network models for prediction. We
follow this approach and, at the beginning of every game of cache, we randomly select:

(a) A resized crop function Cl,r,t,b which, given an input image, crops l pixels from the left, r pixels from
the right, t pixels from the top, and b pixels from the bottom, and then resizes the cropped image back
to the start dimensions with bilinear sampling. In particular we select (l, r, t, b) = (0, 0, 0, 0) with
0.5 probability and, otherwise, select (l, r, t, b) uniformly at random from {1, . . . , 10}4.

(b) A color jitter function J . This function J is chosen to vary the brightness, contrast, saturation, and
hue of input images by small amounts.

(c) A rotation function Rd. Here Rd rotates the input image about its center by d degrees and we choose
d a random to equal 0 with probability 0.5 and, otherwise, sample d uniformly at random from
{−3, . . . , 3}.

With the above functions in hand, we apply the composed transform Rd◦J ◦Cl,r,t,b to every image seen during
the game of cache.

C.2 VISUAL DYNAMICS REPLAY

Here we give an overview of our VDR training procedure. We direct anyone interested in exact reproduction
of our VDR procedure to our code base. During training our agents save triplets (i0, a, i1), where i0 is an
antecedent image, a is an action taken (with associated success or failure signal), and i1 is the subsequent
image resulting from taking action a when the agent’s view was i0, to a queue that is then periodically emptied
and processed by the VDR thread. The VDR thread processes the triplets by saving them into a buffer, similar
to an experience replay buffer (Mnih et al., 2015). To ensure that certain actions do not dominate the buffer we
group and selectively subsample the triplets added to the buffer. Moreover, the buffer automatically removes
triplets to ensure that triplets do not exceed some fixed age and that the buffer does not exceed its max size of
approximately 20,000 triplets.

After processing incoming data and storing triplets in the dynamics buffer, the VDR thread then randomly
partitions the buffer into batches of size 64 and, for each batch, computes the self-supervised losses detailed
below and performs a single gradient step to minimize the sum of these losses. We call a single pass through
all batches an epoch. VDR then alternates between processing incoming triplets, forming batches, and training
for a single epoch.

The losses minimized in VDR include the following.

• Inverse dynamics loss: predicting a from i0 and i1. From the VDR model we obtain, from i0 and i1,
a vector vinv. dyn. of length N actions= the total number of unique actions across all agents. By assigning
each action a a unique index, index(a) ∈ {1, ..., N actions}, we then compute the inverse dynamics

loss as the negative cross entropy between the point mass distribution δindex(a) and softmax(vinv. dyn.).

• Forward dynamics loss: predicting i1 from a and i0. From the VDR model we obtain, from i0 and a,

a tensor în×n
1 ∈ R

3×n×n for n ∈ S = {14, 28, 56, 112, 224} where în×n
1 represents the prediction

of in×n
1 which equals i1 downsampled to have spatial resolution n × n. Lett ∆n be the, per pixel,

ℓ1 error between în×n
1 and in×n

1 , and let ∆n be its mean. We let the forward dynamics loss equal∑
n∈S

∆n. In practice we found it helpful to compute ∆n as a weighted average with larger weight
given to areas of the image that have changed.

• Pixel difference loss: predicting which pixels in i1 are different from those in i0 from i0 and a.
Computed similarly to the forward dynamics loss using a tensor T pix. diff. returned from the VDR
model except using a binary cross entropy loss to predict which pixels are different between i0 and
i1.

• Pixel quality loss: predicting confidence of predictions of forward dynamics. From the VDR model
we obtain a 1× 224× 224 tensor T confidence. We compute the pixel equality loss as the mean squared
error between T confidence and ∆224.
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• Action success loss: from a and i0 predict if the action would be successful. From the VDR model
we obtain, from a and i0, Twould succeed. The action success loss is then computed as the binary cross
entropy loss between Twould succeed and the indicator δaction did succeed.

Note that we do not compute the forward dynamics loss and pixel quality loss on those triplets whose action
a (see table Table G.1 for all action types) is RotateLeft, RotateRight, OpenAt, CloseObjects,
PlaceAt, ReadyForSeeker, or ClaimVisible. This is because such actions either cause very unpre-
dictable changes (e.g. RotateLeft results in the agent looking at entirely separate portion of the scene) or
no pixel changes (e.g. a ReadyForSeeker action simply ends an episode and changes nothing).

C.3 TRAINING PERSPECTIVE SIMULATION

In this section, when we refer to a location tuple, we mean a location tuple without the standing component.
Recall that in the PS-stage the agent must consult its map of the environment and, from this map, choose a
location tuple where from which it will begin the OH-stage. In the following we describe our implementation
of the PS-stage. We begin by describing the two-phase process by which a location tuple is chosen and then
describe the losses we use to train this process. In the below description it will be helpful to define the set
SOH outcomes = {fail}∪({0, 1}×{0, 1, 2}×{1, ..., 7}2) where fail ∈ SOH outcomes denotes the event in which the
OH-episode did not successfully choose a hiding location (so the object was simply dropped) and (s,m, i, j) ∈
SOH outcomes denotes the event in which, during the OH-stage, the agent successfully hid the object and

• the hiding agent was standing when it hid the object if s = 1 and was otherwise crouching,

• the hiding agent hid the object with a PlaceAt|m,i,j action.

For simplicity, we will say an object was hidden at (ℓ, e) to mean that, during the OH-stage, the agent was

located at ℓ and e ∈ SOH outcomes occurred. We now describe the two phase process for choosing a location
tuple.

1. Initial evaluation (recall Fig, 3b). The agent assigns a score to all location tuples with the goal of highlighting
locations that deserve further evaluation. This score, for a particular location tuple ℓ, is computed as the
weighted average

∑

e∈SOH outcomes

softmax(P ℓ)e · V
ℓ
e

where P ℓ and V ℓ are generated by the agent and are described below.

2. Mental rollout (recall Fig. 3c). The agent begins by picking the five highest scoring location tuples
{ℓ1, ..., ℓ5} from the previous phase along with five randomly selected location tuples {ℓ6, ..., ℓ10}. For
each 1 ≤ i ≤ 10, the seeking agent simulates the outcome of running the OH-stage with the agent at at lo-
cation ℓi three times. Namely the agent iteratively samples three distinct elements ei1, ei2, ei3 ∈ SOH outcomes

with the probability of sampling eij ∈ SOH outcomes at every iteration being proportional to softmax(P ℓi)eij .

Then, for each 1 ≤ i ≤ 10 and 1 ≤ j ≤ 3, the agent simulates 50 rollout trajectories (tijk)
50
k=1

of the seeking agent in the hypothetical setting in which the object was hidden at (ℓi, eij). Let µij =
1
50

∑50
k=1 #steps(tijk) be the average number of steps taken in the simulated seeker trajectories (tijk)

50
k=1.

Straightforward analysis, using the probabilities defined in softmax(P ℓi), shows that there is closed-form

solution for weights wij so that µi =
∑3

j=1 wijµij is an unbiased estimator of the expected mental rollout

path length when hiding at (ℓi, e) and e is selected from SOH outcomes with probability softmax(P ℓi)e.

After computing µ = (µ1, ..., µ10), the location tuple ℓi where the actual OH-episode will begin is chosen
by sampling i from a Multinomial(softmax(0.04 · (µ1, ..., µn))) distribution.

We now describe the losses minimized so that we obtain high quality initial evaluations of location tuples and
mental rollouts of seeker trajectories.

Given a tensor M encoding the agent’s map of the environment (see the Metric mapping section below), the
perspective simulation model produces an intermediate representation of this map M1. From M1 it generates
two tensors P ℓ and V ℓ of size 2×3×7×7 as well as two values pℓnone, v

ℓ
none ∈ R. For simplicity we will abuse

notation and let P ℓ
none = pℓnone and V ℓ

none = vℓnone. Now softmax(P ℓ)e is a prediction of the probability that,

were the agent to choose to hide the object at location ℓ, the event e ∈ SOH outcomes would occur. This tensor
softmax(P ℓ) is supervised using a cross-entropy loss with the hiding location chosen during the OH-stage. The

entries of the tensor V ℓ then represent an estimate of the quality of a hiding location. The collection of tensors
V ℓ is supervised as follows. Let 1 ≤ i 6= i′ ≤ 10 and 1 ≤ j 6= j′ ≤ 3. Now let LV

ij,i′j′ be the binary cross

entropy loss between V ℓi
eij

− V
ℓ
i′

e
i′j′

and sign(µij − µi′j′). Note that minimizing LV
ij,i′j′ encourages V ℓi

eij
to
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be larger than V
ℓ
i′

e
i′j′

if and only if µij > µi′j′ , namely in those settings where mental rollouts suggest that

(ℓi, eij) is a better hiding location than (ℓi′ , ei′j′). We thus let our loss supervising the tensors V ℓ equal the

average LV =
(
30
2

)−1
sum({LV

ij,i′j′ | 1 ≤ i ≤ i′ ≤ 10, 1 ≤ j ≤ j′ ≤ 3, (i, j) 6= (i′, j′)}).

Now we discuss losses used to guide learning to produce mental rollouts of seeker trajectories. Suppose that a
full game of cache has taken place. We begin by collecting several pieces of data from the game.

1. The location tuple ℓ during the PS-episode and the event e ∈ SOH outcomes that occurred during the OH-stage.

2. The trajectory (ti)
n
i=1 (ordered set of location tuples visited) by the seeker.

3. A {0, 1}-valued vector vwould succeed with ith entry equalling 1 if and only if the seeker would have been able
to successfully claim the object was visible at the ith step of its trajectory.

4. The actions ai taken by the seeking agent taken at step i along with their success signal si.

5. The policy, probability distribution over actions, πi of the seeker at step i.

The hiding agent then forms, from the intermediary representation M1 and pair (ℓ, e), a hiding-place-

conditional representation M ℓ,e. Using this conditional representation as a “mental environment,” the agent
then simulates an internal seeker who followed the same trajectory (ti)

n
i=1 and took the same actions (ai)

n
i=1

as the true seeking agent. At every time step i the hiding agent generates a mental policy π̃i for the simulated
seeker along with a vector of probabilities ŝi where ŝij denotes the predicted probability that a seeking agent,
at the location ti, taking action with index j would succeed in doing so. For every i, the mental policy πi is then
trained, using a cross entropy loss, to mimic the true seeker policy πi. Similarly at every step, the predictions
ŝij of whether actions would, or would no succeed, is supervised using a binary cross entropy loss with si if
j is the index of action ai. Furthermore each ŝij corresponding to the ClaimVisible action is supervised

binary cross entropy with vwould succeed.

C.4 ADDITIONAL LOSSES

To improve training sample efficiency we augment the usual A3C losses, described below, by also computing
several other losses, these losses are averaged across timesteps within each stage and then summed together
along with any other losses, e.g. the A3C loss, and gradients are computed for this total loss before being
synchronized with the shared model. As there are a number of additional losses, we will not describe the full
mathematical details of these losses and instead describe their intent. Let s ∈ Sstages, t ≥ 0 be the current time
step in s-episode, and it be the image observed at that time step, if applicable.

Other than the A3C loss, there are two additional losses shared among the {E&M, OH, OM, S} stages described
below:

1. Encouraging understanding the effect of actions: we would like for the DIR representation learned by our
agents to be self-predictive, namely we would like the DIR to encapsulate how the environment will change
when acted on by the agent. To this end, recall the notation from Section 4 where st represented the
128 × 7 × 7 SIR output from CNNθ at time t and ho

t represents the 512-dimensional hidden output vector
created generated by textsclstmθ at time t. Moreover let at be the action taken by the agent at time t. To
encourage self-predictivity, we then define two learnable embedding functions E1

θ and E2
θ and define a loss

which is minimized when the dot product E1
θ (st+1)⊙E2

θ (h
o
t , at) is large while E1

θ (si)⊙E2
θ (h

o
t , at) is small

for all i 6= t. Minimizing this loss encourages ho
t to contain enough information to be able to distinguish

the true next visual observation st+1 from all other observations seen during the episode. Moreover it
encourages the SIR st+1 to contain information that will make it readily distinguishable from other the
SIRs of other timesteps.

2. Localizing changes in input images: similarly to the above, we would like our agent to be able to localize
where changes have occurred in input images. As described in the neural models section below, at every
time step the agent generates a 1 × 7 × 7 tensor W s,t where softmax(W s,t)1,i,j should is encouraged to
be nonzero only if the pixels corresponding to Cij have changed from the previous to the current frame. To
supervise W s,t we first generate the 1× 7× 7, {0, 1}-valued, tensor D where D1,i,j equals one if and only
if the pointwise difference between the encodings of it and it−1 generated by the first convolutional block
of CNNθ , has 10% of the spatial locations corresponding to the i, j grid location with ℓ2-norm greater than
10−3. We then form the loss

L = − log(

7∑

i=1

7∑

j=1

softmax(W s,t)1,i,j ·D1,i,j).

Note that minimizing L encourages the sum of the entries in softmax(W s,t) corresponding to entries in D
equalling one to be large.
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Beyond the above losses shared among all of {E&M, OH, OM, S}, we also include several stage-specific losses
described below.

OH-specific losses.

1. Avoiding early PlaceAtmodality collapse: early in training the hiding agent makes many failed PlaceAt
actions, as a large number of these actions are impossible for a given viewpoint, incurring a substantial
penalty for these repeated failures. Because of this, we found that, in this stage, the agent often would
often quickly learn to only use the ONTOP modality of the PlaceAt as this is the modality is, generally,
the easiest for the manipulator to successfully complete. To prevent this policy collapse, we introduce a
loss that encourages the agent to maintain probability mass on PlaceAt actions with CONTAINEDIN and
BEHIND modalities. This is similar to the standard loss in A3C encouraging higher entropy in an agent’s
policy. This loss is removed after 5,000 episodes of training.

2. Avoiding early PlaceAt spatial collapse: similarly as above, we sometimes found that the agent’s policy
would concentrate on PlaceAt actions at a single grid position i, j early in training. To prevent this,
we create a loss encouraging the probability mass over PlaceAt to be similar to a prediction of which
PlaceAt actions would be successful coming from the manipulator model (described below). As above,
this loss is removed after 5,000 episodes of training.

3. Recalling PlaceAt actions: to encourage the agent to remember where it attempted to place the object
and where, on those attempts, the object ended we designed two losses penalizing the agent for failing to
accurate make such predictions correctly.

4. Closing objects: after placing an object so that is in the CONTAINEDIN modality we design a loss encour-
aging the agent to attempt closing objects.

OM-specific losses.

1. Better sample efficiency: inspired by hindsight experience replay (Andrychowicz et al., 2017), we design
a loss that rephrases failed trajectories made during an OH-episode, i.e. a trajectory that placed the object
in a location that was not specified as the goal location, into a successful trajectory where the goal was
whichever location the object actually was placed in.

2. Opening objects before placing things into them: we designed a loss that encouraged the agent, during the
OM-episode, to try opening an object whenever the goal location for the object was in a CONTAINEDIN

modality.

3. Predicting if a goal object location was attainable: for better sample efficiency and for use during other
stages, we encourage the agent to predict whether or not it will be able to manipulate the current object in
such a way that it will reach the given goal object location. In particular, assume that the agent was directed
to place the object in location (m, i, j). The hiding agent then produces, at every step, a 3 × 7 × 7 tensor

T hittable, t and, at the end of the episode, computes an average binary cross entropy loss between the entries
T hittable, t
m,i,j and the indicator δOM-episode success.

PS-specific losses. See the section on training perspective simulation above.

S-specific losses.

1. Better sample efficiency through self-supervised imitation learning: using the mental representation of the
environment created by hiding agent in the PS-stage we compute a shortest path from the seeking agent’s
current location to a location from which, in this mental representation, the object is visible and then en-
courage the seeking agent to follow this path.

2. Reducing false claim visible actions: at every step made by the seeker we encourage (or discourage) the
agent from taking the ClaimVisible action based on whether or not the goal object is currently visible
to the agent.

C.5 REWARD STRUCTURE FOR REINFORCEMENT LEARNING

In order to compute the A3C loss we must define, for each stage s ∈ Sstages, a reward structure, that is, a
function which assigns a reward r ∈ R to every state-action-state triplet (s, a, s′), where s denotes a possible
agent state and a an action which, when taken from state s, resulted in the agent moving into state s′. When
applicable and unless otherwise stated, agents obtain a penalty of rstep = −0.01 on every step to discourage
long trajectories and an additional penalty of rfail = −0.02 whenever an action fails (for instance, when running
into a wall). For clarity of exposition we will define the reward structure by defining r in the case that agent
starts at a generic state s at time t ≥ 0 and performs action a resulting in a transition to state s′. E&M reward
structure. During exploration and mapping, we would like to encourage the agent to comprehensively explore
the environment, including interacting with and opening objects if possible, with particular attention being paid

20



Published as a conference paper at ICLR 2021

to areas that would make good hiding locations. To this end, but for rE&M, hide,t described below, we define the
E&M reward structure in Algorithm 1. Now for 0 ≤ s ≤ t + 1, at time s let ms be the metric map generated
by the agent, ℓs be the location tuple of the agent, and let vs be the value of the position ℓs when evaluating
ms using the perspective simulation module. Now letting unseens = δ{with action as the agent opened an
object, or entered a location, for the first time}, we define

vt = (

t∑

s=0

vs · unseens)/(

t∑

s=0

unseens)

so that vt captures an average quality of unique states the agent has visited up to and including time t. We then
define the reward

rE&M, hide,t = 0.2 ·min(1,max(0, vt+1 − vt)) · unseent+1

Note that rE&M, hide,t will be 0 if the agent has not opened a new object or entered a previously unvisited location
tuple and, otherwise, will only be large if the perspective simulation module considers the current state to be
substantially more valuable than previously visited states. Thus rE&M, hide,t provides a signal through which
the exploration agent may learn to visit states that the perspective simulation module considers good hiding
locations.

OH reward structure. Except for the definition of rOH, percentile, the reward structure for the OH episode is
defined in Algorithm 2. In the below we define and motivate rOH, percentile. Suppose that the during the OH
episode the hiding agent has successfully completed a PlaceAt action, we would like the reward given to
the agent after its final action to reflect the quality of the hiding location chosen and thus a natural reward for
this final action is number of steps taken by the seeker to find the object NS steps normalized by the maximum
number of steps allotted to the seeking agent (500), i.e. the reward

rS steps = NS steps/500.

Unfortunately rS steps fails in two respects.

1. The reward rS steps suffers from very high variance. As an example, consider the case in which the object is
hidden directly behind the seeker. If the seeker performs two RotateRight actions it will immediately
find the object but, if it instead chooses to search the area ahead of itself then it may be many steps before it
backtracks to its starting position and finds the object. In such a case the reward rS steps may be very large or
very small with high probability.

2. The number of steps required to find the object is not only determined by the quality of the hiding place
chosen in the OH episode but also by the topology of the scene and the location tuple chosen in the per-
spective simulation episode. Namely, in a large, maze-like, room the OH episode may terminate with the
object in the open from the hiding agent’s perspective (a poor hiding place) but still require many steps from
the seeker to find the object as the location tuple chosen in perspective simulation was far away from the
seeker’s starting position.

This high variance and confounding with the quality of perspective simulation results in rS steps providing a
poor signal as to where an object should be hidden in the OH episode. While the high variance of the reward
is intrinsic to the game of cache, especially so in the case of randomly initialized agents, we can partially
address the second issue above by considering a transformation of rS steps defined as follows. First we generate
100 sample seeker trajectories (si)

100
i=0 when simulating hiding the object at the location chosen during the PS-

stage; see the training perspective taking section above for details as to how these trajectories are generated.
Letting ℓi be the length of si, i.e. the number of steps the seeker took to find the goal object in that mental
rollout, we then define

rOH, percentile = −1 + 2 ·
1

100

100∑

i=1

δ[ℓi ≤ NS steps].

Assuming these mental rollouts are of reasonable quality, rOH, percentile naturally calibrates the reward for the
topology and size of the scene. This helps disentangle the final reward in the OH episode from contributions
made purely during the PS episode.

OM reward structure. The OM episode runs for a maximum of 50 steps and has the reward structure for this
episode is outlined in Algorithm 3. Broadly speaking, we reward the agent for dropping the goal object near the
target location with proximity measured in the image space and for placing the object in a location respecting
the target modality among ONTOP, CONTAINEDIN, and BEHIND. We found it especially important to give the
agent a large negative reward whenever it placed the object outside of the agent’s viewport.

S reward structure. The reward structure of the seeking episode is simple and encodes our desire for the agent
to locate the object in as short as time as is possible without having a large false positive rate, that is without
having many instances in which the agent claims to be able to see the object when the object is not actually
visible. This reward structure is given in Algorithm 4.
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C.6 PRETRAINING THE E&M AND OM STAGES

As the ability to navigate about a room and perform object manipulation are basic competencies for the hiding
agent in cache, we pretrain our hiding agent on the E&M and OM-stages until it attains reasonable proficiency.
The reward structure when training the E&M-stage was essentially identical to that from Algorithm 1 but
without the rE&M,n hide,t reward, this trained for approximately 85,000 episodes. To pretrain the OM-stages we
generated, across AI2-THOR scenes, a collection of plausible locations the objects could be placed when at
location tuples, and then trained the hiding agent to attempt placing objects in these locations using the reward
structure in Algorithm 3; the manipulator agent was pretrained for approximately 1.8 million episodes. We ran
this pretraining procedure for approximately three days.

D NEURAL MODELS

Here we give an overview of the neural network architectures we use to parameterize our agents. As these
architectures can be complex, we do not attempt to make this description sufficiently comprehensive to exactly
reproduce our results; we instead direct any parties interested in extract reproduction to our code base.

Our neural network architecture contains components that are shared among both the hider and seeker as well
as components that are unique to individual stages. Recall from 4 that shared components include the image
processing CNN CNNθ , the recurrent networks CGRU)θ and LSTMθ and metric mapping components. Previ-
ously unmentioned shared components include embeddings for actions, goal objects, and agent standing state.
Unshared components include, for example, the MLPs defining actor-critic heads.

D.1 INFORMATION FLOW TO POLICY AND VALUE

Here we describe how, during the E&M-, OH–, OM-, or S-episode, data flows through our agents’ neural
architecture to produce the agent’s policy and value of the current state.

Suppose the agent has received input corresponding to timestep t ≥ 0 in stage s ∈ Sstages and must take an
action. This input comprises the following.

• A 3 × 224 × 224 (channels × height × width) tensor corresponding to the image of the agents’
current view. This tensor is processed CNNθ to produce an SIR st of shape 128× 7× 7.

• A non-negative integer specifying the agent’s last action (including a ‘none‘ action when t = 0) along
with a ‘success’ or ‘failure’ signal indicating whether the agent’s last action succeeded. This pair of
inputs is used to index into an embedding matrix resulting in a 16-dimensional embedding vector.

• A non-negative integer specifying whether or not the agent is standing. This integer is also used to
index into an embedding matrix resulting in a 4-dimensional embedding

• A non-negative integer specifying the goal object (i.e. object to hide or object to seek). This integer
is also used to index into an embedding matrix resulting in a 16-dimensional embedding vector.

• The 257 × 7 × 7-dimensional hidden state h̃t−1 corresponding to the output of the convolutional

GRU CGRUθ from the previous time step. If t = 0 then h̃t−1 are tensors filled with zeros.

• The 512-dimensional hidden states ho
t−1, h

c
t−1 corresponding to the output of the LSTM LSTMθ from

the previous time step. If t = 0 then these tensors are identically zero.

• The agents’ current metric map of it’s environment, this includes a 144-dimensional vector for every
unique location tuple the agent has visited.

• (OH only) If the last action taken in the OH-episode was a PlaceAt, an action embedding specifying
the location location the OM-episode placed the object, e.g. if the OM-episode placed the object in
the Cij grid location with modality BEHIND, then the agent obtains the embedding for a successful
PlaceAt|2,i,j action. As an object can potentially land in many grid locations and modalities
simultaneously, the chosen action corresponds to the location and modality containing the largest
number of the object’s visible pixels.

• (OM only) The modality m and grid location i, j where the object should be placed. This triple is
used to slice into from a parameter tensor of size 3× 8× 13× 13 retrieving a 8× 7× 7 tensor which
is concatenated to the 128× 7× 7 tensor of visual features.

Excluding the recurrent states and the map, each of the above embeddings are repeated (if necessary) so that
they are of shape N×7×7 and concatenated together with the 128×7×7 SIR. For instance, the 16-dimensional
object embedding becomes a 16 × 7 × 7 tensor T where T:,i,j is a copy of the original embedding for each
i, j. To this tensor is additionally concatenated the first 256-dimension of ho

t−1 after having been tiled to be of
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shape 256×7×7. This concatenated tensor is then fed into CGRUθ along with the hidden state h̃t−1 producing

h̃t.

The tensor h̃t−1 is then split into two components. It’s final channel, h̃t−1[256, :, :], is removed and becomes
the tensor W s,t described in Sec. C.4. The remaining 256×7×7 tensor is then averaged pooled to create the

256-dimensional vector ht.

Now the network reads from the input metric map using both an attention mechanism and a collection of

convolutional layers resulting in an embedding of size 356. This embedding is concatenated to ht and fed,
along with the hidden states (ho

t−1, h
c
t−1), into LSTMθ producing the hidden states (ho

t , h
c
t).

For each stage X ∈ {E&M, OH, OM, S} there is now a unique MLP MLP
X
θ corresponding to a 512 × 512

linear layer followed by a ReLU non-linearity. Additionally there are unique networks ACTOR
X
θ (correspond-

ing to a 512×(number of actions in stage X) linear layer followed by a softmax nonlinearity) and VALUE
X
θ

corresponding to a 512× 1 linear layer.

Now the agents’ policies and values for each stage are computed as ACTOR
X
θ (MLP

X
θ (ho

t + ho
t )) and

VALUE
X
θ (MLP

X
θ (ho

t + ho
t )) respectively.

Finally the agents then write into their map, at a position defined by their current location tuple, a 128-
dimensional vector extracted from one of the final layers of the CNNθ (when applied to it) along along with the
16-dimensional object embedding.

D.2 METRIC MAPPING ARCHITECTURE

Intuitively, our metric mapping architecture is designed so that an agent can record information regarding its
current state for later retrieval. This map is called metric as data is written into the map so that it is spatially
coherent, that is, where data is written in memory is uniquely defined by the agent’s location tuple when it is
written. Our metric map model implements is designed to allow for the following.

• Writing: given the current location tuple of an agent, passes a given value through a Gated Recurrent
Unit (GRU) (Cho et al., 2014) whose hidden state is taken from the last value saved at that location (if
any, otherwise a learned initial state is used) and this output of the GRU then overwrites the previously
saved values.

• Reading at location: given a location tuple, returns the value saved at that location.

• Reading with attention: given an input key, uses a soft-attention mechanism to return a weighted sum
of saved values.

• Reading as tensor: return a 4× 2× 144× h×w tensor M where Mr,s,:,i,j is the value written into
the map when the agent was most recently at location tuple

(min(x values written into map) + j · 0.25,max(z values written into map)− i · 0.25, s, r),

h is the number of distinct z values visited by the agent, plus optional padding, as it built the map,
and w is the number of distinct x values written into the map, again possibly with optional padding.
Notice that decreasing i in Mr,s,:,i,j results in reading from locations north of the current location
and similarly increasing j results in reading locations more east.

• Reading egocentric map: the same as reading as map but with spatial coordinates centered on the
agent and appropriately transformed so that north is whichever direction the agent is currently facing.

Using the above, the agent can build a map while it explores its environment while querying that map locally
and globally so as to make decisions.

D.3 VISUAL DYNAMICS REPLAY DECODER ARCHITECTURES

Recall from our training and losses section, that in VDR we are given a triplet (i0, a, i1), where i0, i1 are two
images with i1 occurring after an agent took action a, and must, accomplish a number of self-supervised tasks.
To accomplish these tasks we require several neural network architectures building upon our SIR generating
architecture CNNθ . These architectures are all convolutional neural networks with the largest of these networks
is inspired by spatial transformer networks (Jaderberg et al., 2015), as well as U-Nets, and contains 13 convolu-
tional layers, 10 of which are transposed convolutions which work to upsample the input tensor, the SIR output

from CNNθ , to a final size of 16 × 224 × 224 after which 1 × 1 convolutions are used to produce î224×224
1

as well as T confidence and T pix. diff.. The tensor Twould succeed is produced by a convolutional network acting on
CNNθ(i0) and the embedding of a while the value vinv. dyn. is produced by a convolutional network applied to a
concatenation of CNNθ’s embeddings of both i0 and i1. Implementation details can be found in our code base.
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D.4 PERSPECTIVE SIMULATION ARCHITECTURE

The perspective simulation architecture operates on the tensor representation of the map, see the metric mapping
architecture above, which is reshaped to be of size 1152 × h × w where h and w are the height and width of
the map respectively. First this map is concatenated with a grid of distances from the agent start location after
which it is processed by several 1× 1 convolutional blocks to form the intermediary representation M1 of the
map. An additional 1 × 1 convolution produces, for each location tuple ℓ (merging those which only differ in
that the agent is, or is not, standing) after and after reshaping, two tensors P ℓ and V ℓ of size 2×3×7×7 as well
as two values pℓnone, v

ℓ
none ∈ R. For simplicity we will abuse notation and let P ℓ

none = pℓnone and V ℓ
none = vℓnone.

Next, given a hypothetical hiding outcome e ∈ SOH outcomes another convolutional neural network, acting on
M1 along with an embedding of e indicating where in M1 the object is being hidden, produces the second
intermediary representation of the map Me. A “mental” seeker agent is then defined in this architecture using
an LSTM whose observations come from slices of Me. This mental seeker can move about the map defined
by the representation in Me and, at each step i, produces the vectors π̃i and ŝi defined in the training in losses
section by using two linear layers acting on the mental agent’s hidden state.

E HUMAN AND SELF EVALUATION FOR CACHE AGENTS

In Figures 4a to 4c we report the results of evaluating our hiding and seeking agents from three points during
their training as they compete against one another as well as against hiding places chosen by an exhaustive
approach and hiding places chosen by humans. In the following we discuss how we collected hiding locations
for the various agents and ran our seeking trials.

E.1 GENERATING HIDING LOCATIONS

Human agents. We recruited 16 human volunteers to hide objects within AI2-THOR. Participants were in-
structed that they would be randomly positioned in a simulated environment holding an object which they were
then expected to hide so that a seeking agent, who started in the same position that they started in, would find
the object difficult to find. Furthermore participants were instructed to be in the mindset that they might be
playing against the same seeker many times and thus should choose diverse hiding locations.

Before beginning, participants were allowed to familiarize themselves with the interface until they judged
themselves sufficiently competent to begin the task. Unlike our artificial agents, humans subjects were not
constrained in the number of actions they were allowed to take and, after hiding their object, were allowed to
pick it up again and try other hiding locations if desired.

We collected 600 human hiding locations evenly distributed among all object types and training, validation, and
test scenes. To reduce the amount of data to be collected we used only ten (of 40) training scenes (AI2-THOR
floor plans 7, 10, 13, 16, 18, 203, 209, 213, 215, and 218).

Artificial agents. We generate hiding locations from our artificial hiding agent using the agent after it had
trained for 0, 106 and 4.5 ·106 episodes. We call these agents h0, h1e6, and h4.5e6. For each of these agents we
generate 4,000 total hiding locations, 2,000 each for the train and test scenes. The train (test) hiding locations
are generated such that for each (scene, object type) pair we have an equal number of hiding locations. For fair
comparison, we also generated a set of 1,545 additional hiding locations from h4.5e6 using the same scenes,
object types, and agent starting locations as those from the human trials (with multiple repeats per agent start
location).

Exhaustive approach. Recall the exhaustive automated approach for generating hiding places of easy,
medium, and hard difficulties detailed in the cache stages section. Using this approach we generate, for each
of these difficulties, 3,999 hiding locations in the train scenes and 998 in the test scenes. Because of our auto-
mated, metric-based, approach for generating these hiding spots there were three cases (one in the train scenes
and two in the test scenes) where there were not be sufficiently many hiding locations 20 desired locations per
object, scene, and difficulty. In such cases we reduced the number of locations saved for that object and scene
pair for each difficulty level so that the total number of hiding places in each difficulty type remained equal.

E.2 RUNNING SEEKING TRIALS

In these trials a seeking agent is required to find an object hidden in a hiding location from one of the above
collections. If, through automated checks, we find that a hiding place is such that the hidden object cannot be
seen from any reachable position in the scene then this hiding location is never shown to any seeking agent and
all seeking agents are considered to have failed to find the object for that trial.
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Artificial agents. We run seeking trials using the artificial seeking agents from the same three points in training
and name these seeking agents analogously as s0, s1e6, and s4.5e6.

Human agents. For seeking we recruited human participants using Amazon’s Mechancical Turk platform.
As in the hiding task participants were allowed to familiarize themselves with the interface until they judged
themselves sufficiently competent to begin the task and were not constrained in the number actions they were
allowed to take.

On starting a trial, the participant was randomly assigned a hiding location generated either by h4.5e6 or from
the set of 600 human locations. To ensure fair comparison, we matched each of the 600 human locations to a
unique hiding location generated by h4.5e6 (from the additional set of 1,545) where the artificial hiding agent
started the same position as the human hider. After 100 seconds participants were allowed to give up, moving
them to the next seeking trial, if they felt the object could not be found.

At the end of these trials we were left with complete seeking trials for all but two instances where invalid data
was returned.

F STATIC IMAGE REPRESENTATION EXPERIMENTS

In these experiments we consider SIRs produced by the model CNNθ when trained:

(1) to play cache (taken our final cache agent),

(2) to do joint object class prediction using precisely the same images seen by our cache agent during training
(here an object is considered present in an image if AI2-THOR returns that the object is visible)

(3) to complete a navigation task (see Sec. G.1),

(4) using an autoencoding loss (i.e. pixel-wise mean absolute error) with 35,855 AI2-THOR images, or

(5) with an image classification loss on the 1.28 million hand-labeled images in ImageNet (Krizhevsky et al.,
2012).

More details regarding these baselines can be found in Sec. . We begin by describing our experiments for
synthetic images before moving to our natural image experiments.

F.1 SYNTHETIC IMAGES

F.1.1 EVALUATION DATA AND TASKS

To evaluate the quality of our SIRs we train decoder models on these SIRs to complete a number of distinct
tasks described below. Except for in the classification task, where the decoder model is a max-pooling layer
followed by a linear layer, the decoder models are designed similarly to those from a U-Net (Ronneberger et al.,
2015), for details please see our code.

Depth prediction. In AI2-THOR we generate a collection of 3 × 224 × 224 RGB images paired with their
corresponding 224 × 224 depth maps. Models are trained to predict the depth map given its corresponding
RGB image by minimizing a per-pixel mean absolute error loss.

Surface normals. In AI2-THOR we generate a collection of 3 × 224 × 224 RGB images where each image
is paired with a corresponding 3 × 224 × 224 tensor T where T:,i,j represents the surface normal at pixel i, j
in the RGB image. Models are trained to predict this tensor of surface normals given its corresponding RGB
image by minimizing a per-pixel negative cosine similarity loss.

Classification. In order to generate a dataset for classification we first select 90 types of objects available in
AI2-THOR and assign each of these types a unique index in 1, ..., 90. Next, in AI2-THOR, we generate a
collection of 3 × 224 × 224 RGB images where each image is paired with a {0, 1}-valued vector of length
90 whose jth entry equals 1 if and only if an object whose type has index j is present in the image and whose
pixels occupy at least 1% of the image. Models are trained to predict this vector of 0,1 values from the input
image using binary cross entropy.

Openability. In AI2-THOR we generate a collection of 3 × 224 × 224 RGB images where each image is
paired with a a 224 × 224 {0, 1, 2}-valued tensor T with entry Ti,j equaling 1 if pixel i, j in the input image
corresponds to an object that can be opened, equalling 2 if the pixel corresponds to an object that can be closed,
and otherwise equals 0. Models are trained to predict the {0, 1, 2}-valued tensor from the corresponding RGB
image by minimizing a per-pixel mean cross entropy loss where the loss associated with predicting a 0 has a
weight of 0.2 and the other losses have a weight of 1.0.

Traversable surfaces prediction. In AI2-THOR we generate a collection of 3×224×224 RGB images where
each image is paired with a corresponding 224 × 224 {0, 1}-valued tensor T with Ti,j equalling one if and
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only if the ijth pixel in the image corresponds to a surface onto which the agent can walk. Models are trained
to predict the {0, 1}-valued tensor given its corresponding RGB image by minimizing a per-pixel binary cross
entropy loss.

Object depth. In AI2-THOR we generate a collection of 3× 224× 224 RGB images each where each image
is associated with a collection of 224 × 224 {0, 1}-valued masks of, sufficiently large, objects in the image
paired with depth maps corresponding to the image in which the masked object has been removed. Models are
trained to predict, from an input RGB image and object mask, the depth map of the image where the object has
been removed by minimizing a per-pixel weighted mean absolute error loss. In this loss, pixels corresponding
to the masked object are weighted to contribute equally to those pixels where the object is not present.

Object surface normals. Similar to object depth but predicting surface normals after an object has been
removed.

F.1.2 TRAINING

We train using an ADAM optimizer with (β1, β2) = (0.99, 0.999), a weight decay of 2e-6, and a plateau-based
learning rate scheduler beginning with a learning rate of 1e-2 and decaying by a factor of 10 with a patience
of N patience, that is, the scheduler reduces when the loss on the validation set has failed to decrease by some
small absolute quantity for N patience subsequent epochs). When training CNNθ to perform auto-encoding and
ImageNet classification we used a patience of N patience = 5 and trained the models using all available training
data. When training our other tasks, we used a patience of N patience = 5 and subsampled the training data to
include 1,200 examples. Training was stopped if the learning rate ever decreased below 1e-4. During training
models were evaluated on the validation set after every epoch and, once training completed, the model with the
best validation loss was returned as the final model.

F.1.3 EVALUATION

To evaluate our models we compute the loss of each model on each of the test set examples for its respective
task. As any test set results generated within the same scene and at nearby location tuples are correlated, we
use a generalized linear mixed effects model (GLMM) to obtain statistically meaningful comparisons between
our models. We run our analysis using the R (R Core Team, 2019) programming language, in particular we
use the glmmPQL function in the nlme (Pinheiro et al., 2019) package to fit our GLMM models and then the
emmeans (Lenth, 2019) package to obtain p-values of contrasts between fixed effects. In these analyses we:

• Let the per test set example loss be our endogenous variable.

• Estimate fixed effects corresponding to which SIR was used to produce the loss (auto-encoder, Ima-
geNet, or cache).

• Include mixed effects corresponding to scene nested within scene type.

• Model spatial correlation, nested within scene, using spherical correlation where two test set exam-
ples corresponding to different SIRs or with different rotations are considered infinitely distant.

• Use a Gamma family model with an identity link.

• Subsample the test set to include at most 50 datapoints per scene and SIR so that the model can be
more quickly trained.

To fully reproduce our results please see our code base.

F.2 NATURAL IMAGES

We consider three distinct tasks for natural images, scene classification on the SUNCG dataset Xiao et al.
(2010), depth estimation on the NYU V2 dataset Nathan Silberman & Fergus (2012), and walkable surface
estimation also on the NYU dataset. As for the synthetic image experiments, we use CNNθ as our backbone
model.

F.2.1 EVALUATION DATA AND TASKS

Scene Classification. In scene classification the goal is to predict, from a natural image, the type of scene the
image is staged in. For instance, scene categories include beach, palace, and sauna. We evaluate our predictions
using the (mean-per-class) top-1 accuracy metric.

Depth prediction. As for synthetic images, our goal is to predict pixel-to-pixel depth but for natural images.
We evaluate our model using the standard absolute relative error of our predictions.
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Walkable surface estimation. This is synonymous with traversable surfaces prediction in AI2-THOR. We
evaluate the quality of our predictions using the standard IOU (intersection over union) metric where we only
consider the IOU with walkable segments.

F.2.2 TRAINING

Scene Classification. Our decoder architecture for scene classification corresponds to a 1-by-1 convolutional
layer which transforms the 128×7×7 SIR output from CNNθ to a 64×7×7 tensor. Two fully connected layers
then transform this tensor into a vector of size 512 followed by vector of size 397. For training we use the
cross-entropy loss.

Depth estimation. To perform depth prediction our network CNNθ is composed with a feature pyramid network
(Lin et al., 2016) and pixel shuffle layers Shi et al. (2016) are used for upscaling. The Huber loss is minimized
for training.

Walkable surface estimation. This architecture is essentially identical as for depth prediction. The architecture
of this network is the same as the depth estimation network. Our training object is pixel-wise binary cross
entropy.

G DYNAMIC IMAGE REPRESENTATION EXPERIMENTS

In the following we describe our training procedure for our dynamic image experiments along with any task-
specific details including definitions of our baselines, namely the labels in the legend of Fig. 7. For tractability
of inference, we will always consider our training set Dtrain to be fixed and ignore any randomness, if applicable,
in the generation of Dtrain. Each of our considered tasks is a discrimination task and requires predicting, from
a given representation, whether or not some binary condition holds. We call cases where the condition holds
positive examples and others negative examples. We will accomplish these predictions by fitting a logistic
regression models, details are given in the training section below.

G.1 BASELINES

We will now describe our baselines referenced in the labels of Fig. 7 and in Sec. 5.

DIR (Cache). The is the DIR generated by our trained cache agent. In the tracking experiment (the experiment

corresponding to Fig. 7b) this DIR corresponds to the 257×7×7 tensor h̃t (recall the notation from Sec. 4)
produced by the trained CGRUθ model. In all other experiments this corresponds to the 512-dimensional vector
ho
t produced by the LSTMθ architecture.

DIR (Nav.). For comparison we trained a navigation agent to perform the seeking task with object locations
chosen from the sets of hiding locations, of easy and medium difficulty, generated by our exhaustive procedure.
This navigation agent was trained, without VDR, for 150,000 episodes at which point performance appeared
to saturate. The navigation agent was trained with a similar architecture to our cache agent with a convolution
GRU but without a final LSTMθ model. For the tracking experiment the DIR for this agent was taken as
the 257×7×7 tensor output from its convolutional GRU. For the other experiments, the DIR was taken as a
weighted average pool of the aforementioned 257×7×7 tensor. Note that, unlike the cache agent, the navigation
does not have any actions corresponding to moving the object in its hand. Because of this, in the below
experiments, whenever we would tell the navigation agent that its last action was a hand movement action we
instead tell it that its last action was a Stand action.

DIR (Rand.) It is well-known that convolutional networks structurally encode powerful inductive biases for
image processing and that even randomly initialized networks can provide surprisingly powerful features for
downstream tasks. This raises the question of whether or not the cache DIR performs well simply because our
model architecture encodes strong inductive biases and, perhaps, that we do not need to train our model at all
to obtain good results for our DIR tasks. To address this question, DIR (Rand.) is generated identically to DIR
(Cache) except that the underlying model weights are kept as their randomly initialized values.

SIR (Cache). This baseline corresponds to the features produced by CNNθ trained by playing cache. For
the tracking experiment we use the entire 128×7×7 SIR produced by this CNN, in all other experiments we
average pool this tensor to reduce it to a 128-dimensional vector.

SIR (ImageNet). This model is identical to SIR (Cache) except the underlying CNN was trained with an image
classification loss on the 1.28 million hand-labeled images in ImageNet (Krizhevsky et al., 2012).

SIR (Class.) One may wonder if a CNN trained to perform classification on AI2-THOR images would obtain
similar performance to our cache-trained model. To answer this question, while training our cache agent we
have, in parallel, trained a CNNθ model to classify AI2-THOR objects. Critically, this model was trained with
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exactly the same set of images as our cache agent and received exactly the same number of gradient updates.
Objects were considered to be present in an image if they were considered visible by AI2-THOR. To train this
model we minimized a binary cross entropy loss after average pooling the final representation from CNNθ to
obtain a 128-dimensional vector after which we applied a 128×101 linear transformation giving us the 101
binary logits used for prediction (of the 101 applicable AI2-THOR objects). As for SIR (Cache), we use the
128×7×7 tensor for the tracking experiment and, for all other experiments, average pool this vector to be of
size 128.

Forward Steps. This baseline is only included in the “Contained or Behind?” experiment. In this experiment
there is a non-trivial bias in the dataset, namely that an object needs to be moved further forward to be placed
behind a receptacle than it does to be placed into it. To ensure that DIR (Cache) is not simply exploiting this
bias, we have included the count of the number of forward steps as a baseline.

DIR (4CNN-Cache/Class/ImgNet). An straightforward strategy by which to produce a DIR from SIRs is
concatenation. Namely, if we have an SIR st, then it is we may build a representation that “integrates obser-
vations through time” simply by concatenating several such SIRs together. That is, a DIR representation at
time t could simply be the concatenation [st−3, st−2, st−1, st]. The three baselines DIR (4CNN-Cache), DIR
(4CNN-Class), and DIR (4CNN-ImgNet) each take this approach by concatenating the SIR from time t with
the SIRs from the three previous timesteps. For DIR (4CNN-Cache), SIR (Cache) representations are concate-
nated (and similarly for DIR (4CNN-Class), and DIR (4CNN-ImgNet)). For the tracking experiments these
DIRs are thus of shape 512×7×7 while for the the other experiments these DIRs are vectors of length 512. As
we wish these DIRs to be strong baselines, in the “Contained or Behind?” experiment we also concatenate to
these DIRs the Forward Steps feature described above (producing 513-dimensional DIRs).

G.2 TRAINING

We wish to evaluate how our considered DI- and SI- representations perform in our tasks as the amount of data
available for training varies when using a training procedure that follows best practices in machine learning by
using dimensionality reduction and cross validation. Our procedure, based on iteratively subsampling Dtrain,
follows. Suppose we are interested in our representations’ performance given a training set of size n > 0 with
n < |Dtrain|. We then repeat the following R > 0 times.

1. Subsample a training set Dn ⊂ Dtrain of size n taking care to retain as close to the same proportion of
negative and positive examples as possible.

2. Perform dimensionality reduction on Dn using (a variant of) principal component analysis, reducing the
datasets dimensionality so that at least 99.99% of variance is explained by the remaining components, to

obtain a dataset D̃n.

3. Fit a logistic regression model on D̃n using cross validation to choose an appropriate weighting of ℓ2-
regularization.

4. Apply the principal component analysis transformation learned in the second step to the test set Dtest to

obtain a D̃test and then compute the test-accuracy on this transformed dataset.

This gives us R accuracy values an1, ..., anR from which we can estimate the accuracy of our model on test

examples when training our model on a randomly sampled training set of size n as the mean an = 1
R

∑R

i=1 ani.
Note that randomness in the estimator an comes both from our resampling procedure and, assuming our test
set is not exhaustive, from the randomness in which examples where chosen to be included in the test set. The
first source of randomness can be reduced simply by increasing R while the second can only be reduced by
gather more test set examples. When appropriate, we account for both sources of randomness when plotting
confidence intervals.

G.3 CONTAINED OR BEHIND RELATIONSHIPS

For these experiments we generate a dataset using the first five scenes of the foyer type in AI2-THOR. For each
of these five scenes we generate a large collection of paired examples of objects being places into, or behind,
one five receptacle objects while that receptacle sits on one of five possible tables at varying offsets from the
agent. The placed objects are the same as those hidden in cache and we use five different receptacle objects
of varying size. In order to make our setting especially difficult, we modify the above training procedure so
that, in step 1 above, we restrict our subsampled training set to exclude a randomly selected combination of
scenes, objects, receptacles, and tables. In step 4, our testing set is those examples in which the scene, object,
receptacle, and table are all among those excluded from the training set. This makes the test examples especially
challenging as they are, visually, very dissimilar from those see during training. In this setting, only consider
randomness as a result of our resampling procedure in our error estimates and so our inference is restricted to
within our generated set of examples.
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Here predictions are made using the representation at the timestep after the object has been moved into its
position but before it has been let go by the agent (i.e. before a DropObject action has been taken).

G.4 OCCLUDED OBJECT TRACKING

As in our contained or behind relationship experiments we generate a dataset using the first five scenes of
the foyer type in AI2-THOR and five table types. Here, as we are interested in tracking completely occluded
objects, we use only three of our five item items, the cup, knife, and tomato, as these are sufficiently small to
be frequently occluded. For each configuration of object, table, and scene, we generate a collection of object
trajectories as the object moves behind a collection of books, recall Fig. 7b. For additional variability we
produce many such trajectories with the books positioned in different distances and orientations. As the object
moves behind the occluding books, we record all grid locations Cij that the object passes through into the set
P (it is considered to have passed through a grid location Cij if, at any point during its trajectory behind the
books, at least 10 pixels of the object were in Cij after making all other objects invisible). At every step of
a trajectory where the object is occluded such that less than 10 pixels of the image correspond to the object
we generate |P | data points, one for each grid location Cij ∈ P with the grid location being considered a
positive example if, after making all other objects invisible, the moving object has greater than 10 pixels in
that grid location and otherwise being consider negative. In the paragraph below we describe how we obtain
the SIR and DIR features corresponding to each such data point. Note that, as objects tend to occupy only a
small portion of an image, there are many more negative examples in our dataset than positive ones. During
training we always subsample negative examples so that there is an, approximately, equal number of positives
and negatives. Furthermore, during testing, we implicitly balance positive negative examples by reweighting;
thus the accuracy we report in this setting is a balanced accuracy. As in the previous experimental design, we
modify the above training procedure so that, in step 1 above, we restrict our subsampled training set to exclude
a randomly selected combination of scenes, objects, and tables. In step 4, our testing set is those examples in
which the scene, object, and table are all among those excluded from training. Again as above, only consider
randomness as a result of our resampling procedure in our error estimates and so our inference is restricted to
within our generated set of examples.

Recall from our Sec. G.1, all SIRs and DIRs in this experiment have shape N×7×7 for some N ≥ 0. Let T be
such an SIR or DIR and suppose that, at time t > 0, the object is fully occluded and X is a 7×7 {0, 1}-valued
matrix with Xij equalling one only if grid position Cij is considered a positive example. To obtain, from T , the
features used to predict X we simply take a slice from T at position i, j. Namely the features used to predict
the value of Xij are T [:, i, j].

G.5 OBJECT PERMANENCE WHEN ROTATING

For each of the hiding locations in our automatically generated easy hiding places, recall Sec. E.1, we let our
seeking agent attempt to find the object for 500 steps. If, during one of these episodes, the agent would success-
fully take a ClaimVisible action at time t, so that it has found the object, we consider the counterfactual
setting in which the agent instead rotates right or left once at random and the, previously seen, object vanishes.
The agent then is allowed to take 4 more actions following its policy. Each of the five representation generated
after the rotation is saved as a positive example. To create negative examples we replay this same episode,
forcing the seeking agent to take all of the same actions, but with the goal object invisible during the entire
trajectory. From this replayed trajectory we save the final five resulting representations as negative examples.
When sampling training sets we consider only training scenes and randomly exclude one object, when sampling
test sets only testing scenes and examples including the previously excluded object.

G.6 FREE SPACE SERIATION

In our final experiment we test the ability of our DIRs and SIRs to predict free space. We construct our dataset
for this task by, for every AI2-THOR living room and kitchen scene s, performing the following procedure.

1. Let Ns = min(20, round(0.15 ·#unique reachable (x, z) positions in the scene on a 0.25m grid), and ran-
domly select (x1, z1), ..., (xNs , zNs) locations in s.

2. For every position (xi, zi) perform the following.

a. Teleport the agent to (xi, zi) with a random (axis-aligned) rotation, and randomly select a direction in
which to rotate (left or right). The first set of rotations is a habituation phase.

b. Suppose we have chosen to rotate right. Then require the agent to take seven RotateRight actions so
that every orientation is seen exactly twice.

c. Save the DIRs, and SIRs, corresponding to the agents evaluation when looking in each orientation for
the second time along with whether or not the current orientation has strictly more free space than the
previous orientation. Free space is measured by the count of the grid locations that the agent could
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Algorithm 1: Exploration and mapping episode reward structure

Input: Time step t ≥ 0, full history of E&M episode H , number of steps taken in episode N
Output: Reward for E&M episode step at time t.

1 begin
2 for i← 1, . . . , N do
3 ai ← ith action taken in episode
4 successi ← was ith action successful

5 extrapt ← S
extrap.

E&M,t

6 new locationt ← true if the location of the agent at time t did not occur previously
in the episode.

7 r ← −0.01
8 if not successt then
9 r ← r − 0.02

10 else
11 // encourage the agent to explore new areas

12 num new explored←
13 r ← r + 0.2 · (extrapt − extrapt+1)/3
14 // encourage the agent to attempt opening objects

15 new opened← at opened an object that was not previously opened in the episode
16 if new opened then
17 r ← r + 0.4
18 // encourage the agent to explore areas considered good

for hiding

19 if new opened or new locationt then
20 r ← r + rE&M,hide,t

21 if at is an OpenAt action then
22 // never punish the agent heavily when taking an OpenAt

action

23 r ← max(r,−0.001)
24 return r

potentially occupy within the agent’s visibility cone. Cases where a given orientation has strictly more
free space are considered positive examples, the others negative.

3. Combine all positive and negative examples into our training and test datasets.

G.6.1 WHY DO OTHER DIRS OBTAIN HIGH PERFORMANCE?

In Fig. 7d we see that several 4CNN-DIRs do nearly as well as DIR (Cache). Initially this may seem surprising,
our other experiments seem to suggest that our cache agent’s DIR is significantly more capable than a simple
concatenation of SIR features. We argue, however, that this result is not at all surprising. If an SIR can be
used to predict the amount of free space in an image to a reasonable degree of accuracy then this task can be
tackled using a 4CNN-DIR by simply predicting the free space using the SIRs in the last two frames and then
taking their difference. That is to say, this seriation task well suited for 4CNN-DIRs when their underlying
SIRs record free space.

30



Published as a conference paper at ICLR 2021

Algorithm 2: Object hiding episode reward structure

Input: Time step t ≥ 0, full history of OH episode H , number of steps taken in episode N
Output: Reward for OH episode step at time t.

1 begin
2 r ← −0.01
3 for i← 1, . . . , N do
4 ai ← ith action taken in episode
5 successi ← was ith action successful

6 if at = READYFORSEEKER then
7 if not successi then
8 r ← r − 0.1
9 else if successt and at is an OpenAt action then

10 // encourage the agent to attempt opening objects

11 if the opened object was not previously opened in the episode then
12 r ← r + 0.2
13 else if at is a PlaceAt action but a PlaceAt action was previously successful then
14 r ← r − 0.1
15 else if successt and at is a PlaceAt action then
16 // Reward successful manipulation and encourage the agent

to try hiding spots that are more difficult to manipulate

to

17 p← the probability the object manipulation module assigns to successfully
accomplishing at

18 r ← r + 0.02 + 1/2 ·min(max(p, 0.0001)−2), 100)/100
19 else if not successt then
20 r ← r − 0.01
21 if there was a successful PlaceAt action taken in the episode and at is the last successful

action that is not a READYFORSEEKER action then
22 r ← r + 5 · rOH,percentile

23 return r

Figure G.1: The five objects hidden that can be hidden during a cache game. From left to right these are a loaf
of bread, cup, knife, plunger, and tomato.
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Algorithm 3: Object manipulation episode reward structure

Input: Time step t ≥ 0, full history of OM episode H , number of steps taken in episode N , the
target location specified by the action PlaceAt|m,i,j recall Table G.1

Output: Reward for OM episode step at time t.
1 begin
2 hand locations = empty list
3 for k ← 1, . . . , N do
4 ak ← kth action taken in episode
5 successk ← was kth action successful
6 (x, y, z)← world coordinates of agent’s hand at time k rounded to 2 dec. places
7 Append (x, y, z) to the end of hand locations

8 r ← −0.01
9 if not successt then

10 r ← r − 0.02
11 else if at is an OpenAt action then
12 // Encourage the agent to attempt opening objects

13 if the opened object was not previously opened in the episode then
14 r ← r + 0.1
15 else if at = DropObject then
16 n obj pixels← total number of pixels corresponding to the object after making all

other objects invisible
17 if n obj pixels ≤ 10 then
18 // Discourage the agent from placing objects off screen

19 r ← r − 1.0
20 else
21 hit← 3×7×7 tensor recording the number of pixels of the object dropped object

in each of the grid locations and modalities, recall the discussion in Sec. B.4 and
Fig. 3d

22 M ← Compute M as in described in Sec. B.4
23 hit inds← list of the multi-indices of hit where the corresponding entry of

hit is ≥ 0.95 ·M
24 // Encourage the agent to place the object close to the

goal in pixel space (ignoring modality)

25 r ← r + 0.25min{|i−b|+|j−c| : (a,b,c)∈hit inds}

26 // Encourage the agent to place the object in the

correct modality (only for BEHIND and CONTAINEDIN

modalities)

27 if m 6= 0 and a = m for any (a, b, c) ∈ hit inds then
28 r ← r + 1
29 // Give extra reward if the agent got everything exactly

right

30 if (m, i, j) is in hit inds then
31 r ← r + 1
32 else if t = N then
33 r ← r − 1.0
34 return r
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Algorithm 4: Seeking episode reward structure

Input: Time step t ≥ 0, full history of OM episode H , number of steps taken in episode N , the
goal object goal

Output: Reward for S episode step at time t.
1 begin
2 for i← 1, . . . , N do
3 ai ← ith action taken in episode
4 successi ← was ith action successful
5 new locationt ← action at resulted in the agent entering a previously unvisited

location tuple when ignoring rotation
6 new openedt← action at resulted in the agent opening a previously unopened object

7 r ← −0.01
8 if not successt then
9 if at = CLAIMVISIBLE then

10 // penalize the agent for claiming the object is visible

when it cannot be seen

11 if the action failed as the object was not visible in the viewport and not because the
agent was too far away from the visible object then

12 r ← r − 0.05
13 else
14 r ← r − 0.02
15 else if new locationt then
16 // don’t use a step penalty if the seeking agent entered a

new location

17 r ← r + 0.01
18 else if new openedt then
19 r ← r + 0.06
20 else if at = CLAIMVISIBLE then
21 // the agent has successfully found the object r ← r + 1.0
22 return r
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Action Success condition Impact upon success Ep.

MoveAhead,
MoveLeft,
MoveRight

No obstructions 0.25m in the direction of
movement.

Agent moves 0.25m
forward, left, or right
respectively.

E&M,
S

RotateLeft,
RotateRight

If the agent is holding an object, it will not
collide after rotation.

The agent rotates 90◦

in the specified direc-
tion.

E&M,
S

Stand, Crouch Agent must begin crouching if taking a
Stand action and must begin standing if
taking a Crouch action. Additionally, if the
agent is holding an object, this object will
not collide with anything when the agent
changes height.

Agent stands or
crouches.

E&M,
OH,
S

MoveHandAhead,
MoveHandLeft,
MoveHandRight,
MoveHandBack,
MoveHandUp,
MoveHandDown

Agent must be holding an object, if so the
agent applies a constant force on the ob-
ject in the desired direction until it reaches
a max velocity of 1m/s. The agent stops
the object if it either moves a total of 0.1m
from its starting position, the object reaches
a max distance (1.5m) from the agent, the
object exits the agent’s viewport, or four sec-
onds have elapsed. Once the agent stops
the object, if the object has not moved more
0.001m or rotated at least 0.001◦ then the
movement is considered failed and the ob-
ject is reset to its starting position. Other-
wise hand movement was successful.

The hand object re-
mains in its new posi-
tion.

OM

RotateHand|D,
D ∈ {-X, +X,

-Y, +Y, -Z,

+Z}

Agent must be holding an object, if so the
agent rotates the object by 30 degrees along
the axis specified by D. So if D = -Y then
the object is rotated 30 degrees counter-
clockwise along the y-axis. If this rotation
would result in the object colliding with an-
other object then the action fails and the ob-
ject is reset to its starting rotation.

The hand object re-
mains in its rotated
orientation.

OM

DropObject The agent is holding an object. The object is dropped. OM

OpenAt|i,j,
1 ≤ i, j ≤ 7

Recall the partitioning of an image into a
7×7 grid as shown in Fig. 1d. There is an
openable object near the center of the i, jth
grid location.

The object near the
location specified by
i, j opens.

E&M,
OH,
OM,
S

CloseObjects There is at least one object within the agent’s
interactable range which is open.

All open interactable
object are closed.

E&M,
OH,
S

PlaceAt|m,i,j,
1 ≤ i, j ≤ 7,
m ∈ {0, 1, 2}

See the description of the object hiding
episode. Here the 0,1,2 values for m cor-
respond to the modalities ONTOP, CON-
TAINEDIN, and BEHIND respectively.

An object manipula-
tion episode begins
with target specified
by i, j,m.

OH

ReadyForSeeker The agent has successfully performed a
PlaceAt action.

The hiding episode
ends and the seeking
episode begins.

OH

ClaimVisible The goal object is within 1.5m of the agent
and at least 10 pixels the agents current view
can be attributed to the object.

The seeking episode
ends successfully.

S

Table G.1: A description of the actions available to our agents along their success criteria, impact on the
environment, and episodes in which they are available.
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