
 Open access Proceedings Article DOI:10.1145/2723372.2723713

Learning Generalized Linear Models Over Normalized Data — Source link

Arun Kumar, Jeffrey F. Naughton, Jignesh M. Patel

Institutions: University of Wisconsin-Madison

Published on: 27 May 2015 - International Conference on Management of Data

Topics: Online machine learning, Active learning (machine learning), Semi-supervised learning, Feature engineering and
Redundancy (engineering)

Related papers:

 Learning Linear Regression Models over Factorized Joins

 The MADlib analytics library: or MAD skills, the SQL

 Towards a unified architecture for in-RDBMS analytics

 In-Database Learning with Sparse Tensors

 To Join or Not to Join?: Thinking Twice about Joins before Feature Selection

Share this paper:

View more about this paper here: https://typeset.io/papers/learning-generalized-linear-models-over-normalized-data-
5fyrsk9xtj

https://typeset.io/
https://www.doi.org/10.1145/2723372.2723713
https://typeset.io/papers/learning-generalized-linear-models-over-normalized-data-5fyrsk9xtj
https://typeset.io/authors/arun-kumar-4cddn6gs68
https://typeset.io/authors/jeffrey-f-naughton-1qxp5g1v05
https://typeset.io/authors/jignesh-m-patel-3qksjo7dit
https://typeset.io/institutions/university-of-wisconsin-madison-1lo9rg1b
https://typeset.io/conferences/international-conference-on-management-of-data-1x852s0d
https://typeset.io/topics/online-machine-learning-3aecagzj
https://typeset.io/topics/active-learning-machine-learning-2to7erlu
https://typeset.io/topics/semi-supervised-learning-2sck8daj
https://typeset.io/topics/feature-engineering-ph3o2tiq
https://typeset.io/topics/redundancy-engineering-2s62v1w3
https://typeset.io/papers/learning-linear-regression-models-over-factorized-joins-2ec9v6s8z1
https://typeset.io/papers/the-madlib-analytics-library-or-mad-skills-the-sql-9rr8iusjhv
https://typeset.io/papers/towards-a-unified-architecture-for-in-rdbms-analytics-4eitkqhu5s
https://typeset.io/papers/in-database-learning-with-sparse-tensors-5y6h725lu2
https://typeset.io/papers/to-join-or-not-to-join-thinking-twice-about-joins-before-59fvsxh3k9
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/learning-generalized-linear-models-over-normalized-data-5fyrsk9xtj
https://twitter.com/intent/tweet?text=Learning%20Generalized%20Linear%20Models%20Over%20Normalized%20Data&url=https://typeset.io/papers/learning-generalized-linear-models-over-normalized-data-5fyrsk9xtj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/learning-generalized-linear-models-over-normalized-data-5fyrsk9xtj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/learning-generalized-linear-models-over-normalized-data-5fyrsk9xtj
https://typeset.io/papers/learning-generalized-linear-models-over-normalized-data-5fyrsk9xtj

Learning Generalized Linear Models Over Normalized Data

Arun Kumar Jeffrey Naughton Jignesh M. Patel

Department of Computer Sciences,

University of Wisconsin-Madison

{arun, naughton, jignesh}@cs.wisc.edu

ABSTRACT

Enterprise data analytics is a booming area in the data man-
agement industry. Many companies are racing to develop
toolkits that closely integrate statistical and machine learn-
ing techniques with data management systems. Almost all
such toolkits assume that the input to a learning algorithm
is a single table. However, most relational datasets are not
stored as single tables due to normalization. Thus, analysts
often perform key-foreign key joins before learning on the
join output. This strategy of learning after joins introduces
redundancy avoided by normalization, which could lead to
poorer end-to-end performance and maintenance overheads
due to data duplication. In this work, we take a step towards
enabling and optimizing learning over joins for a common
class of machine learning techniques called generalized linear
models that are solved using gradient descent algorithms in
an RDBMS setting. We present alternative approaches to
learn over a join that are easy to implement over existing
RDBMSs. We introduce a new approach named factorized
learning that pushes ML computations through joins and
avoids redundancy in both I/O and computations. We study
the tradeoff space for all our approaches both analytically
and empirically. Our results show that factorized learning
is often substantially faster than the alternatives, but is not
always the fastest, necessitating a cost-based approach. We
also discuss extensions of all our approaches to multi-table
joins as well as to Hive.

Categories and Subject Descriptors

H.2 [Information Systems]: Database Management

Keywords

Analytics; feature engineering; joins; machine learning

1. INTRODUCTION
There is an escalating arms race to bring sophisticated sta-

tistical and machine learning (ML) techniques to enterprise
applications [3, 5]. A number of projects in both industry

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’15, May 31 – June 04, 2015, Melbourne, VIC, Australia.

Copyright 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.

http://dx.doi.org/10.1145/2723372.2723713.

and academia aim to integrate ML capabilities with data
processing in RDBMSs, Hadoop, and other systems [2, 4, 9,
15,18,21,22,33,34]. Almost all such implementations of ML
algorithms require that the input dataset be a single table.
However, most relational datasets are not as stored single
tables due to normalization [27]. Thus, analysts often per-
form key-foreign key joins of the base tables and materialize
a single temporary table that is used as the input to the ML
algorithm, i.e., they learn after joins.
Example: Consider an insurance company analyst model-
ing customer churn (will a customer leave the company or
not) – a standard classification task. She builds a logistic re-
gression model using the large table that stores customer de-
tails: Customers(CustomerID, Churn, Age, Income, . . . ,
EmployerID). Note that one of the features, EmployerID, is
the ID of the customer’s employer. It is a foreign key that
refers to a separate table that stores details about compa-
nies and other organizations: Employers(EmployerID, Rev-

enue, NumEmployees, . . .). She joins the two tables on the
EmployerID as part of her “feature engineering” because she
thinks the features of the employer might be helpful in pre-
dicting how likely a customer is to churn. For example, she
might have a hunch that customers employed by large cor-
porations are less likely to churn. She writes the output of
the join as a single temporary table and feeds it to an ML
toolkit that implements logistic regression.

Similar examples arise in a number of other application
domains, e.g., detecting malicious users by joining data about
user accounts with account activities, predicting census mail
response rates by joining data about census districts with
individual households, recommending products by joining
data about past ratings with users and products, etc.

Learning after joins imposes an artificial barrier between
the ML-based analysis and the base relations, resulting in
several practical issues. First, the table obtained after the
join can be much larger than the base tables themselves
because the join introduces redundancy that was originally
removed by database normalization [8, 27]. This results in
unnecessary overheads for storage and performance as well
as waste of time performing extra computations on data with
redundancy. Second, as the base tables evolve, maintaining
the materialized output of the join could become an over-
head. Finally, analysts often perform exploratory analysis
of different subsets of features and data [20,33]. Materializ-
ing temporary tables after joins for learning on each subset
could slow the analyst and inhibit exploration [7]. Learning
over joins, i.e., pushing ML computations through joins to
the base tables, mitigates such drawbacks.

I/O Cost

C
P

U
 C

o
s
t

SR

M

FL

Storage

R
u
n
ti
m

e

SR

S
M

FL

S

I/O Cost

C
P

U
 C

o
s
t

SR

M
FL

S

Storage

R
u
n
ti
m

e SR

M
FL

S

B D

C
P

U
 C

o
s
t

Storage

R
u
n
ti
m

e

SR

S

FL

C

M
SR S

I/O Cost

M
S (SID, Y, X

S
, FK)

R (RID, X
R
)

SR

Δ

Δ R.RID = S.FKX ≡ [X
S
 X

R
]

T

Update
Model

Compute
Gradient
and Loss w

∆

(F, F)

Join (and
Project)

A

T (SID, Y,

X)

BGD

Figure 1: Learning over a join: (A) Schema and logical workflow. Feature vectors from S (e.g., Customers)
and R (e.g., Employers) are concatenated and used for BGD. The loss (F) and gradient (∇F) for BGD
can be computed together during a pass over the data. Approaches compared: Materialize (M), Stream
(S), Stream-Reuse (SR), and Factorized Learning (FL). High-level qualitative comparison of storage-runtime
tradeoffs and CPU-I/O cost tradeoffs for runtimes of the four approaches (S is assumed to be larger than R,
and the plots are not to scale) (B) When the hash table on R does not fit in buffer memory, S, SR, and M
require extra storage space for temporary tables or partitions. But, SR could be faster than FL due to lower
I/O costs. (C) When the hash table on R fits in buffer memory, but S does not, SR becomes similar to S
and neither need extra storage space, but both could be slower than FL. (D) When all data fit comfortably
in buffer memory, none of the approaches need extra storage space, and M could be faster than FL.

From a technical perspective, the issues that arise from
the redundancy present in a denormalized relation (used
for learning after joins) are well known in the context of
traditional relational data management [27]. But the im-
plications of this type of redundancy in the context of ML
algorithms are much less well understood. Thus, an im-
portant challenge to be addressed is if it is possible to de-
vise approaches that learn over joins and avoid introducing
such redundancy without sacrificing either the model qual-
ity, learning efficiency, or scalability compared to the cur-
rently standard approach of learning after joins.

As a first step, in this paper, we show that, for a large
generic class of ML techniques called Generalized Linear
Models (GLMs), it is possible to learn over joins and avoid
redundancy without sacrificing quality and scalability, while
actually improving performance. Furthermore, all our ap-
proaches to learn GLMs over joins are simple and easy to im-
plement using existing RDBMS abstractions, which makes
them more easily deployable than approaches that require
deep changes to the code of an RDBMS. We focus on GLMs
because they include many popular classification and regres-
sion techniques [17, 24]. We use standard gradient methods
to learn GLMs: Batch Gradient Descent (BGD), Conjugate
Gradient (CGD), and (L)BFGS [26]. For clarity of exposi-
tion, we use only BGD, but our results are also applicable
to these other gradient methods. BGD is a numerical opti-
mization algorithm that minimizes an objective function by
performing multiple passes (iterations) over the data.

Figure 1(A) gives a high-level overview of our problem.
We call the approach of materializing T before BGD as Ma-
terialize. We focus on the hybrid hash algorithm for the join
operation [31]. We assume that R is smaller in size than S
and estimate the I/O and CPU costs of all our approaches in
a manner similar to [31]. We propose three alternative ap-
proaches to run BGD over a join in a single-node RDBMS
setting – Stream, Stream-Reuse and Factorized Learning.
Each approach avoids some forms of redundancy. Stream
avoids writing T and could save on I/O. Stream-Reuse also
exploits the fact that BGD is iterative and avoids reparti-
tioning of the base relations after the first iteration. But,
neither approach avoids redundancy in the computations for
BGD. Thus, we design the Factorized Learning (in short,
Factorize) approach that avoids computational redundancy

as well. Factorize achieves this by interleaving the compu-
tations and I/O of the join operation and BGD. None of
our approaches compromise on model quality. Furthermore,
they are all easy to implement in an RDBMS using the
abstraction of user-defined aggregate functions (UDAFs),
which provides scalability and ease of deployment [13,16].

The performance picture, however, is more complex. Fig-
ures 1(B-D) give a high-level qualitative overview of the
tradeoff space for all our approaches in terms of the stor-
age space needed and the runtimes (split into I/O and CPU
costs). Both our analytical and experimental results show
that Factorize is often the fastest approach, but which ap-
proach is the fastest depends on a combination of factors
such as buffer memory, input table dimensions, and number
of iterations. Thus, a cost model such as ours is required to
select the fastest approach for a given instance of our prob-
lem. Furthermore, we identify that Factorize might face a
scalability bottleneck since it maintains an aggregation state
whose size is linear in the number of tuples in R. We pro-
pose three extensions to mitigate this bottleneck and find
that none of them dominate the others in terms of runtime,
which again necessitates our cost model.

We extend all our approaches to multi-table joins, specif-
ically, the case in which S has multiple foreign keys. Such
a scenario arises in applications such as recommendation
systems in which a table of ratings refers to both the user
and product tables [28]. We show that optimally extend-
ing Factorize to multi-table joins involves solving a problem
that is NP-Hard. We propose a simple, but effective, greedy
heuristic to tackle this problem. Finally, we extend all our
approaches to the shared-nothing parallel setting and im-
plement them on Hive. We find near-linear speedups and
scaleups for all our approaches.
In summary, our work makes the following contributions:

• To the best of our knowledge, this is the first paper to
study the problem of learning over joins of large rela-
tions without materializing the join output. Focusing
on GLMs solved using BGD, we explain the tradeoff
space in terms of I/O and CPU costs and propose al-
ternative approaches to learn over joins.

• We propose the Factorize approach that pushes BGD
computations through a join, while being amenable to
a simple implementation in existing RDBMSs.

Logistic Regression (LR)

Least-Squares Regression
(LSR), Lasso, and Ridge

Linear Support Vector
Machine (LSVM)

log(1 + e–ab)
1 + eab

–a

(a – b)2 2(b – a)

max{0, 1 – ab} –aδab<1

ML Technique Fe (a, b)
(For Loss)

G (a, b)
(For Gradient)

Table 1: GLMs and their functions.

• We compare the performance of all our approaches
both analytically and empirically using implementa-
tions on PostgreSQL. Our results show that Factorize
is often, but not always, the fastest approach. A com-
bination of factors such as the buffer memory, the di-
mensions of the input tables, and the number of BGD
iterations determines which approach is the fastest.
We also validate the accuracy of our analytical models.

• We extend all our approaches to multi-table joins. We
also demonstrate how to parallelize them using imple-
mentations on Hive.

Outline. In Section 2, we present a brief background on
GLMs and BGD and some preliminaries for our problem. In
Section 3, we explain our cost model and simple approaches
to learn over joins. In Section 4, we present the new ap-
proach of Factorized Learning and its extensions. In Section
5, we discuss our experimental setup and results. We discuss
related work in Section 6 and conclude in Section 7.

2. BACKGROUND AND PRELIMINARIES
We provide a brief introduction to GLMs and BGD. For

a deeper description, we refer the reader to [17,24,26].

Generalized Linear Models (GLMs). Consider a dataset
of n examples, each of which includes a d-dimensional nu-
meric feature vector, xi, and a numeric target, yi (i = 1
to n). For regression, yi ∈ R, while for (binary) classifica-
tion, yi ∈ {−1, 1}. Loosely, GLMs assume that the data
points can be separated into its target classes (for clas-
sification), or approximated (for regression), by a hyper-
plane. The idea is to compute such a hyperplane w ∈ R

d by
defining an optimization problem using the given dataset.
We are given a linearly-separable objective function that
computes the loss of a given model w ∈ R

d on the data:
F (w) =

∑n

i=1 Fe(yi,w
Txi). The goal of an ML algorithm

is to minimize the loss function, i.e., find a vector w∗ ∈ R
d,

s.t., w∗ = argminw F (w). Table 1 lists examples of some
popular GLM techniques and their respective loss functions.
The loss functions of GLMs are convex (bowl-shaped), which
means any local minimum is a global minimum, and stan-
dard gradient descent algorithms can be used to solve them.1

Batch Gradient Descent (BGD). BGD is a simple algo-
rithm to solve GLMs using iterative numerical optimization.
BGD initializes the model w to some w0, computes the gra-
dient∇F (w) on the given dataset, and updates the model as
w ← w− α∇F (w), where α > 0 is the stepsize parameter.
The method is outlined in Algorithm 1. Like F , the gradient
is also linearly separable: ∇F (w) =

∑n

i=1 G(yi,w
Txi)xi.

Since the gradient is the direction of steepest ascent of F ,

1Typically, a convex penalty term called a regularizer is
added to the loss to constrain ‖w‖ [17].

Algorithm 1 Batch Gradient Descent (BGD)

Inputs: {xi, yi}
n
i=1 (Data), w0 (Initial model)

1: k ← 0, rprev ← null, rcurr ← null, gk ← null
2: while (Stop (k, rprev, rcurr, gk) = False) do
3: rprev ← rcurr
4: (gk, rcurr)← (∇Fk+1, Fk+1) ⊲ 1 pass over data
5: wk+1 ← wk − αkgk ⊲ Pick αk by line search
6: k ← k + 1
7: end while

BGD is also known as the method of steepest descent [26].
Table 1 also lists the gradient functions of the GLMs. We
shall use F and F (w) interchangeably.
BGD updates the model repeatedly, i.e., over many itera-

tions (or epochs), each of which requires (at least) one pass
over the data. The loss value typically drops over itera-
tions. The algorithm is typically stopped after a pre-defined
number of iterations, or when it converges (e.g., the drop in
the loss value across iterations, or the norm of the gradient,
falls below a given threshold). The stepsize parameter (α) is
typically tuned using a line search method that potentially
computes the loss many times (similar to step 4) [26].

On large data, it is likely that computing F and ∇F
dominates the runtime of BGD [12, 13]. Fortunately, both
F and ∇F can be computed scalably in a manner similar
to distributive aggregates like SUM in SQL. Thus, it is easy
to implement BGD using the abstraction of a user-defined
aggregate function (UDAF) that is available in almost all
RDBMSs [13, 16]. However, unlike SUM, BGD performs a
“multi-column” or vector aggregation since all feature values
of an example are needed to compute its contribution to the
gradient. For simplicity of exposition, we assume that fea-
ture vectors are instead stored as arrays in a single column.

Joins Before Learning. From our conversations with ana-
lysts at companies across various domains – insurance, con-
sulting, Web search, security, and e-commerce – we have
learned that analysts often perform joins to replace foreign
key references with actual feature values as part of their fea-
ture engineering effort.2 In this work, we focus chiefly on a
two-table join. We term the main table with the entities to
learn on as the entity table (denoted S). We term the other
table as the attribute table (denoted R). A column in S is a
foreign key that refers to R.

Problem Statement. Suppose there are nS examples (tu-
ples) in S, and nR tuples in R. Assume that the feature
vectors are split across S and R, with dS − 1 features in XS

and dR = d−dS+1 in XR. Thus, the “width” of S is 2+dS ,
including the ID, foreign key, and target. The width of R
is 1 + dR, including the ID. Typically, we have nS ≫ nR,
similar to how fact tables have more tuples than dimension
tables in OLAP [16,27]. We now state our problem formally
(illustrated in Figure 1(A)).

Given two relations S (SID, Y,XS , FK) and R (RID,XR)
with a key-foreign key relationship (S.FK refers to R.RID),
where XS and XR are feature vectors and Y is the target,
learn a GLM using BGD over the result of the projected

2An alternative is to simply ignore the foreign key, or treat
it as a large, sparse categorical feature. Such feature en-
gineering judgements are largely analyst-specific [7, 20, 33].
Our work simply aims to make feature engineering easier.

Symbol Meaning

R Attribute table

S Entity table

T Join result table

nR Number of rows in R

nS Number of rows in S

dR Number of features in R

dS Number of features in S (includes Y)

p Page size in bytes (1MB used)

m Allocated buffer memory (pages)

f Hash table fudge factor (1.4 used)

|R| Number of R pages

|S| Number of S pages

|T| Number of T pages

Iters Number of iterations of BGD (≥ 1)

()p

8nR(1+dR)

()p
8nS(2+dS)

()p
8nS(1+dS+dR)

Table 2: Notation for objects and parameters used
in the cost models. I/O costs are counted in num-
ber of pages. Dividing by the disk throughput yields
the estimated runtimes. NB: As a simplifying as-
sumption, we use an 8B representation for all values:
IDs, target, and features (categorical features are as-
sumed be have been converted to numeric ones [17]).

equi-join T(SID, Y, [XS XR]) ← π(R ⊲⊳RID=FK S) such
that the feature vector of a tuple in T is the concatenation
of the feature vectors from the joining tuples of S and R.

3. LEARNING OVER JOINS
We now discuss alternative approaches to run BGD over

a table that is logically the output of a key-foreign key join.

3.1 Assumptions and Cost Model
For the rest of the paper, we focus only on the data-

intensive computation in step 4 of Algorithm 1 – computing
(∇F , F). The data-agnostic computations of updating w
are identical across all approaches proposed here, and typ-
ically take only a few seconds.3 Tables 2 and 3 summarize
our notation for the objects and parameters.

We focus on the classical hybrid hash join algorithm (con-
sidering other join algorithms is part of future work), which

requires (m − 1) >
√

⌈f |R|⌉ [31]. We also focus primarily
on the case nS > nR and |S| ≥ |R|. We discuss the cases
nS ≤ nR or |S| < |R| in the appendix.

3.2 BGD After a Join: Materialize (M)
Materialize (M) is the current popular approach for han-

dling ML over normalized datasets. Essentially, we write a
new table and use it for BGD.

1. Apply hybrid hash join to obtain and write T.

2. Read T to compute (∇F, F) for each iteration.

Following the style of the discussion of the hybrid hash join
algorithm in [31], we now introduce some notation. The

number of partitions of R is B =
⌈

⌈f |R|⌉−(m−2)
(m−2)−1

⌉

. Partition

3CGD and (L)BFGS differ from BGD only in these data-
agnostic computations, which are easily implemented in, say,
Python, or R [12]. If a line search is used to tune α, we need
to compute only F , but largely the same tradeoffs apply.

Symbol Meaning
Default Value
(CPU Cycles)

hash Hash a key 100

comp Compare two keys 10

copy Copy a double 1

add Add two doubles 10

mult Multiply two doubles 10

funcG Compute G(a, b) 150

funcF Compute Fe(a, b) 200

Table 3: Notation for the CPU cost model. The
approximate default values for CPU cycles for each
unit of the cost model were estimated empirically
on the machine on which the experiments were run.
Dividing by the CPU clock frequency yields the esti-
mated runtimes. For G and Fe, we assume LR. LSR
and LSVM are slightly faster.

sizes are |R0| =
⌊

(m−2)−B

f

⌋

, and |Ri| =
⌈

|R|−|R0|
B

⌉

(1 ≤ i ≤

B), with the ratio q = |R0|
|R|

, where R0 is the first partition

and Ri are the other partitions as per the hybrid hash join
algorithm [31]. We provide the detailed I/O and CPU costs
of Materialize here. The costs of the other approaches in
this section can be derived from these, but due to space
constraints, we present them in the appendix.

I/O Cost. If (m− 1) ≤ ⌈f |R|⌉, we partition the tables:

(|R|+|S|) //First read

+ 2.(|R|+|S|).(1-q) //Write, read temp partitions

+ |T| //Write output

+ |T| //Read for first iteration

+ (Iters-1).|T| //Remaining iterations

- min{|T|,[(m-2)-f|Ri|]} //Cache T for iter 1

- min{|T|,(m-1)}.(Iters-1) //MRU for rest

If (m− 1) > ⌈f |R|⌉, we need not partition the tables:

(|R|+|S|)

+ (Iters+1).|T|

- min{|T|,[(m-2)-f|R|]}

- min{|T|,(m-1)}.(Iters-1)

CPU Cost

(nR+nS).hash //Partition R and S

+ nR.(1+dR).copy //Construct hash on R

+ nR.(1+dR).(1-q).copy //R output partitions

+ nS.(2+dS).(1-q).copy //S output partitions

+ (nR+nS).(1-q).hash //Hash on R and S partitions

+ nS.comp.f //Probe for all of S

+ nS.(1+dS+dR).copy //T output partitions

+ Iters.[//Compute gradient and loss

nS.d.(mult+add) //w.xi for all i

+ nS.(funcG+funcF) //Apply G and F_e

+ nS.d.(mult+add) //Scale and add

+ nS.add //Add for total loss

]

3.3 BGD Over a Join: Stream (S)
This approach performs the join lazily for each iteration.

1. Apply hybrid hash join to obtain T, but instead of
writing T, compute (∇F, F) on the fly.

2. Repeat step 1 for each iteration.

0 2 4 6 8 10
0

2

4

6

8

10

0 20 40 60 80 100
0

2

4

6

8

10

nS/nR =

100

10

1

0.1

Feature Ratio (dR/dS)

R
e

d
u

n
d

a
n
c
y
 R

a
ti
o

R
e

d
u

n
d

a
n

c
y
 R

a
ti
o

Tuple Ratio (nS/nR)

dR/dS =

10

5

1

0.1

A B

Figure 2: Redundancy ratio against the two dimen-
sion ratios (for dS = 20). (A) Fix dR

dS
and vary nS

nR
.

(B) Fix nS

nR
and vary dR

dS
.

The I/O cost of Stream is simply the cost of the hybrid hash
join multiplied by the number of iterations. Its CPU cost is
a combination of the join and BGD.

Discussion of Tradeoffs. The I/O and storage tradeoffs
between Materialize and Stream (Figure 1(B)) arise because
it is likely that many tuples of S join with a single tuple
of R (e.g., many customers might have the same employer).
Thus, |T| is usually larger than |S|+|R|. Obviously, the gap
depends upon the dataset sizes. More precisely, we define
the redundancy ratio (r) as the ratio of the size of T to that
of S and R:

r =
nS(1 + dS + dR)

nS(2 + dS) + nR(1 + dR)
=

nS

nR
(1 + dR

dS
+ 1

dS
)

nS

nR
(1 + 2

dS
) + dR

dS
+ 1

dS

This ratio is useful because it gives us an idea of the factor
of speedups that are potentially possible by learning over
joins. Since it depends on the dimensions of the inputs, we
plot the redundancy ratio for different values of the tuple
ratio (nS

nR
) and (inverse) feature ratio (dR

dS
), while fixing dS .

Figure 2 presents the plots. Typically, both dimension ratios
are > 1, which mostly yields r > 1. But when the tuple ratio
is < 1, r < 1 (see Figure 2(A)). This is because the join here
becomes selective (when nS < nR). However, when the
tuple ratio > 1, we see that r increases with the tuple ratio.

It converges to
1+

dR
dS

+ 1

dS

1+ 2

dS

≈ 1 + dR
dS

. Similarly, as shown in

Figure 2(B), the redundancy ratio increases with the feature
ratio, and converges to the tuple ratio nS

nR
.

3.4 An Improvement: Stream-Reuse (SR)
We now present a simple modification to Stream – the

Stream-Reuse approach – that can significantly improve per-
formance.

1. Apply hybrid hash join to obtain T, but instead of
writing T, run the first iteration of BGD on the fly.

2. Maintain the temporary partitions of S and R on disk.

3. For the remaining iterations, reuse the partitions of S
and and R for the hybrid hash join, similar to step 1.

The I/O cost of Stream-Reuse gets rid of the rewriting (and
rereading) of partitions at every iteration, but the CPU
cost is reduced only slightly. Stream-Reuse makes the join
“iteration-aware” – we need to divide the implementation
of the hybrid hash join in to two steps so as to reuse the
partitions across iterations. An easier way to implement
(without changing the RDBMS code) is to manually handle
pre-partitioning at the logical query layer after consulting

S

R

Δ

Δ

w

HR

γ
SUM

∆

(F
S
, F)

γ
SUM

(RID)

HS R

Δ

Δ

γ
SUM

∆

 F
R

Logical Schemas:

R(RID, XR)

S(SID, Y, XS, FK)

HR(RID, PartialIP)

HS(RID, SumScaledIP)

1

2

3

Figure 3: Logical workflow of factorized learning,
consisting of three steps as numbered. HR and HS
are logical intermediate relations. PartialIP refers
to the partial inner products from R. SumScaledIP
refers to the grouped sums of the scalar output of
G() applied to the full inner products on the con-
catenated feature vectors. Here, γSUM denotes a SUM

aggregation and γSUM (RID) denotes a SUM aggrega-
tion with a GROUP BY on RID.

the optimizer about the number of partitions. Although
the latter is a minor approximation to SR, the difference in
performance (estimated using our analytical cost models) is
mostly negligible.

4. FACTORIZED LEARNING
We now present a new technique that interleaves the I/O

and CPU processing of the join and BGD. The basic idea
is to avoid the redundancy introduced by the join by divid-
ing the computations of both F and ∇F and “pushing them
through the join”. We call our technique factorized learn-
ing (Factorize, or FL for short), borrowing the terminology
from “factorized” databases [8]. An overview of the logical
computations in FL is presented in Figure 3.

The key insight in FL is as follows: given a feature vector
x ∈ T, we have wTx = wT

SxS + wT
RxR. Since the join

duplicates xR from R when constructing T, the main goal of
FL is to avoid redundant inner product computations as well
as I/O over those feature vectors from R. FL achieves this
goal with the following three steps (numbered in Figure 3).

1. Compute and save the partial inner productswT
RxR for

each tuple in R in a new table HR under the PartialIP
column (part 1 in Figure 3).

2. Recall that the computation of F and ∇F are clubbed
together, and that ∇F ≡ [∇FS ∇FR]. This step com-
putes F and ∇FS together. Essentially, we join HR
and S on RID and complete the computation of the
full inner products on the fly, and follow that up by
applying both Fe() and G() on each example. By ag-
gregating both these quantities as it performs the join,
FL completes the computation of F =

∑

Fe(y,w
Tx)

and ∇FS =
∑

G(y,wTx)xS . Simultaneously, FL also
performs a GROUP BY on RID and sums up G(y,wTx),
which is saved in a new table HS under the Sum-
ScaledIP column (part 2 in Figure 3).

3. Compute ∇FR =
∑

G(y,wTx)xR by joining HS with
R on RID and scaling the partial feature vectors xR

with SumScaledIP (part 3 in Figure 3).

Example: Consider logistic regression (LR). In step 2, as
the full inner product wTx is computed by joining HR and

S, FL computes log(1 + exp(−ywTx)) and adds it into F .
Immediately, FL also computes −y

1+exp(ywT x)
= g (say), and

adds it into SumScaledIP for that RID. It also computes
gxS and adds it into ∇FS .

Overall, FL computes (∇F, F) without any redundancy in
the computations. FL reduces the CPU cost of floating point
operations for computing inner products from O(nS(dS +
dR)) to O(nSdS +nRdR). The reduction roughly equals the
redundancy ratio (Section 3.3). Once (∇F, F) is computed,
w is updated and the whole process is repeated for the next
iteration of BGD. Note that to compute only F , step 3 of
FL can be skipped. FL gives the same results as Materialize
and Stream. We provide the proof in the appendix.

Proposition 4.1. The output (∇F, F) of FL is identical
to the output (∇F, F) of both Materialize and Stream.4

While it is straightforward to translate the logical plan
shown in Figure 3 into SQL queries, we implement it using
a slightly different scheme. Our goal is to take advantage of
some physical properties of this problem that will help us
improve performance by avoiding some table management
overheads imposed by the RDBMS. Basically, since HR and
HS are both small 2-column tables keyed by RID, we main-
tain them together in a simple in-memory associative ar-
ray H with the bucket for each RID being a pair of double
precision numbers (for PartialIP and SumScaledIP). Thus,
we perform random reads and writes on H, and replace
both the joins (from parts 2 and 3 in Figure 3) with simple
aggregation queries with user-defined aggregation functions
(UDAFs) that perform simple scans over the base tables.
Overall, our implementation of FL works as follows, with
each step corresponding to its respective part in Figure 3:

1. ReadR, hash on RID and constructH in memory with
partial inner products (wT

RxR) saved in PartialIP. It
can be expressed as the following SQL query: SELECT
UDAF1(R.RID,R.xR,wR) FROM R.

2. Read S, probe into H using the condition FK = RID,
complete the inner products by adding PartialIP from
H with partial inner products on each tuple (wT

SxS),
update F in the aggregation state by adding into it
(essentially, a SUM), update ∇FS in the aggregation
state by adding into it (a SUM over vectors), and add
the value of G(wTx) into SumScaledIP (essentially, a
SUM with a GROUP BY on RID). As a query: SELECT

UDAF2(S.FK,S.y,S.xS,wS) FROM S.

3. Read R, probe into H on RID, compute partial gra-
dients on each example and update ∇FR in memory
(essentially, a SUM over vectors). As a query: SELECT

UDAF3(R.RID,R.xR) FROM R.

4. Repeat steps 1-3 for each remaining iteration.

I/O Cost

Iters.[

(|R|+|S|+|R|) //Read for each iter

- min{|R|,(m-1)-|H|}] //Cache R for second pass

- (Iters - 1).[

min{|R|,(m-1)-|H|} //Cache R for next iter

+ min{|S|,max{0,(m-1)-|H|-|R|}}] //Cache S too

4The proof assumes exact arithmetic. Finite-precision arith-
metic may introduce minor errors. We leave a numerical
analysis of FL to future work.

CPU Cost

Iters.[

nR.hash //Hash R for stats

+ nR.dR.(mult+add) //Partial w.xi for col 1

+ nR.copy //Update column 1 of H

+ nS.(hash+comp.f) //Probe for all of S

+ nS.(dS-1).(mult+add) //Partial w.xi for col 2

+ nS.(add+funcG+funcF) //Full w.xi and functions

+ nS.(dS-1).(mult+add) //Partial scale and add

+ nS.add //Add for total loss

+ (nS-nR).add //Compute column 2 of H

+ nR.copy //Update column 2 of H

+ nR.(hash+comp.f) //Probe for all of R

+ nR.dR.(mult+add) //Partial scale and add

]

The above costs present an interesting insight into FL.
While it avoids computational redundancy in computing
(∇F, F), FL performs extra computations to manage H.
Thus, FL introduces a non-obvious computational trade-
off. Similarly, FL requires an extra scan of R per itera-
tion, which introduces a non-obvious I/O tradeoff. As we
will show later in Section 5, these tradeoffs determine which
approach will be fastest on a given instance of the problem.

As an implementation detail, we found that, while it is
easy to manage H as an associative array, the caching of
R for the second pass is not straightforward to implement.
This is because the pages of R might be evicted when S is
read, unless we manually keep them in memory. We found
that the performance benefit due to this is usually under
10% and thus, we ignore it. But if an RDBMS offers an
easy way to “pin” pages of a table to buffer memory, we can
use it in FL.

Finally, we note that FL requires H to be maintained
in buffer memory, which requires m − 1 > |H|. But note

that |H| =
⌈

f.nR.(1+2).8
p

⌉

, which is only O(nR). Thus, in

many cases, H will probably easily fit in buffer memory.
Nevertheless, to handle cases when H does not fit in buffer
memory, we present a few extensions to FL.

4.1 Scaling FL along nR

We explore three extensions to FL to mitigate its scalabil-
ity bottleneck: FLSQL, FLSQL+, and FL-Partition (FLP).

4.1.1 FLSQL

FLSQL applies the traditional approach of optimizing SQL
aggregates (e.g., SUM) over joins using logical query rewrit-
ing [10,32]. Instead of maintaining H in memory, it directly
converts the logical plan of Figure 3 into SQL queries by
managing HR and HS as separate tables:

1. Read R, and write HR with partial inner products.

2. Join HR and S and aggregate (SUM) the result to com-
pute (∇FS ,F).

3. Join HR and S and write HS after a GROUP BY on
RID. HS contains sums of scaled inner products.

4. Join HS and R and aggregate (SUM) the result to com-
pute ∇FR.

5. Repeat steps 1-4 for each remaining iteration.

Note that both HR and HS are of size O(nR). Also, note
that we have to read S twice – once for computing an ag-
gregate and the other for creating a new table.

4.1.2 FLSQL+

FLSQL+ uses the observation that since nS ≫ nR typi-
cally (and perhaps dS < dR), it might be faster to write a
wider table in step 2 of FLSQL instead of reading S twice:

1. Read R, and write HR with partial inner products.

2. Join HR and S and write HS+ after a GROUP BY on
RID. HS+ contains both sums of scaled inner prod-
ucts and partial gradient vectors.

3. Join HS+ and R and aggregate (SUM) the result to
compute F and ∇F .

4. Repeat steps 1-3 for each iteration..

Note that HR is of size O(nR) but HS+ is of size O(nRdS),
since it includes the partial gradients too. Thus, whether
this is faster or not depends on the dataset dimensions.

4.1.3 FL-Partition (FLP)

The basic idea behind FLP is simple – pre-partitionR and
S so that the smaller associative arrays can fit in memory:

1. Partition R and S on RID (resp. foreign key) into
{Ri} and {Si} so that each Hi corresponding to Ri

fits in memory.

2. For each pair Ri and Si, apply FL to obtain partial
(∇F, F)i. Add the results from all partitions to obtain
full (∇F, F).

3. Repeat steps 1-2 for each remaining iteration, reusing
the partitions of R and S, similar to Stream-Reuse.

Note that we could even partition S and R into more than
necessary partitions to ensure that Ri is cached for the sec-
ond pass, thus improving the performance slightly. All the
above extensions preserve the correctness guarantee of FL.
We provide the proof in the appendix.

Proposition 4.2. The output (∇F, F) of FLP, FLSQL,
and FLSQL+ are all identical to the output (∇F, F) of FL.

4.2 Extensions
We explain how we can extend our approaches to multi-

table joins. We then briefly discuss how we can extend our
approaches to a shared-nothing parallel setting.

4.2.1 Multi-table Joins

Multi-table key-foreign key joins do arise in some appli-
cations of ML. For example, in a movie recommendation
system such as Netflix, ratings of movies by users (e.g., 1-5
stars) are typically stored in a table that has foreign key
references to two tables – one with user details, and another
with movie details. Thus, there is one entity table and many
attribute tables (considering other schema scenarios is part
of future work). Extending Materialize and Stream (and
Stream-Reuse) to multi-table joins is trivial, since data pro-
cessing systems such as RDBMSs and Hive already support
and optimize multi-table joins [1, 29].

Extending FL is also straightforward, provided we have
enough memory to store the associative arrays of all at-
tribute relations simultaneously for step 2. But we face a
technical challenge when the memory is insufficient. One
solution is to adapt the FLP strategy, but partitioning all
input relations might be an overkill. Instead, it is possible
to improve performance by formulating a standard discrete
optimization problem to determine the subset of input rela-
tions to partition so that the overall runtime is minimized.

Formally, we are given k attribute tables Ri(RIDi,Xi),
i = 1 to k, and the entity table S(SID, Y,XS , FK1, . . . ,
FKk), with k foreign keys. Our approach reads each Ri

and converts it to its associative array HRi (step 1 of FL),
and then applies a simplified GRACE hash join [31] recur-
sively on the right-deep join tree with S as the outer table.5

We have m <
∑k

i=1 |HRi|, and thus, we need to partition S
and some (or all) of {HRi}. Let si (a positive integer) be the
number of partitions of HRi (so, S has Πk

i=1si partitions).
We now make three observations. First, minimizing the to-
tal cost of partitioning is equivalent to maximizing the total
savings from not partitioning. Second, the cost of partition-
ing Ri, viz., 2|Ri|, is independent of si, provided the page
size p is large enough to perform mostly sequential writes
(note that si ≤ |Ri|). Thus, it only matters if si = 1 or not.
Define a binary variable xi as xi = 1, if si = 1, and xi = 0,
if si > 1. Finally, we allocate at least one page of memory
for each Ri to process each partition of S (this needs m > k,
which is typically not an issue). We now formally state the
problem (FL-MULTJOIN) as follows:

max
k

∑

i=1

xi|Ri|, s.t.
k

∑

i=1

xi(|HRi| − 1) ≤ m− 1− k

Basically, we count the I/Os saved for those Ri that do not
need to be partitioned since HRi fits entirely in memory.
We prove the following result:

Theorem 4.1. FL-MULTJOIN is NP-Hard in l, where
l = |{i|m− k ≥ |HRi| > 1}| ≤ k.

Essentially, this result means that FL-MULTJOIN is triv-
ial if either none of HRi fit in memory individually or all fit
simultaneously, but is harder if a few (not all) can fit simul-
taneously. Our proof provides a reduction from the classical
0/1 knapsack problem [14]. Due to space constraints, we
present the proof in the appendix. We adopt a standard
O(klog(k)) time greedy heuristic for the knapsack problem
to solve FL-MULTJOIN approximately [11]. Essentially, we

sort the list of attribute tables on |Ri|
(|HRi|−1)

, and pick the

associative arrays to fit in memory in decreasing order of
that ratio until we run out of memory. We leave more so-
phisticated heuristics to future work.

4.2.2 Shared-nothing Parallelism

It is trivial to parallelize Materialize and Stream (and
Stream-Reuse) since most parallel data processing systems
such as parallel RDBMSs and Hive already provide parallel
joins. The only requirement is that the aggregations needed
for BGD need to be algebraic [16]. But since both F and
∇F are just sums across tuples, they are indeed algebraic.
Hence, by implementing them using the parallel user-defined
aggregate function abstraction provided by Hive [1] (and
most parallel RDBMSs), we can directly leverage existing
parallelism infrastructure [13].

FL needs a bit more attention. All three of its steps can
also be implemented using parallel UDAFs, But merging in-
dependent copies of H requires reinserting the individual
entries, rather than just summing them up. Also, since H is
O(nR) in size, we might exceed available memory when mul-
tiple aggregation states are merged. While this issue might

5Hybrid hash requires a more complex analysis and we leave
it for future work. But note that GRACE and hybrid hash
have similar performance in low memory settings [31].

be resolved in Hadoop automatically by spilling to disk, a
faster alternative might be to employ the FLP strategy – by
using the degree of parallelism and available memory on each
node, we pre-partition the inputs and process each partition
in parallel separately. Of course, another alternative is to
employ FLSQL or FLSQL+, and leave it to Hive to manage
the intermediate tables that correspond to H in FL. While
these strategies might be slightly slower than FLP, they are
much easier to implement. We leave a detailed comparison
of alternatives that take communication costs into consider-
ation to future work.

5. EXPERIMENTS
We present empirical and analytical results comparing the

performance all our approaches to learn over joins against
Materialize. Our goal in this section is three-fold: (1) Get a
high-level picture of the tradeoff space using our analytical
cost models. (2) Drill down deeper into the relative perfor-
mance of various approaches using our implementations and
also validate the accuracy of our cost models. (3) Evaluate
the efficiency and effectiveness of each of our extensions.

Data. Unfortunately, publicly-available large real (labeled)
datasets for ML tasks are rare [6]. And to the best of our
knowledge, there is no publicly-available large real database
with the key-foreign key relationship we study. Nevertheless,
since this paper focuses on performance at scale, synthetic
datasets are a reasonable option, and we use this approach.
The ranges of dimensions for our datasets are modeled on
the real datasets that we found in practice. Our synthesizer
samples examples based on a random class boundary (for
binary classification with LR) and adds some random noise.
The codes for our synthesizer and all our implementations
are available for download from our project webpage.6

5.1 High-level Performance Picture
We compare the end-to-end performance of all approaches

in a single-node RDBMS setting. Using our analytical cost
models, we vary the buffer memory and plot the I/O, CPU,
and total runtimes of all approaches to get a high-level pic-
ture of the tradeoff space. Figure 4 presents the results.

The plots show interesting high-level differences in the
behavior of all the approaches. To help explain their be-
havior, we classify memory into three major regions: the
hash table on R does not fit in memory (we call this the
relative-small-memory, or RSM region), the hash table on
R does fit in memory but S does not (relative-medium-
memory, or RMM), and when all tables comfortably fit in
memory (relative-large-memory, or RLM). These three re-
gions roughly correspond to the three parts of the curve for
S in Figure 4. Factorize (FL) seems the fastest in all three
regions for this particular set of parameter values. At RSM,
Stream (S) is slower than Materialize (M) due to repeated
repartitioning. Stream-Reuse (SR), which avoids reparti-
tioning, is faster, and is comparable to FL. But at RMM,
we see a crossover and S is faster than M since M needs to
read a larger table. Since no partitioning is needed, SR is
comparable to S, while FL is slightly faster. At RLM, we
see another crossover and M becomes slightly faster than S
(and SR) again, while FL is even faster. This is because the
CPU costs dominate at RLM, and M has lower CPU costs
than S (and SR). The I/O-CPU breakdown shows that the

6http://pages.cs.wisc.edu/~arun/orion

1E3 1E4 1E5 1E6

0E0

2E3

4E3

6E3

1E3 1E4 1E5 1E6
0E0

1E4

2E4

3E4

4E4

1E3 1E4 1E5 1E6
0E0

1E4

2E4

3E4

4E4

Buffer Memory (MB)

Buffer Memory (MB)Buffer Memory (MB)

T
o
ta

l
ti
m

e
 (

s
)

C
P

U
 t
im

e
 (

s
)

I/
O

 t
im

e
 (

s
)

M

S

SR

FL

A

B C

RSM RMM RLM

Figure 4: Analytical cost model-based plots for vary-
ing the buffer memory (m). (A) Total time, (B) I/O
time (with 100MB/s I/O rate), and (C) CPU time
(with 2.5GHz clock). The values fixed are nS = 108

(in short, 1E8), nR = 1E7, dS = 40, dR = 60, and Iters
= 20. Note that the x axes are in logscale.

Parameter Varied

nS for nS / nR dR for dR / dS Iters

RSM
nR = 5E7, dS = 40

dR = 60, Iters = 20

nS = 5E8, nR = 5E7

dS = 40, Iters = 20

nS = 5E8, nR = 5E7

dS = 40, dR = 60

RMM
nR = 1E7, dS = 40

dR = 60, Iters = 20

nS = 1E8, nR = 1E7

dS = 40, Iters = 20

nS = 1E8, nR = 1E7

dS = 40, dR = 60

RLM
nR = 5E6, dS = 6

dR = 9, Iters = 20

nS = 5E7, nR = 5E6

dS = 6, Iters = 20

nS = 5E7, nR = 5E6

dS = 6, dR = 9

Memory
Region

Table 4: Parameters used for the single-node setting
results in Figure 5. NB: xEy ≡ x× 10y.

overall trends mirror the I/O costs at RSM and RMM but
mirrors the CPU costs at RLM. Figure 4(C) shows that FL
has a lower CPU cost by a factor that roughly equals the
redundancy ratio (≈ 2.1). But as expected, the difference
is slightly lower since FL performs extra computations to
manage an associative array.

5.2 Performance Drill Down
Staying with the single-node RDBMS setting, we now drill

down deeper into each memory region and study the effect
of the major dataset and algorithm parameters using our
implementations. For each memory region, we vary each
of three major parameters – tuple ratio (nS

nR
), feature ra-

tio (dR
dS

), and number of BGD iterations (Iters) – one at a

time, while fixing all the others. We use a decaying stepsize
(α) rather than a line search for simplicity of exposition.
Thus, Iters is also the actual number of passes over the
dataset [13, 26]. Finally, we assess whether our cost mod-
els are able to accurately predict the observed performance
trends and discuss some practical implications.

Experimental Setup: All four approaches were prototyped
on top of PostgreSQL (9.2.1) using UDAFs written in C and
control code written in Python. The experiments were run

http://pages.cs.wisc.edu/~arun/orion

0 4 8 12 16

0

1

2

3

4

Tuple Ratio

R
a

ti
o

0 1 2 3 4 5
0

1

2

3

4

R
a

ti
o

0 10 20 30 40
0

2

4

6

8

R
a

ti
o

Number of Iterations

0 4 8 12 16
0E0

1E5

2E5

3E5

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

Tuple Ratio
0 10 20 30 40

0E0

1E5

2E5

3E5

4E5

5E5

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

Number of Iterations

0 1 2 3 4 5
0E0

1E5

2E5

3E5

4E5

5E5

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

Feature Ratio

Feature Ratio

M

S

SR

FL

A3a

A3bA2bA1b

A1a A2a

Redund.

M/FL

M/S

M/SR

(A) RSM: Total runtimes and relative performance (speedup) against M and redundancy ratios.

0 4 8 12 16
0

1

2

3

4

Tuple Ratio
0 1 2 3 4 5

0

1

2

3

4

R
a

ti
o

Feature Ratio

0 10 20 30 40
0

1

2

3

4

5

6

Number of Iterations

R
a

ti
o

R
a

ti
o

B1 B2 B3

Redund.

M/FL

M/S

(B) RMM: Relative performance (speedup) against M and redundancy ratios.

0 4 8 12 16
0

0.5

1

1.5

2

R
a
ti
o

0 1 2 3 4 5
0

1

2

3

4

R
a

ti
o

Feature Ratio

0 10 20 30 40
0

1

2

3

R
a

ti
o

Number of Iterations

C1 C2 C3

Redund.

M/FL

M/S

Tuple Ratio

(C) RLM: Relative performance (speedup) against M and redundancy ratios.

Figure 5: Implementation-based performance against each of (1) tuple ratio (nS

nR
), (2) feature ratio (dR

dS
),

and (3) number of iterations (Iters) – separated column-wise – for the (A) RSM, (B) RMM, and (C) RLM
memory region – separated row-wise. SR is skipped for RMM and RLM since its runtime is very similar to
S. The other parameters are fixed as per Table 4.

on machines with Intel Xeon X5650 2.67GHz CPUs, 24GB
RAM, 1TB disk, and Linux 2.6.18-194.3.1.el5. The dataset
sizes are chosen to fit each memory region’s criteria.

Results: The implementation-based runtimes and speedup
(and redundancy) ratios for RSM are plotted in Figure 5(A).
The corresponding parameter values chosen (for those pa-
rameters that are not varied) are presented in Table 4. We
present the corresponding speedup ratios for RMM in Fig-
ure 5(B) and for RLM in Figure 5(C). Due to space con-
straints, we skip the runtime plots for RMM and RLM here
but present them in the appendix.

• RSM: The plots in Figure 5(A) shows that S is the
slowest in most cases, followed by the state-of-the-art
approach, M. SR is significantly faster than M, while
FL is the fastest. This trend is seen across a wide range
of values for all 3 parameters – tuple ratio, feature ra-
tio, and number of iterations. All the approaches seem

to scale almost linearly with each parameter. Fig-
ure 5(A1a) shows a small region where SR is slower
than M. This arises because the cost of partitioning
both R and S is slightly more than the cost of ma-
terializing T at low tuple ratios. In many cases, the
performance of SR is comparable to FL, even though
the latter performs an extra read of R to compute∇F .
The speedup plots show that the speedup of FL over M
is mostly higher than the redundancy ratio (r) – this
is because the cost of materializing T is ignored by
r. Figure 5(A3b) confirms this reason as it shows the
speedup dropping with iterations since the cost of ma-
terialization gets amortized. In contrast, the speedups
of SR over M are mostly lower than r.

• RMM: The plots in Figure 5(B) show that S could
become faster than M (as predicted by Figure 4). SR
(skipped here for brevity) is roughly as fast as S, since

0 10 20 30 40
0E0

1E5

2E5

3E5

4E5

Number of Iterations

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

0 1 2 3 4 5
0E0

1E5

2E5

3E5

0 4 8 12 16
0E0

1E5

2E5

3E5

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

Tuple Ratio

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

Feature Ratio

M

S

SR

FL

A B C

Figure 6: Analytical cost model-based plots of performance against each of (A) nS

nR
, (B) dR

dS
, and (C) Iters for

the RSM region. The other parameters are fixed as per Table 4.

no partitioning occurs. FL is the fastest in most cases,
but interestingly, Figure 5(B2) shows that the speedup
of FL over M is lower than the redundancy ratio for
larger feature ratios. This is because |R| increases and
FL reads it twice, which means its relative runtime
increases faster than the redundancy ratio.

• RLM: The plots in Figure 5(C) show that M is faster
than S again. Interestingly, the speedup of FL over M
is smaller than r in most cases. In fact, Figures 5(C1,C2)
show that M is faster than FL at low dimension ratios
(but slower at higher ratios). Figure 5(C3) shows that
the amortization of materialization cost could pay off
for large values of Iters. The lower speedup of FL
occurs because all the data fit in memory and the run-
time depends mainly on the CPU costs. Thus, the
relative cost of managing H in FL for each iteration
(note that M needs to write T only once) against the
cost of BGD’s computations for each iteration deter-
mines the relative performance. This is also why S
(and SR) are much slower than M. Since the CPU cost
of BGD increases with the dimension ratios, FL, which
reduces the computations for BGD, is faster than M
at higher values of both ratios.

Cost Model Accuracy. Our main goal for our analytical
models was to understand the fine-grained behavior of each
approach and to enable us to quickly explore the relative per-
formance trends of them all for different parameter settings.
Thus, we now verify if our models predicted the trends cor-
rectly. Figure 6 presents the performance results predicted
by our cost models for the RSM region. A comparison of
the respective plots of Figure 5(A) with Figure 6 shows that
the runtime trends of each approach are largely predicted
correctly, irrespective of what parameter is varied. As pre-
dicted by our models, crossovers occur between M and S at
low Iters, between M and SR at low tuple ratios, and be-
tween M and FL at low tuple ratios. We found similar trends
for RMM and RLM as well but due to space constraints, we
present their plots in the appendix.

Since no single approach dominates all others, we also
verify if our cost model can predict the fastest approach
correctly. We found that, overall, it correctly predicts the
fastest approach in 95% of the cases shown in Figure 5. The
accuracy of the predicted runtimes, however, varies across
approaches and memory regions. For example, the standard
R2 score for FL on RMM is 0.77, while that for SR on RSM
is 0.27. Similarly the median percentage error for FL on
RSM is 14%, while that for S on RLM is 73%. Due to space
constraints, we present more details in the appendix. We
think it is interesting future work to improve the absolute
accuracy of our cost model, say, by making our models more
fine-grained, and by performing a more careful calibration.

Discussion. We briefly discuss a few practical aspects of
our proposed approaches.

Application in a System: Recent systems such as Colum-
bus [20, 33] and MLBase [21] provide a high-level language
that includes both relational and ML operations. Such sys-
tems optimize the execution of logical ML computations by
choosing among alternative physical plans using cost mod-
els. While we leave it to future work, we think it is possible
to apply our ideas for learning over joins by integrating our
cost models with their optimizers. An alternative way is
to create hybrid approaches, say, like the hybrid of SR and
FL that we present in the appendix. The disadvantage is
that it is more complex to implement. It is also not clear
if it is possible to create a “super-hybrid” that combines FL
with both SR and M. We leave a detailed study of hybrid
approaches to future work.

Convergence: The number of iterations (Iters) parameter
might be unknown a priori if we use a convergence criterion
for BGD such as the relative decrease in loss. To the best
of our knowledge, there is no proven technique to predict
the number of iterations for a given quality criterion for any
gradient method. While Figures 5(A3b,B3,C3) show that
FL is faster irrespective of Iters, crossovers might occur
for other parameter values. In cases where crossovers are
possible, we think a “dynamic” optimizer that tracks the
costs of many approaches might be able switch to a faster
approach after a particular iteration.

Summary. Our results with both implementations and cost
models show that Factorize can be significantly faster than
the state-of-the-art Materialize, but is not always the fastest.
Stream is often, but not always, faster than Materialize,
while Stream-Reuse is faster than Stream and sometimes
comparable to Factorize. A combination of the buffer mem-
ory, dataset dimensions, and the number of BGD itera-
tions affects which approach is the fastest. Our cost models
largely predict the trends correctly and achieve high accu-
racy in predicting the fastest approach. Thus, they could be
used by an optimizer to handle learning over joins.

5.3 Evaluation of Extensions
We now focus on evaluating the efficiency and effectiveness

of each of our extensions – scaling FL to large values of nR,
multi-table joins for FL, and shared-nothing parallelism.

5.3.1 Scaling FL along nR

Using our analytical cost models, we now compare the
performance of our three extensions to FL whenH cannot fit
in memory. Note that |H| ≈ 34nR bytes, which implies that
for m = 24GB, FL can scale up to nR ≈ 750E6. Attribute
tables seldom have so many tuples (unlike entity tables).

 0 10 20 30 40
0E0

2E4

4E4

6E4

8E4

0 1 2 3 4 5
0E0

1E4

2E4

3E4

4E4

2 2.5 3 3.5 4 4.5 5
0.0E0

2.5E4

5.0E4

7.5E4

1.0E5
T
o

ta
l
R

u
n

ti
m

e
 (

s
)

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

Feature Ratio Number of Iterations

nR (in 100 millions)

0 4 8 12 16
0.0E0

2.5E4

5.0E4

7.5E4

1.0E5
T
o

ta
l
R

u
n
ti
m

e
 (

s
)

Tuple Ratio

T
o

ta
l
R

u
n
ti
m

e
 (

s
)

M

SR

FLSQL

FLSQL+

FLP

A B

C D

Figure 7: Analytical plots for when m is insufficient
for FL. We assume m = 4GB, and plot the run-
time against each of nS, dR, Iters, and nR, while
fixing the others. Wherever they are fixed, we set
(nS , nR, dS , dR, Iters) = (1E9, 2E8, 2, 6, 20).

Set I/O Cost M
FL

PA GH OP

1
Partitioning 1,384 171 31 28

Iters = 10 4,745 2,098 1,959 1,955

2
Partitioning 3,039 338 164 145

Iters = 10 10,239 3,941 3,766 3,748

Table 5: I/O costs (in 1000s of 1 MB pages) for multi-
table joins. Set 1 has k = 5, i.e., 5 attribute tables,
while Set 2 has k = 10. We set nS = 2E8, dS = 10,
while ni and di (i > 0) range from 1E7 to 6E7 and 35
to 120 respectively. We set m = 4GB.

Hence, we use a smaller value of m = 4GB. We also vary nR

for this comparison. Figure 7 presents the results.
The first observation is that FLSQL is the slowest in most

cases, while FLSQL+ is slightly faster. But, as suspected,
there is a crossover between these two at low tuple ratios.
More suprisingly, FLP and SR have similar performance
across a wide range of all parameters (within this low mem-
ory setting), with SR being slightly faster at high feature
ratios, while M becomes faster at low feature ratios.

5.3.2 Multi-table Joins for FL

We compare three alternative approaches to solve FL-
MULTJOIN using our analytical cost model – Partition-All
(PA), a baseline heuristic that partitions allRi in O(k) time,
Optimal (OP), which solves the problem exactly in O(2k)
time, and the O(klog(k)) time greedy heuristic (GH). We
perform this experiment for two different sets of inputs: one
with k = 5 and the other with k = 10, with a range of differ-
ent sizes for all the tables. We report the I/O costs for the
plan output by each approach. Table 5 presents the results.

For Set 1 (k = 5), PA has a partitioning cost that is nearly
6 times that of OP. But GH is only about 12% higher than
OP, and both GH and OP partition only one of the five

M

S

FL

Ideal

8 16 24
1

2

3

4

5

S
p

e
e

d
u
p

 R
a

ti
o

A

1 2 3
0

0.25

0.5

0.75

1

1.25

S
c
a

le
u
p

 R
a

ti
o

B

Scaleup FactorCluster Size

Figure 8: Parallelism with Hive. (A) Speedup
against cluster size (number of worker nodes) for
(nS , nR, dS , dR, Iters) = (15E8, 5E6, 40, 120, 20). Each
approach is compared to itself, e.g., FL on 24 nodes
is 3.5x faster than FL on 8 nodes. The runtimes on
24 nodes were 7.4h for S, 9.5h for FL, and 23.5h for
M. (B) Scaleup as both the cluster and dataset size
are scaled. The inputs are the same as for (A) for 8
nodes, while nS is scaled. Thus, the size of T varies
from 0.6TB to 1.8TB.

attribute tables. As expected, PA closes the gap on total
cost as we start running iterations for BGD. At Iters = 10,
PA has only 7% higher cost than OP, whereas M is 140%
higher. A similar trend is seen for Set 2, with the major
difference being that the contribution of the partitioning cost
to the total cost becomes higher for both GH and OP, since
they partition six out of the ten attribute tables.

5.3.3 Shared-nothing Parallelism

We compare our Hive implementations of M, S, and FL.7

Our goal is to verify if similar runtime tradeoffs as for the
RDBMS setting apply here, and also measure the speedups
and scaleups. The setup is a 25-node Hadoop cluster, where
each node has two 2.1GHz Intel Xeon processors, 88GB
RAM, 2.4TB disk space, and runs Windows Server 2012.
The datasets synthesized are written to HDFS with a repli-
cation factor of three.8 Figure 8 presents the results.
Figure 8(A) shows that all three approaches achieve near-

linear speedups. The speedups of S and FL are slightly
super-linear primarily because more of the data fits in the
aggregate memory of a larger cluster, which makes an itera-
tive algorithm such as BGD faster. Interestingly, S is compa-
rable to FL on 8 nodes (S takes 33.5h, and FL, 33.8h), and is
faster than FL on 24 nodes (7.4h for S, and 9.5h for FL). Us-
ing the Hive query plans and logs, we found that FL spends
more time (16%) on Hive startup overheads than S (7%)
since it needs more MapReduce jobs. Nevertheless, both S
and FL are significantly faster than M, which takes 76.7h
on 8 nodes and 23.5h on 24 nodes. We also verified that
FL could be faster than S on different inputs. For example,
for (nS , nR, dS , dR) = (1E9, 100, 20, 2000) on 8 nodes, FL is
4.2x faster than S. Thus, while the exact crossover points are
different, the runtime tradeoffs are similar to the RDBMS
setting in that FL dominates M and S as the redundancy
ratio increases. Of course, the runtimes could be better on
a different system, and a more complex cost model that in-
cludes communication and startup costs might be able to

7 Due to engineering issues in how we can use Hive’s APIs,
we use FLSQL+ instead of FLP for FL in some cases.
8Although the aggregate RAM was slightly more than the
raw data size, not all of the data fit in memory. This is due to
implementation overheads in Hive and Hadoop that resulted
in Hive using an aggregate of 1.2TB for a replicated hash
table created by its broadcast hash join implementation.

predict the trends. We consider this as an interesting av-
enue for future work. Figure 8(B) shows that all approaches
achieve near-linear scaleups. Overall, we see that similar
runtime tradeoffs as for the RDBMS setting apply, and that
our approaches achieve near-linear speedups and scaleups.

6. RELATED WORK
We now discuss how our problem and our approaches are

related to prior work in the literature.

Factorized computation: The abstraction of factorized
databases was proposed recently to improve the efficiency
of RDBMSs [8]. The basic idea is to succintly represent re-
lations with join dependencies using algebraically equivalent
forms that store less data physically. By exploiting the dis-
tributivity of Cartesian product over a union of sets, they
enable faster computation of relational operations over such
databases. However, as they admit, their techniques apply
only to in-memory datasets. Our work can be seen as a
special case that only has key-foreign key joins. We extend
the general idea of factorized computation to ML algorithms
over joins. Furthermore, our work considers datasets that
may not fit in memory. We explore the whole tradeoff space
and propose new approaches that were either not considered
for, or are inapplicable to, relational operations. For exam-
ple, the iterative nature of BGD for learning GLMs enables
us to design the Stream-Reuse approach. Recent work [28]
has also shown that combining features from multiple tables
can improve ML model quality, and that factorizing com-
putations can improve efficiency. They focus on a specific
ML algorithm named factorization machine that is used for
a recommendation systems application. Using a simple ab-
straction called “block-structured dataset” that encodes the
redundancy information in the data, they reduce computa-
tions. However, as they admit, their techniques apply only
to in-memory datasets. We observe that designing block-
structured datasets essentially requires joins of the base ta-
bles – a problem not recognized in [28]. Hence, we take
a first-principles approach towards the problem of learning
over joins. By harnessing prior work from the database lit-
erature, and avoiding explicit encoding of redundancy in-
formation, we handle datasets that may not fit in memory.
We devise multiple approaches that apply to a large class
of ML models (GLMs) and also extend them to a parallel
setting. Finally, our empirical results show that factorizing
computation for ML may not always be the fastest approach,
necessitating a cost model such as ours.

Query optimization: As noted in [8], factorized compu-
tations generalize prior work on optimizing SQL aggregates
over joins [10, 32]. While BGD over joins is similar at a
high level to executing a SUM over joins, there are major
differences that necessitate new techniques. First, BGD ag-
gregates feature vectors, not single features. Thus, BGD
requires more complex statistics and rearrangement of com-
putations as achieved by factorized learning. Second, BGD
is iterative, resulting in novel interplays with the join algo-
rithm, e.g., the Stream-Reuse approach. Finally, there ex-
ist non-commutative algorithms such as Stochastic Gradient
Descent (SGD) that might require new and more complex
tradeoffs. While we leave SGD for future work, this paper
provides a framework for designing and evalutating solutions
for that problem. Learning over joins is also similar in spirit
to multi-query optimization (MQO) in which the system op-

timizes the execution of a bunch of queries that are presented
together [30]. Our work deals with join queries that have se-
quential dependencies due to the iterative nature of BGD,
not a bunch of queries presented together.

Analytics systems: There are many commercial and open-
source toolkits that provide scalable ML and data mining
algorithms [2, 18]. However, they all focus on implemen-
tations of individual algorithms, not on pushing ML algo-
rithms through joins. There is increasing research and in-
dustrial interest in building systems that achieve closer in-
tegration of ML with data processing. These include sys-
tems that combine linear algebra-based languages with data
management platforms [4, 15, 34], systems for Bayesian in-
ference [9], systems for graph-based ML [23], and systems
that combine dataflow-based languages for ML with data
management platforms [21, 22, 33]. None of these systems
address the problem of learning over joins, but we think our
work is easily applicable to the last group of systems. We
hope our work contributes to more research in this direc-
tion. Analytics systems that provide incremental mainte-
nance over evolving data for some ML models have been
studied before [19,25]. However, neither of those papers ad-
dress learning over joins. It is interesting future work to
study the interplay between these two problems.

7. CONCLUSION AND FUTURE WORK
Key-foreign key joins are often required prior to applying

ML on real-world datasets. The state-of-the-art approach
of materializing the join output before learning introduces
redundancy avoided by normalization, which could result
in poor end-to-end performance in addition to storage and
maintenance overheads. In this work, we study the problem
of learning over a join in order to avoid such redundancy.
Focusing on generalized linear models solved using batch
gradient descent, we propose several alternative approaches
to learn over a join that are also easy to implement over ex-
isting RDMBSs. We introduce a new approach named fac-
torized learning that pushes the ML computations through a
join and avoids redundancy in both I/O and computations.
Using analytical cost models and real implementations on
PostgreSQL, we show that factorized learning is often sub-
stantially faster than the alternatives, but is not always the
fastest, necessitating a cost-based approach. We also extend
all our approaches to multi-table joins as well as a shared
nothing parallel setting such as Hive.

With increasing research and industrial interest in closely
integrating advanced analytics with data processing, we think
our work lays a foundation for more research on integrat-
ing ML with relational operations in the context of feature
engineering. As for future work, we are working on extend-
ing factorized learning to other popular algorithms to solve
GLMs such as stochastic gradient descent and coordinate de-
scent methods. Another area is pushing other popular ML
techniques such as non-linear SVMs, decision trees, neural
networks, and clustering algorithms through joins. Since the
data access behavior of these techniques might differ from
that of GLMs with BGD, it is not clear if it is straightforward
to extend our ideas to these techniques. We also intend to
formally analyze the effects of the redundancy introduced
by database dependencies on ML algorithms. Finally, we
intend to expand the scope of the problem to consider ag-
gregate queries as well as the task of feature selection.

8. REFERENCES
[1] Apache Hive. hive.apache.org.

[2] Apache Mahout. mahout.apache.org.

[3] IBM Report. www-01.ibm.com/software/data/bigdata/.

[4] Oracle R Enterprise.

[5] SAS Report on Analytics. sas.com/reg/wp/corp/23876.

[6] A. Agarwal et al. A Reliable Effective Terascale Linear
Learning System. JMLR, 15:1111–1133, 2014.

[7] M. Anderson et al. Brainwash: A Data System for Feature
Engineering. In CIDR, 2013.

[8] N. Bakibayev et al. Aggregation and Ordering in Factorised
Databases. In VLDB, 2013.

[9] Z. Cai et al. Simulation of Database-valued Markov Chains
Using SimSQL. In SIGMOD, 2013.

[10] S. Chaudhuri and K. Shim. Including Group-By in Query
Optimization. In VLDB, 1994.

[11] G. B. Dantzig. Discrete-Variable Extremum Problems.
Operations Research, 5(2):pp. 266–277, 1957.

[12] S. Das et al. Ricardo: Integrating R and Hadoop. In SIGMOD,
2010.

[13] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a Unified
Architecture for in-RDBMS Analytics. In SIGMOD, 2012.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman
& Co., 1979.

[15] A. Ghoting et al. SystemML: Declarative Machine Learning on
MapReduce. In ICDE, 2011.

[16] J. Gray et al. Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Min.
Knowl. Discov., 1(1):29–53, Jan. 1997.

[17] T. Hastie et al. The Elements of Statistical Learning: Data
mining, Inference, and Prediction. Springer-Verlag, 2001.

[18] J. Hellerstein et al. The MADlib Analytics Library or MAD
Skills, the SQL. In VLDB, 2012.

[19] M. L. Koc and C. Ré. Incrementally Maintaining Classification
using an RDBMS. In VLDB, 2011.

[20] P. Konda, A. Kumar, C. Ré, and V. Sashikanth. Feature
Selection in Enterprise Analytics: A Demonstration using an
R-based Data Analytics System. In VLDB, 2013.

[21] T. Kraska et al. MLbase: A Distributed Machine-learning
System. In CIDR, 2013.

[22] A. Kumar et al. Hazy: Making it Easier to Build and Maintain
Big-data Analytics. CACM, 56(3):40–49, March 2013.

[23] Y. Low et al. GraphLab: A New Framework For Parallel
Machine Learning. In UAI, 2010.

[24] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

[25] M. Nikolic et al. LINVIEW: Incremental View Maintenance for
Complex Analytical Queries. In SIGMOD, 2014.

[26] J. Nocedal and S. J. Wright. Numerical Optimization.
Springer, 2006.

[27] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill, Inc., New York, NY, USA, 2003.

[28] S. Rendle. Scaling Factorization Machines to Relational Data.
In VLDB, 2013.

[29] P. G. Selinger et al. Access Path Selection in a Relational
Database Management System. In SIGMOD, 1979.

[30] T. K. Sellis. Multiple-Query Optimization. ACM TODS,
13(1):23–52, Mar. 1988.

[31] L. D. Shapiro. Join Processing in Database Systems with Large
Main Memories. ACM TODS, 11(3):239–264, Aug. 1986.

[32] W. P. Yan and P.-Å. Larson. Eager Aggregation and Lazy
Aggregation. In VLDB, 1995.

[33] C. Zhang, A. Kumar, and C. Ré. Materialization Optimizations
for Feature Selection Workloads. In SIGMOD, 2014.

[34] Y. Zhang, W. Zhang, and J. Yang. I/O-Efficient Statistical
Computing with RIOT. In ICDE, 2010.

Acknowledgments

We thank David DeWitt, Stephen J. Wright, Robert Mc-
Cann, Jiexing Li, Bruhathi Sundarmurthy, Wentao Wu, and
the members of the Microsoft Jim Gray Systems Lab for
their feedback on this paper. This work is supported by a
research grant from the Microsoft Jim Gray Systems Lab.
All views expressed in this work are that of the authors and
do not necessarily reflect any views of Microsoft.

APPENDIX

A. COSTS OF STREAM

I/O Cost. If (m− 1) ≤ ⌈f |R|⌉:

Iters * [

(|R| + |S|) //First read

+ (|R| + |S|).(1 - q) //Write temp partitions

+ (|R| + |S|).(1 - q) //Read temp partitions

]

If (m− 1) > ⌈f |R|⌉:

Iters * [

(|R| + |S|)

- min{|R|+|S|,(m-1) - f|R|]}.(Iters - 1)

]

CPU Cost

Iters.[

(nR+nS).hash //Partition R and S

+ nR.(1+dR).copy //Construct hash on R

+ nR.(1+dR).(1-q).copy //R output partitions

+ nS.(2+dS).(1-q).copy //S output partitions

+ nR.(1-q).hash //Hash rest of R

+ nS.(1-q).hash //Hash rest of S

+ nS.comp.f //Probe for all of S

+ nS.d.(mult+add) //Compute w.xi

+ nS.(funcG+funcF) //Apply functions

+ nS.d.(mult+add) //scale and add

+ nS.add //Add for total loss

]

B. COSTS OF STREAM-REUSE

I/O Cost. If (m− 1) ≤ ⌈f |R|⌉:

(|R| + |S|) //First read

+ (|R| + |S|).(1 - q) //Write temp partitions

+ (|R| + |S|).(1 - q) //Read of iter 1

+ (Iters - 1).(|R| + |S|) //Remaining iterations

- (Iters - 1).min{|R|+|S|,[(m-2) - f|R0|]} //Cache

If (m− 1) > ⌈f |R|⌉:

(|R| + |S|)

+ (Iters - 1).|S|

- (Iters - 1).min{|S|,[(m-1) - f|R|]}

CPU Cost

(nR+nS).hash //Partition R and S

+ nR.(1+dR).copy //Construct hash on R

+ nR.(1+dR).(1-q).copy //R output partitions

+ nS.(2+dS).(1-q).copy //S output partitions

+ nR.(1-q).hash //Hash rest of R

+ nS.(1-q).hash //Hash rest of S

+ nS.comp.f //Probe for all of S

+ (Iters-1).[

nR.hash //Construct hash on R

+ nR.(1+dR).copy //Construct hash on R

+ nS.(hash + comp.f) //Probe for all of S

]

+ Iters.[//Compute gradient

nS.d.(mult+add) //Compute w.xi

+ nS.(funcG+funcF) //Apply functoins

+ nS.d.(mult+add) //Scale and add

+ nS.add //Add for total loss

]

hive.apache.org
mahout.apache.org
www-01.ibm.com/software/data/bigdata/
sas.com/reg/wp/corp/23876

C. PROOF OF PROPOSITION 4.1

Given S = {(sid, fk, y,xS)i}
nS

i=1, andR = {(rid,xR)i}
nR

i=1,
with nS > nR, the output of the join-project query T ←
π(R ⊲⊳R.rid=S.fk S) is T = {(sid, y,x)i}

nS

i=1. Note that sid
is the primary key of S and T, while rid is the primary key
of R, and fk is a foreign key in S that points to sid of R.
Denote the joining tuples s ∈ S and r ∈ R that produce
a given t ∈ T as S(t) and R(t) respectively. Also given is
w ∈ R

d, which is split as w = [wS wR], where |wR| = dR.
Materialize and Stream both operate on T (the only dif-

ference is when the tuples of T are produced). Thus, they
output identical values of ∇F =

∑

t∈T
G(t.y,wT t.x)t.x and

F =
∑

t∈T
Fe(t.y,w

T t.x). Denote their output (∇F ∗, F ∗),
with ∇F ∗ = [∇F ∗

S ∇F
∗
R], in a manner similar to w.

We first prove that the output F of FL equals F ∗. As per
the logical workflow of FL (see Figure 3), we have HR =
{(rid, pip)i}

nR

i=1, s.t. ∀h ∈ HR, ∃r ∈ R s.t. h.rid = r.rid ∧
h.pip = wT

Rr.xR. Also, we have U ← π(HR ⊲⊳HR.rid=S.fk

S) expressed as U = {(sid, rid, y,xS , pip)i}
nS

i=1. FL aggre-
gates U to compute F =

∑

u∈U
Fe(u.y, (w

T
Su.xS + u.pip)).

But u.pip = HR(u).pip = wT
RR(HR(u)).xR and wT

Su.xS =
wT

SS(u).xS . Due to their join expressions, we also have that
∀u ∈ U, there is exactly one t ∈ T s.t. u.sid = t.sid, which
implies Fe(u.y, (w

T
Su.xS + u.pip)) = Fe(t.y,w

T t.x). That
along with the relationshipwT t.x =wT

SS(t).xS+wT
RR(t).xR

implies F = F ∗.
Next, we prove that the output ∇FS of FL equals ∇F ∗

S .
As S is scanned, FL scales and aggregates the feature vectors
to get ∇FS =

∑

u∈U
G(u.y, (wT

Su.xS + u.pip))xS . Apply-
ing the same argument as for F , we have that ∀u ∈ U,
there is exactly one t ∈ T s.t. u.sid = t.sid, which implies
G(u.y, (wT

Su.xS +u.pip)) = G(t.y,wT t.x), Thus, we have
∇FS = ∇F ∗

S .
Finally, we prove that the output ∇FR of FL equals ∇F ∗

R.
We have the logical relation HS ← γSUM(rid)(π(U)) as
HS = {(rid, fip)i}

nR

i=1, obtained by completing the inner
products, applying G, and grouping by rid. We have ∀h ∈
HS, h.fip =

∑

u∈U:u.rid=h.rid
G(u.y, (wT

Su.xS+u.pip)). We
then have another relation V← π(HS ⊲⊳HS.rid=R.rid R) as
V = {(rid, fip,xR)i}

nR

i=1. Now, FL simply aggregates V to
compute ∇FR =

∑

v∈V
(v.fip)v.xR. Due to their join ex-

pressions, we also have that ∀v ∈ V, there is exactly one
r ∈ R s.t. v.rid = r.rid. Since rid imposes a partition
on T, we define the partition corresponding to v as Tv =
{t ∈ T |t.rid = v.rid}. Thus, v.fip =

∑

t∈Tv
G(t.y,wT t.x),

which coupled with the distributivity of product over a sum,
implies ∇FR = ∇F ∗

R. �

D. PROOF OF PROPOSITION 4.2
The proof for FLSQL is identical to FL, since FLSQL

simply materializes some intermediate relations, while the
proofs for FLSQL+ and FLP are along the same lines. For
FLP, we also use the fact that addition is associative over R
and R

d, and both F and ∇F are just sums of terms. �

E. PROOF OF THEOREM 4.1
We restate the FL-MULTJOIN problem and the theorem.

Problem. Given m, k, {|Ri|}
k
i=1, {|HRi|}

k
i=1 as inputs and

k binary variables {xi} to optimize over:

max

k
∑

i=1

xi|Ri|, s.t.

k
∑

i=1

xi(|HRi| − 1) ≤ m− 1− k

Theorem. FL-MULTJOIN is NP-Hard in l, where l = |{i|m−
k ≥ |HRi| > 1}| ≤ k.

Proof. We prove by a reduction from the 0/1 knapsack
problem, which is proven to be NP-Hard. The 0/1 knap-
sack problem is stated as follows. Given a weight W and
n items with respective weights {wi} and values {vi} as
inputs and n binary variables {zi} to optimize over, com-
pute max

∑n

i=1 zivi, s.t.
∑n

i=1 ziwi ≤W . While not neces-
sary, W , {wi}, and {vi} are all generally taken to be pos-
itive integers. The reduction is obvious now. Set k = n,
m = W + k + 1, |Ri| = vi and |HRi| = 1+wi, ∀i = 1 to k.
Also, wi > W =⇒ zi = 0, while wi = 0 =⇒ zi = 1. Thus,
the actual size of the knapsack problem is |{i|W ≥ wi > 0}|,
which after reduction becomes |{i|m−k ≥ |HRi| > 1}| = l.
Thus, FL-MULTJOIN is NP-Hard in l. �

F. ADDITIONAL RUNTIME PLOTS
The implementation-based runtime results for RMM and

RLM are presented in Figure 9. The analytical cost model-
based plots for the same are in Figure 12. Note that the
parameters for both these figures are fixed as per Table 4.

G. CASE |S| < |R| OR TUPLE RATIO ≤ 1

In this case, an RDBMS optimizer would probably sim-
ply choose to build the hash table on S instead of R. It is
straightforward to extend the models of M, S, and, SR to
this case. FL, however, is more interesting. Prima facie, it
appears that we can switch the access of the tables – con-
struct H using S, and join that with R, etc. This way, we
need only one scan of R and two of S. The two twists to the
FL approach described earlier are: (1) The associative array
must store the SID, RID, Y, and PartialIP. (2) We need to
doubly index the array since the first join is on RID with R,
while the second is on SID with S. Of course, we could use
a different data structure as well. Nevertheless, our plots
suggest something subtly different.

First, as long as nS > nR, even if |S| < |R|, it might still
be beneficial to construct H using R first as before. This is
because the other approaches still perform redundant com-
putations, and FL might still be faster. Figure 10 presents
the runtimes for such a setting for varying values of buffer
memory as well as the other parameters. The figures con-
firm our observations above. Of course, it is possible that
the above modified version of FL might be faster than the
original verion in some cases.

Second, when nS ≤ nR (irrespective of the sizes of R
and S), there is probably little redundancy in the computa-
tions, which means that Materialize is probably the fastest
approach. This is because FL performs unnecessary compu-
tations on R, viz., with tuples that do not have a joining
tuple in S. The above modified version of FL might also
be slower than Materialize since the latter obtains a new
dataset that probably has almost no redundancy. Figure 11
presents the runtimes for such a setting for varying values of
buffer memory as well as the other parameters. The figures
confirm our observations above. Of course, in the above, we
have implicitly assumed that at most 1 tuple in S joins with
a tuple in R. If we have multiple tuples in S joining with
R, Materialize might still have computational redundancy.
In such cases, a more complex hybrid of Materialize and FL
might be faster, and we leave the design of such a hybrid
approach to future work.

0 4 8 12 16
0E0

1E4

2E4

3E4

Tuple Ratio
0 1 2 3 4 5

0E0

1E4

2E4

3E4

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

0 10 20 30 40
0E0

1E4

2E4

3E4

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

Feature Ratio Number of Iterations

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

M

S

FL

A1 A2 A3

(A) RMM: Total runtimes.

0 4 8 12 16
0

1000

2000

3000

4000

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

0 10 20 30 40
0

1250

2500

3750

5000

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

Tuple Ratio Feature Ratio Number of Iterations

M

S

FL

B1 B3B2

(B) RLM: Total runtimes.

Figure 9: Implementation-based performance against each of (1) tuple ratio (nS

nR
), (2) feature ratio (dR

dS
), and

(3) number of iterations (Iters) – separated column-wise – for (A) RMM, and (B) RLM – separated row-wise.
SR is skipped since its runtime is very similar to S. The other parameters are fixed as per Table 4.

0 1 2 3 4 5 6

0E0

1E3

2E3

3E3

4E3

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

C

Feature Ratio
0 10 20 30 40

0E0

1E4

2E4

3E4

4E4

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

Number of Iterations

D

1E2 1E3 1E4 1E5 1E6
0.0E0

5.0E3

1.0E4

1.5E4

2.0E4

2.5E4

0 10 20 30 40
0E0

2E4

4E4

6E4

8E4

1E5

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

Tuple Ratio

B

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

A

Buffer Memory (MB)

M

S

SR

FL

Figure 10: Analytical plots for the case when
|S| < |R| but nS > nR. We plot the runtime
against each of m, nS, dR, Iters, and nR, while fix-
ing the others. Wherever they are fixed, we set
(m,nS , nR, dS , dR, Iters) = (24GB, 1E8, 1E7, 6, 100, 20).

0 0.3 0.6 0.9 1.2 1.5
0.0E0

5.0E2

1.0E3

1.5E3

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

B

1E2 1E3 1E4 1E5 1E6
0E0

2E3

4E3

6E3

T
o

ta
l
R

u
n
ti
m

e
 (

s
)

AM

S

SR

FL

0 1 2 3 4 5 6
0.0E0

3.0E2

6.0E2

9.0E2

1.2E3
Buffer Memory (MB)

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

C

Feature Ratio
0 10 20 30 40

0.0E0

3.0E2

6.0E2

9.0E2

1.2E3
D

Tuple Ratio

Number of Iterations

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

Figure 11: Analytical plots for the case when nS ≤
nR (mostly). We plot the runtime against each of m,
nS, dR, Iters, and nR, while fixing the others. Wher-
ever they are fixed, we set (m,nS , nR, dS , dR, Iters) =
(24GB, 2E7, 5E7, 6, 9, 20).

H. MORE COMPLEX APPROACHES
These approaches are more complex to implement since

they might require changes to the join implementations.

H.1 Stream-Reuse-Rock (SRR)

1. Similar to Stream-Reuse.

2. Only twist is that for alternate iterations, we flip the
order of processing the splits from 0 → B to B → 0
and back so as to enable the hash table in cache to be
reused across iterations (“rocking the hash-cache”).

I/O Cost. If (m− 1) ≤ ⌈f |R|⌉:

I/O Cost of Stream-Reuse

+ (Iters - 1).min{|R|+|S|,[(m-2) - f|R0|]} //Cache

- ⌊ Iters
2
⌋.[|Ri| + min{|R|+|S|,(m-2)-f|Ri|}] //H(RB)

- ⌊ Iters−1
2
⌋.[|R0| + min{|R|+|S|,(m-2)-f|R0|}] //H(R0)

If (m− 1) > ⌈f |R|⌉:

I/O Cost of Stream-Reuse

SRR also makes the join implementation “iteration-aware”.

CPU Cost

CPU Cost of Stream-Reuse

- ⌊ Iters
2
⌋.[//Cache HASH(RB)

nR.
(1−q)

B
.[hash + (1+dR).copy]

]

- ⌊ Iters−1
2
⌋.[//Cache HASH(R0)

nR.q.[hash + (1+dR).copy]

]

H.2 Hybrid of Stream-Reuse-Rock and Fac-
torize (SFH)

1. Let R′ be an augmentation of R with two columns

padded to store statistics. So, |R′| =
⌈

8nR.(1+dR+2)
p

⌉

.

2. LetB =
⌈

f |R′|−(m−1)
(m−1)−1

⌉

. Let |R′
0| =

⌊

(m−2)−B

f

⌋

, |R′
i| =

⌈

|R′|−|R′

0
|

B

⌉

(1 ≤ i ≤ B), and q =
|R′

0
|

|R′|
.

3. Similar to hybrid hash join on R′ and S.

0 4 8 12 16
0E0

1E4

2E4

3E4

0 10 20 30 40
0E0

1E4

2E4

3E4

0 1 2 3 4 5
0E0

1E4

2E4

3E4

4E4

Feature RatioTuple Ratio

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

Number of Iterations
T
o

ta
l
R

u
n

ti
m

e
 (

s
)

M

S

SR

FL

A1 A2 A3

(A) RMM: Total runtimes.

0 4 8 12 16
0

250

500

750

1000

0 1 2 3 4 5
0

300

600

900

1200

0 10 20 30 40
0

300

600

900

1200

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

Number of IterationsTuple Ratio Feature Ratio

T
o

ta
l
R

u
n

ti
m

e
 (

s
)

M

S

SR

FL

B1 B3B2

(B) RLM: Total runtimes.

Figure 12: Analytical plots of runtime against each of (1) nS

nR
, (2) dR

dS
, and (3) Iters, for both the (A) RMM,

and (B) RLM memory regions. The other parameters are fixed as per Table 4.

4. Only twist is that PartialIP from R′
i is computed when

the H is constructed on Ri, while SumScaledIP is com-
puted when Si is read.

5. Repeat for remaining iterations, reusing the same par-
titions and rocking the hash-cache as in SRR.

We omit the I/O and CPU costs of SFH here since they are
easily derviable from the other approaches.

I. COST MODEL ACCURACY DETAILS
Table 6 presents the discrete prediction accuracy, i.e., how

often our cost model predicted the fastest approach correctly
for each experiment and memory region corresponding to the
results of Figure 5. This quantity matters because a typical
cost-based optimizer uses a cost model only to predict the
fastest approach. Table 7 presents the standard R2 score
for predicting the absolute runtimes. We split them by ap-
proach and memory region because the models are different
for each. Similarly, Table 8 presents the mean and median
percentage error in the predictions.

Experiment RSM RMM RLM

Tuple Ratio 75% 75% 100% 83%

Feature Ratio 100% 100% 100% 100%

Iterations 100% 100% 100% 100%

92% 92% 100% 95%

Table 6: Discrete prediction accuracy of cost model.

Approach RSM RMM RLM

Materialize 0.65 0.23 0.65

Stream 0.55 0.88 -1.2

Stream-Reuse 0.27 – –

Factorize 0.77 0.77 0.67

Table 7: Standard R2 scores for predicting runtimes.

J. COMPARING GRADIENT METHODS
While our focus in this paper has been on performance

at scale for learning over joins, we briefly mention an inter-
esting finding regarding the behavior of different gradient
methods on a dataset with the redundancy that we study.
This particular experiment is agnostic to the approach we

Approach RSM RMM RLM

Materialize 33% / 30% 33% / 23% 31% / 29%

Stream 33% / 30% 20% / 16% 73% / 75%

Stream-Reuse 42% / 37% – –

Factorize 22% / 14% 26% / 19% 25% / 26%

Table 8: Mean / median percentage error for pre-
dicting runtimes.

BGD

CGD

LBFGS

0 10 20 30 40
1E2

1E3

1E4

1E5

0 100 200 300 400
1E2

1E3

1E4

1E5

Number of Iterations Number of Passes
L
o
s
s
 (

L
o
g
s
c
a
le

)

L
o
s
s
 (

L
o
g
s
c
a
le

)

A B

Figure 13: Comparing gradient methods: Batch
Gradient Descent (BGD), Conjugate Gradient
(CGD), and Limited Memory BFGS (LBFGS) with
5 gradients saved. The parameters are nS = 1E5,
nR = 1E4, dS = 40, and dR = 60. (A) Loss after each
iteration. (B) Loss after each pass over the data
(extra passes needed for line search to tune α).

use to learn over the join. Figure 13 plots the loss for three
popular gradient methods for LR – BGD, CGD, and LBFGS
– against the number of iterations and the number of passes.
As expected, BGD takes more iterations to reach a similar
loss as CGD. However, the behavior of LBFGS (with five
gradients saved to approximate the Hessian) is more per-
plexing. Typically, LBFGS is known to converge faster than
CGD in terms of number of iterations [6,26] but we observe
otherwise on this dataset. We also observe that LBFGS
performs many extra passes to tune the stepsize, making
it slower than even BGD in this case. However, it is pos-
sible that a different stepsize tuning strategy might make
LBFGS faster. While we leave a formal explanation to fu-
ture work, we found that the Hessians obtained had high
condition numbers, which we speculate might make LBFGS
less appealing [26].

