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Learning Generalized Nash Equilibria in a Class of Convex Games

Tatiana Tatarenko∗ Maryam Kamgarpour†∗

October 4, 2018

Abstract

We consider multi-agent decision making where each agent optimizes its convex cost function subject

to individual and coupling constraints. The constraint sets are compact convex subsets of a Euclidean

space. To learn Nash equilibria, we propose a novel distributed payoff-based algorithm, where each agent

uses information only about its cost value and the constraint value with its associated dual multiplier.

We prove convergence of this algorithm to a Nash equilibrium, under the assumption that the game

admits a strictly convex potential function. In the absence of coupling constraints, we prove convergence

to Nash equilibria under significantly weaker assumptions, not requiring a potential function. Namely,

strict monotonicity of the game mapping is sufficient for convergence. We also derive the convergence

rate of the algorithm for strongly monotone game maps.

1 Introduction

Decision making in multi-agent systems arises in engineering applications ranging from electricity markets
to telecommunication and transportation networks [2, 37, 40]. Game theory provides a powerful framework
for analyzing and optimizing decisions in multi-agent systems. The notion of an equilibrium in a game
characterizes stable solutions to multi-agent decision making problems. In this work, we design a distributed
learning algorithm to converge to Nash equilibria for a class of non-cooperative games modeled by convex
objective functions and coupling constraints.

There is a large body of work on computation of Nash equilibria. The approaches differ mainly by the
particular structure of agents’ cost functions as well as the information available to each agent. In a so-called
potential game, a central optimization problem can be formulated whose minimizers coincide with a subset
of the Nash equilibria of the game. One can then leverage distributed optimization algorithms to compute
the minima of the potential function [21, 38], despite agents’ limited information of others’ cost functions
or action sets. Distributed algorithms have also been designed for the class of aggregative games [14, 31].
In general, for implementation of the aforementioned distributed algorithms each agent needs to know the
structure of its cost function or its derivative. Furthermore, agents may need to communicate with each
other or with a central entity, even if their strategy spaces are decoupled.

In contrast to deterministic distributed optimization approaches, learning approaches start with the
assumption that the each agent’s objective function or its derivative may not be known to the agent itself
nor to the other agents. They attempt to compute Nash equilibria by sampling agents’ actions from a set
of probability distributions. These probability distributions are updated based on the information available
in the system. In particular, most of the past work has focused on algorithms that require the ability of
each agent to evaluate its cost function at any feasible point, given fixed actions of all other agents, and
convergence is established for the subclass of potential games [23, 33, 45, 47].

In many practical situations the agents do not know functional form of their objectives and can only
access the values of their objective functions at a played action. Such situations arise, for example, in
electricity markets (unknown price functions or constraints) [24, 50], network routing (unknown traffic de-
mands/constraints) [5, 26], and sensor coverage problems (unknown density function on the mission space)
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[55]. In such cases, the information structure is referred to as payoff-based, that is, each agent can only
observe its obtained payoffs and be aware of its local actions. A payoff-based learning algorithm in potential
games is proposed in [25] with the guarantee of stochastic stability of potential function minimizers. However,
to implement this payoff-based algorithm agents need to have some memory. Other algorithms requiring
only payoff-based information and memory are proposed in [10] and [55]. These learning procedures assume
a potential game and guarantee convergence to a distribution over potential function minimizers in total
variation. In [42] the idea of dynamic feedback is utilized for matrix games and an extension of fictitious
play is proposed that considers empirical frequencies and their derivatives. The convergence to Nash equi-
librium in this setting is established. Learning based approaches are also proposed in [34] for non-potential
games, where stochastic convergence to the Nash equilibrium maximizing social welfare is guaranteed.

The above payoff-based procedures are applicable to games with finite action spaces. For games with
uncountable action spaces, a payoff-based approach was developed based on extremum seeking [8]. The
extremum seeking approach designs a dynamic update law for the actions based on sinusoidally perturbed
measured payoffs. If the amplitude and frequency of this sinusoid are chosen properly, locally asymptotically
stable equilibria of this dynamical system will correspond to Nash equilibria of the game. This approach was
extended to account for stochastic noise affecting measurements of the cost functions [44]. Given strongly
convex cost functions almost sure convergence to a Nash equilibrium was proven. An alternative payoff-based
approach, inspired by the logit dynamics in finite action games [4], was proposed in [46] in a potential game
setting. This approach considered sampling agents’ actions from a Gaussian distribution. The result was
generalized to arbitrary games (not necessarily potential) with uncoupled action sets in [48].

Despite considerable progress in learning algorithms for games, the work on payoff-based learning has not
considered convex cost functions and coupling constraints on agents’ actions. In several realistic scenarios in
which players share resources each player’s feasible strategy space depends on the other players’ actions. For
example, in an electricity market, there are coupling constraints due to the underlying physical electricity
network. Similar constraints exist in a transportation or telecommunication network and general deregulated
economy problems [41]. The Nash equilibria in a game with coupling constraints are referred to as generalized
Nash equilibria. Ensuring uniqueness of these equilibria and computing them is a lively research topic [7].

We focus on learning equilibria in a subset of generalized Nash equilibrium problems in which the coupling
constraint is shared among the agents and is jointly convex (convex in all actions). In this setting, one
can formulate a variational equilibrium problem to characterize a subset of the generalized Nash equilibria,
referred to as variational equilibria [7]. In addition to computational advantages, variational equilibria present
few desired practical properties. For example, since in this equilibrium, the dual multiplier associated to
the joint constraint is equal across all players, there is a well-defined cost associated to constraint violation.
Note that variational equilibria are also a subset of the normalized equilibria, introduced in the seminal work
[36], where the normalizing coefficients considered in [36] would be constant across all players. The authors
in [20] further derived theoretical connections between variational equilibria and generalized Nash equilibria
and showed that in the interior of the shared constraint sets, the two equilibria concepts are equivalent.

Recent research has focused on distributed algorithms for computing generalized Nash equilibria. Authors
in [53] consider variational equilibria in monotone games and propose a primal-dual distributed algorithm.
Similarly, [30, 9] addresses decentralized computation of variational equilibria for aggregative games. In [39] a
distributed primal-dual algorithm for computing generalized Nash equilibria is proposed for a network game.
In the network game setting, it is assumed that there exists a communication graph through which each player
can share its strategy information with its neighbors. Hence, some coordination between agents is needed.
In all the above work, each agent needs to know the functional form of their cost function or its gradient.
The work in [54] suppresses this requirement and develops a primal-dual algorithm for learning generalized
Nash equilibria. Nevertheless, players need to exchange information with their neighbors according to the
network graph. As such, they can estimate the gradients of their cost functions online using neighborhood
information.

The approach to estimate the gradient of a cost function online is well-studied in the stochastic opti-
mization literature [28]. In the game setting however, this approach necessitates some coordination between
agents. This is because for a given player to estimate the gradient of its cost function, it needs to evaluate
this cost function at at least two points of its strategy space while other agents who influence the player’s cost
function should not change their actions (otherwise, the player cannot attribute the decrease/increase of its
cost to its own actions and hence, the gradient cannot be estimated). Our goal is to develop a payoff-based
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algorithm that bypasses the need for coordination or information exchange during each step of the algorithm.
Naturally however, similar to all past algorithms, the agents must agree to implement the algorithm.

Our contributions are as follows. First, we develop a payoff-based approach for computing Nash equilibria
in a class of convex games with jointly convex coupling constraints. Second, we prove almost sure convergence
of the algorithm to variational Nash equilibria, under the existence of a strictly convex potential function.
Third, in the absence of coupling constraints, we prove almost sure convergence to variational Nash equilibria,
relaxing the requirement of existence of a potential function. Fourth, for this latter setup, we quantify the
convergence rate of the payoff-based algorithm if the game map is strongly monotone. While our setup is
similar to [36, 53, 54, 30], in contrast to the above work we do not require knowledge of the cost functions,
constraints or their gradients [30, 53]. Also, we require neither information exchange between players [39, 54],
nor knowledge of a norm bound on the dual multipliers of the coupling constraints [54].

Our approach is detailed as follows. We extend the game to define a player corresponding to the dual
multiplier of the coupling constraints, similar to [53, 54, 30, 9]. We then develop a novel sampling based
approach, in which the probability distributions from which agents sample their actions are Gaussian, inspired
by the literature on learning automata [51]. The mean of the distribution is updated iteratively by each
agent based only on its own current payoff and local constraint set. The dual player, on the other hand,
updates its action deterministically by measuring constraint violation at each time step. Notice that similar
to [30, 54] the dual player is a fictitious player. It can refer to a central coordinator who measures the
constraint violation at each step. Alternatively, if each agent can locally measure the constraint violation, it
can update its dual variable. Furthermore, similar to primal-dual algorithms in [30, 53, 54] constraints are
satisfied upon convergence of the algorithm. To prove convergence of our algorithm we leverage results on
Robbins-Monro stochastic approximation [3, 29]. We quantify the convergence rate based on rate estimates
in stochastic projection algorithms [43].

This paper is organized as follows. In Section 2, we set up the game under consideration. In Section 3,
we propose our payoff-based approach and present its convergence result. Section 4 develops the proof of the
main result using supporting theorems on stochastic random variables. In Section 5, we relax the coupling
constraint and consequently, the requirements for convergence of the proposed algorithm. Furthermore, we
provide a convergence rate for this latter case. A case study is provided in Section 6 based on a game arising
in a classical Cournot economic model. In Section 7, we summarize the result and discuss future work.

Notations and basic definitions. The set {1, . . . , N} is denoted by [N ]. Boldface is used to distinguish
between vectors in a multi-dimensional space and scalars. Given N vectors xi ∈ R

d, i ∈ [N ], [xi]Ni=1 :=

[x1⊤, . . . ,xN
⊤
]⊤ ∈ R

Nd; x−i := [x1, . . . ,xi−1,xi+1, . . . ,xN ] ∈ R
(N−1)d. R

d
+ and Z+ denote respectively,

vectors from R
d with non-negative coordinates and non-negative whole numbers. The standard inner product

on R
d is denoted by (·, ·): R

d × R
d → R, with associated norm ‖x‖:=

√

(x,x). We let R
d
≤K = {x ∈ R

d :
‖x‖≤ K}. Id represents the d-dimensional identity matrix and 1N represents the N -dimensional vector of
unit entries. Given some matrix A ∈ R

d×d, A � (≻)0, if and only if x⊤Ax ≥ (>)0 for all x 6= 0.
Given a function g(x,y) : R

d1 × R
d2 → R, we define the mapping ∇xg(x,y) : R

d1 × R
d2 → R

d1

component-wise as [∇xg(x,y)]i :=
∂g(x,y)
∂xi . We use the big-O notation, that is, the function f(x) : R → R

is O(g(x)) as x → a, f(x) = O(g(x)) as x → a, if limx→a
|f(x)|
|g(x)| ≤ K for some positive constant K. We say

that a function f(x) grows not faster than a function g(x) as x → ∞, if there exists a positive constant Q
such that f(x) ≤ g(x) for any x with ‖x‖≥ Q.

Definition 1. The mapping M : Rd → R
d is called pseudo-monotone over X ⊆ R

d, if (M(y),x− y) ≥ 0
implies (M(x),x− y) ≥ 0 for every x,y ∈ X.

Definition 2. The mapping M : Rd → R
d is called strongly monotone over X ⊆ R

d with constant κ > 0, if
(M(x)−M(y),x−y) ≥ κ‖x−y‖2 for any x,y ∈ X. It is strictly monotone if (M(x)−M(y),x−y) > 0
for any x,y ∈ X.

Definition 3. Let C be a convex constraint set described by a finite set of convex inequality constraints
C = {x ∈ R

d : f i(x) ≤ 0, i ∈ [m]}. The Slater’s constraint qualification consists in existence of a strictly
feasible point x∗ ∈ C, f i(x∗) < 0 for i ∈ [m].
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2 Problem Formulation

2.1 Convex games with coupling constraints

We consider a game Γ(N, {Ai}, {Ji}, C) with N players. We assume that the action of the ith player is locally
constrained to ai ∈ Ai ⊂ R

d and that the vector of joint actions1, a = [a1 . . . ,aN ] ∈ A = A1 × . . . × AN ,
has to belong to a global coupling constraint set C, namely

a ∈ C = {a ∈ A : g(a) ≤ 0}, (1)

where g : RNd → R
n with coordinates gi(a), i ∈ [n]. Let Q = A ∩ C, Qi(a−i) = {ai ∈ Ai : g(ai,a−i) ≤ 0}.

The cost functions Ji : R
Nd → R indicate the cost Ji(a) the agent i has to pay, given any joint action a ∈ Q.

Throughout this paper we assume Ai to be compact for all i ∈ [N ].
A generalized Nash equilibrium (GNE) in a game Γ with coupled actions represents a joint action from

which no player has any incentive to unilaterally deviate.

Definition 4. A point a∗ ∈ Q is called a generalized Nash equilibrium (GNE) if for any i ∈ [N ] and
ai ∈ Qi(a∗−i)

Ji(a
∗i,a∗−i) ≤ Ji(a

i,a∗−i).

If C = R
Nd then Qi(a−i) = {ai : ai ∈ Ai} and any a∗ for which the inequality above holds is a Nash

equilibrium (NE).

We consider convex games as follows.

Assumption 1. The game under consideration is convex. Namely, for all i ∈ [N ] the set Ai is convex and
compact, the cost function Ji(a

i,a−i) is defined on R
Nd, continuously differentiable in a and convex in ai

for fixed a−i. The coupling constraint function g : RNd → R
n is continuously differentiable and has convex

coordinates gi(a), i ∈ [n].

Given differentiable cost functions, we define the game mapping and the extended game mapping.

Definition 5. The mapping M : RNd → R
Nd, referred to as the game mapping of Γ(N, {Ai}, {Ji}, C) is

defined by

M(a) =

[M1,1(a), . . . ,M1,d(a), . . . ,MN,1(a), . . . ,MN,d(a)]
⊤,

Mi,k(a) =
∂Ji(a)

∂aik
, a ∈ Q = A ∩ C, i ∈ [N ], k ∈ [d]. (2)

Definition 6. The mapping M0 : R
Nd+n → R

Nd+n, referred to as the extended game mapping of
Γ(N, {Ai}, {Ji}, C) with coupled actions, is defined by

M0(a,λ) = [M0
1(a,λ), . . . ,M

0
N (a,λ),−g(a)]⊤,

M0
i (a,λ) = [M0

i,1(a,λ), . . . ,M
0
i,d(a,λ)], i ∈ [N ],

M0
i,k(a,λ) =Mi,k(a) +

∂(λ,g(a))

∂aik
, a ∈ Q = A ∩ C,

i ∈ [N ], k ∈ [d]. (3)

To design an algorithm with bounded iterates, we need the following standard assumptions [30, 53, 54, 7].

Assumption 2. The coordinates M0
i (a,λ) : RNd+n → R

d of extended mapping M0(a,λ) : RNd+n →
R
Nd+n of a game Γ(N, {Ai}, {Ji}, C) with coupled actions are Lipschitz on R

Nd with respect to coordinates
a with a linear function Li(λ) . The function g(a) is Lipschitz on R

Nd. Moreover, the extended game
mapping M0(a,λ) is pseudo-monotone on Q× R

n
+ = (A ∩ C)× R

n
+.

1All results below are applicable for games with different dimensions {di} of the action sets {Ai}.
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Assumption 3. The sets Ai, i ∈ [N ], A, and Q satisfy the Slater’s constraint qualification (see Definition 3).

Assumption 4. The cost functions Ji(a), i ∈ [N ], grow not faster than a quadratic function of ai as
‖ai‖→ ∞.

Let us provide some insight on the assumptions above.

Remark 1. If agents’ cost functions are quadratic and coupling constraints are linear, the extended game
mapping is affine, namely M0(a,λ) = M [a,λ]⊤ +m, where M ∈ R

(Nd+n)×(Nd+n) and m ∈ R
Nd+n. The

affine mapping above is pseudo-monotone if M is positive semi-definite [11]. This is in particular fulfilled if
the quadratic forms of the cost functions are positive definite or semi-definite (see [31] and [48], respectively).
However, if the affine map is pseudo-monotone for every m then M is positive semi-definite and hence the
map is also monotone [11]. In general, monotonicity implies pseudo-monotonicity and the former is more
stringent2.

Remark 2. Since the extended mapping M0(a,λ) is affine in λ, the Lipschitz condition for M0(a,λ) in
Assumption 2 above holds if the coordinates M i(a), i ∈ [N ], of game mapping M(a) and the functions
∂gj(a)

∂ai
k

, j ∈ [n], i ∈ [N ], k ∈ [d], are Lipschitz with respect to their argument a = (a1, . . . ,aN ) with some

constants li, l
k
j,i respectively.

Remark 3. Given Lipschitz continuity of g on R
Nd, the functions gi(a), i ∈ [n], grow not faster than a

linear function of a as ‖a‖→ ∞. Furthermore, since the action sets are compact, we can always approximate
Ji outside Ai by a quadratic function without loss of generality.

2.2 Generalized Nash equilibria and Variational Inequalities

Here, we prove that the set of GNE is nonempty, given fulfillment of Assumptions 1-3 for the game
Γ(N, {Ai}, {Ji}, C). This result will be obtained through connecting generalized Nash equilibria and so-
lutions of variational inequalities. Moreover, we model an uncoupled action game associated with the game
Γ and establish the relation between its Nash equilibria and the GNE of the game Γ. Existence of such an
uncoupled action game will allow us to present a payoff-based approach to learning GNE in the initial game
Γ.

Definition 7. Consider a mapping T (·): R
d → R

d and a set Y ⊆ R
d. The solution set SOL(Y,T ) to the

variational inequality problem V I(Y,T ) is a set of vectors y∗ ∈ Y such that (T (y∗),y − y∗) ≥ 0, for all
y ∈ Y .

Given V I(Y,T ), suppose that the set Y is compact, convex and that the mapping T is continuous. Then,
SOL(Y,T ) is nonempty and compact (see Corollary 2.2.5 in [32]. )

For a game Γ(N, {Ai}, {Ji}, C) with coupled actions Q = A ∩ C, we can define V I(Q,M), where M

is the game mapping defined in (2). Under Assumption 1, Theorem 2.1 in [6] implies that SOL(Q,M) is
non-empty and if a∗ ∈ SOL(Q,M), then a∗ is a GNE in the game Γ.

A challenge in developing a payoff-based learning based algorithm lies in the coupling constraint C.
Hence, our goal is to develop a game with uncoupled actions whose equilibria can be used to find those of
the original game Γ. To do so, we first define an associated game Γa(A× R

n
+) as follows:

Γa(A× R
n
+) = Γa(N + 1, {J0

i }i∈[N+1], {{Ai}i∈[N ],R
n
+}), (4)

with N + 1 players. The first N players are called regular and the (N + 1)th player is called dual. The
action sets of the regular players coincide with the local action sets {Ai} of the players in the initial game
Γ, whereas the action set of the dual player is the set Rn+. The cost functions of the players in Γa(A× R

n
+)

are defined as follows:

J0
i (a

i,a−i,λ) = Ji(a
i,a−i) + (λ,g(ai,a−i)), i ∈ [N ],

J0
N+1(a,λ) = −(λ,g(a)). (5)

2As an example, gradient of any pseudo-convex function such as x3 + x is pseudo-monotone but not necessarily monotone.
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So, the cost function of each regular player i ∈ [N ] in the game Γa(A× R
n
+) is composed of two terms: the

original cost function from the game Γ plus an additional term that depends on the strategy λ of the dual
player and on the influence of the current joint action in the coupling constraint. As λ ≥ 0, the latter can
be interpreted as a term penalizing violations of the global constraint by the given joint action.

Lemma 1. Let Γ(N, {Ai}, {Ji}, C) be a game for which Assumptions 1-3 hold. Then,

1) [a∗,λ∗] ∈ A× R
n
+ is a Nash equilibrium in Γa(A× R

n
+), if and only if [a∗,λ∗] ∈ SOL(A× R

n
+,M

0),

2) if [a∗,λ∗] is a Nash equilibrium in Γa(A× R
n
+), then a∗ is a GNE of Γ,

3) there exists a Nash equilibrium [a∗,λ∗] in Γa(A× R
n
+),

4) for any Nash equilibrium [a∗,λ∗] in Γa(A× R
n
+) there exists a constant K > 0 such that ‖λ∗‖≤ K.

Please refer to the appendix for the proof of the above lemma.

3 Payoff-Based Algorithm

Let xi(t) = [xi1(t), . . . , x
i
d(t)]

⊤ ∈ R
d denote the strategy of player i at iteration t referred to as its state

and Ĵ0
i (t) = J0

i (x
1(t), . . . ,xN (t),λ(t)) the current value of its cost at a joint state. Each regular player

i ∈ [N ], “mixes” its state, namely, it chooses its state xi(t) randomly according to the multidimensional
normal distribution N(µi(t) = [µi1(t), . . . , µ

i
d(t)]

⊤, σi(t)) with density:

pi(x
i
1, . . . , x

i
d;µ

i(t), σi(t))

=
1

(
√
2πσi(t))d

exp

{

−
d
∑

k=1

(xik − µik(t))
2

2σ2
i (t)

}

,

where i ∈ [N ]. Our choice of Gaussian distribution is based on the idea of Continuous Action-set Learning
Automaton presented in the literature on learning automata [51].

The mean µi(t) of the state’s distribution is considered an action of the regular agent i and is updated
as follows:

µi(t+ 1) = (6)

ProjAi

[

µi(t)− γi(t+ 1)σ2
i (t+ 1)Ĵ0

i (t)
xi(t)− µi(t)

σ2
i (t)

]

,

where i ∈ [N ], γi(t + 1) is a step-size parameter chosen by player i and ProjAi
[·] denotes the projection on

set Ai. The initial value of µ(0) can be set to any finite value arbitrarily.
As for the dual player N + 1, it updates its current action λ(t) based only on the observation of the

violation of the constraint C, namely based on the actual value ĝ(t), of the function g(x1(t), . . . ,xN (t)) at
the current joint state of the regular players as follows:

λ(t+ 1) = Proj
R

n
+
[λ(t) + β0(t+ 1)ĝ(t)], (7)

where β0(t + 1) is a step-size parameter chosen by the dual player N + 1. The initial value of λ(0) can be
arbitrarily set to any finite value.

Note that in contrast to the approach in computing generalized Nash equilibria presented in [54], our
proposed payoff-based algorithm does not rely on the specified bound K of the dual variable λ∗ in the
associated bounded game Γab(A × R

n
≤K+r), nor does it assume a communication graph between agents to

estimate local gradients.
To analyze the convergence of this algorithm, we show that this algorithm is analogous to the Robbins-

Monro stochastic approximation procedure [3].
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Given σ = (σ1, . . . , σN ), for any j ∈ [N + 1] define

J̃0
j (µ

1, . . . ,µN ,λ,σ) =

∫

RNd

J0
j (x,λ)p(µ,x,σ)dx,

p(µ,x,σ) =

N
∏

j=1

pj(x
j
1, . . . , x

j
d;µ

j , σj).

For j ∈ [N+1], J̃0
j can be interpreted as the jth player’s cost function in mixed strategies of the regular play-

ers, given that the mixed strategies of these players are multivariate normal distributions {N(µi, σi)}i∈[N ].
It follows that the second terms inside the projections in (6) and (7) are samples of the gradient of the cost
function with respect to these mixed strategies. In particular, we can verify that for all µ ∈ A3

Ex(t){Ĵ0
i (t)

xik(t)− µik(t)

σ2
i (t)

} (8)

=E{J0
i (x

1(t), . . . ,xN (t),λ(t))
xik(t)− µik(t)

σ2
i (t)

|

xik(t) ∼ N(µik(t), σi(t)), i ∈ [N ], k ∈ [d]}

=
∂J̃0

i (µ
1(t), . . . ,µN (t),λ(t),σ(t))

∂µik
, ∀i ∈ [N ], k ∈ [d],

Ex(t){ĝ(t)} = E{g(x1(t), . . . ,xN (t))| (9)

xik(t) ∼ N(µik(t), σi(t)), i ∈ [N ], k ∈ [d]}
=−∇λJ̃

0
N+1(µ

1(t), . . . ,µN (t),λ(t),σ(t)).

Using the notation η(t) = [µ(t),λ(t)], we can rewrite the algorithm steps (6)-(7) in the following form:

µi(t+ 1) = ProjA[µi(t)− γi(t+ 1)σ2
i (t+ 1) (10)

× (M0
i (η(t)) +Qi(η(t),σ(t)) +Ri(η(t),x(t),σ(t)))],

λ(t+ 1) = Proj
R

n
+
[λ(t)− β0(t+ 1)× (− g(µ(t)) (11)

+QN+1(η(t),σ(t)) +RN+1(η(t),x(t),σ(t)))],

where for i ∈ [N ]

Qi(η(t),σ(t)) = M̃
0

i (η(t),σ(t))−M0
i (η(t)),

Ri(x(t),η(t),σ(t)) = F i(x(t),η(t),σ(t))− M̃
0

i (η(t), σ(t)),

F i(x(t),η(t),σ(t)) = Ĵ0
i (t)

xi(t)− µi(t)

σ2
i (t)

,

and M̃
0

i (·) = [M̃0
i,1(·), . . . , M̃0

i,d(·)]⊤ is the d-dimensional mapping with the following elements:

M̃0
i,k(η(t),σ(t)) =

∂J̃0
i (η(t),σ(t))

∂µik
, for k ∈ [d]. (12)

Furthermore,

QN+1(η(t),σ(t)) = M̃
0

N+1(η(t),σ(t)) + g(µ(t)),

RN+1(x(t),η(t),σ(t)) = −ĝ(t)− M̃
0

N+1(η(t),σ(t)),

3Assumption 4 and compact set A justify differentiation under the integral sign of J̃0

i
(µ1(t), . . . ,µN (t),λ(t),σ(t)).
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and M̃
0

N+1(η(t),σ(t)) = ∇λJ̃
0
N+1(η(t),σ(t)). The algorithm (10)-(11) falls under the framework of Robbins-

Monro stochastic approximations procedure [3], where

M0(η(t)) = [M0
1(η(t)), . . . ,M

0
N (η(t)),−g(µ(t))],

corresponds to the gradient term in stochastic approximation procedures. Furthermore,

Q(η(t),σ(t)) = [Q1(η(t),σ(t)), . . . ,QN (η(t),σ(t)),

QN+1(η(t),σ(t))],

is a disturbance of the gradient term, and

R(x(t),η(t),σ(t)) = [R1(x(t),η(t),σ(t)), . . . ,

RN (x(t),η(t),σ(t)),RN+1(x(t),η(t),σ(t))],

is a Martingale difference. Namely, according to (8) and (9),

Ri(x(t),η(t),σ(t)) = F i(x(t),η(t),σ(t)) (13)

− Ex(t){F i(x(t),η(t),σ(t))}, i ∈ [N ],

RN+1(x(t),η(t),σ(t)) = −ĝ(t) + Ex(t){ĝ(t)}. (14)

To ensure convergence of the iterates η(t), the step-sizes β0(t), σi(t), γi(t), i ∈ [N ], need to satisfy
certain assumptions. Let βi(t) = γi(t)σ

2
i (t), βmin(t) = mini∈{0,[N ]} βi(t), βmax(t) = maxi∈{0,[N ]} βi(t),

γmax(t) = maxi∈[N ] γi(t).

Assumption 5. The variance parameters σi(t) and the step-size parameters β0(t), γi(t), i ∈ [N ], are chosen
such that

1)
∑∞
t=0 βmin(t) = ∞,

2)
∑∞
t=0 βmax(t)− βmin(t) <∞,

3)
∑∞
t=0 γ

2
max

(t) <∞,
∑∞
t=0 γmax(t)σ

3
max

(t) <∞.

Remark 4. Similar to [16] the agents choose algorithm parameters independently and the only coordination
is in Assertion 2) above. An example of sequences γi(t), σi(t), i ∈ [N ], β0(t) is the protocol for distributed
optimization schemes [16], where each regular agent picks a positive integer Ri, i ∈ [N ], the dual player picks
a positive integer N0, and γi(t) =

1
(t+Ri)a

, σi(t) =
1

(t+Ri)b
, i ∈ [N ], β0(t) =

1
(t+N0)a+2b , with a+2b ∈ (0.5, 1],

2a > 1, and a+ 3b > 1.

For our convergence results under coupling constraints, we will consider potential games as defined below.

Assumption 6. The game Γ(N, {Ai}, {Ji}, C) admits a strictly convex potential function f : RNd → R,

with ∂f(a)
∂ai

k

= Mi,k(a). This is equivalent to the Jacobian of the game mapping M : RNd → R
Nd being

symmetric (Theorem 1.3.1 in [32]. )

Theorem 1. Let Assumptions 1-4, 6 hold in a game Γ(N, {Ai}, {Ji}, C). Let the regular players choose
the states {xi(t)} at time t according to the normal distribution N(µi(t), σi(t)), where the mean parameters
are updated as in (6). Let the action λ(t) of the dual player is updated according to (7). Let the variance
parameters and the step-size parameters satisfy Assumption 5 Then, as t → ∞, the mean vector µ(t)
converges almost surely to the generalized Nash equilibrium µ∗ = a∗ of the game Γ, given any initial vector
[µ(0),λ(0)], and the joint state x(t) converges in probability to a∗.

Remark 5. Analogously to optimization methods based on the gradient descent iterations, condition 1) in
Assumption 5,

∑∞
t=0 βmin(t) = ∞, guarantees sufficient energy for the time-step parameter γi(t)σ

2
i (t) to

let the algorithm (10)-(11) get to a neighborhood of a desired stationary point for each i, whereas condition
∑∞
t=0 γ

2
max

(t) <∞ ensures the algorithm converges as time goes to infinity.
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4 Analysis of the Algorithm Convergence

Our approach in proving Theorem 1 is to first prove boundedness of the iterates η(t). Next, we show that
the limit of the iterates η(t) exists and satisfies the conditions for being a variational equilibrium of the game
Γ(N, {Ai}, {Ji}, C).

4.1 Boundedness of the Algorithm Iterates

First, we demonstrate that under conditions of Theorem 1 the vector η(t) stays almost surely bounded for
any t ∈ Z+.

Lemma 2. Let Assumptions 1-4 hold in a game Γ(N, {Ai}, {Ji}, C) with coupled actions and η(t) =
[µ(t),λ(t)] be the vector updated in the run of the payoff-based algorithm (10)-(11). Let the variance pa-
rameters and the step-size parameters satisfy Assumption 5. Then, Pr{supt≥0‖η(t)‖<∞} = 1.

Proof. In the following, for simplicity in notation, we omit the argument σ(t) in the terms M0, M̃
0
, Q,

and R. In certain derivations, for the same reason we omit the time parameter t as well. According to the
vector form of the algorithm (10)-(11),

µi(t+ 1) =ProjAi
[µi(t)− βi(t+ 1)(M0

i (η(t)) (15)

+Qi(η(t)) +Ri(η(t),x(t)))],

λ(t+ 1) =Proj
R

n
+
[λ(t)− β0(t+ 1)× (−g(µ(t)) (16)

+QN+1(η(t)) +RN+1(η(t),x(t)))].

Let η∗ = [µ∗,λ∗] ∈ A × R
n
+ be a Nash equilibrium of the associated game Γa(A × R

n
+). This equilibrium

exists and its norm is bounded, namely ‖η∗‖<∞, according to Lemma 1, Assertions 1) and 3).
Let us define the function V (η) = ‖η−η∗‖2. We consider the generating operator of the Markov process

η(t)

LV (η) = E[V (η(t+ 1)) | η(t) = η]− V (t,η).

Our goal is to show that LV (η(t)) satisfies sufficient decay, as per results on stability of discrete-time Markov
processes ([29], Theorem 2.5.2). That is,

LV (η(t)) ≤ −α(t+ 1)ψ(η(t)) + f(t)(1 + V (η(t))),

where the functions ψ(.) ≥ 0, f(.) > 0 will be identified as per requirements of ([29], Theorem 2.5.2) (repeated
in Theorem 4 in the appendix for completeness).

Taking into account the iterative procedure for the update of η(t) above and the non-expansion property
of the projection operator on a convex set, we get

‖µi(t+ 1)− µ∗
i ‖2= ‖ProjAi

[µi(t)− βi(t+ 1)(M0
i (η(t))

+Qi(η(t)) +Ri(x(t),η(t)))]− µ∗
i ‖2

≤ ‖µi(t)− µ∗
i − βi(t+ 1)(M0

i (η(t))

+Qi(η(t)) +Ri(x(t),η(t)))‖2

= ‖µi(t)− µ∗
i ‖2−2βi(t+ 1)(M0(η(t)),µi(t)− µ∗

i )

− 2βi(t+ 1)(Qi(η(t)) +Ri(x(t),η(t)),µi(t)− µ∗
i )

+ β2
i (t+ 1)‖Gi(x(t),η(t))‖2, (17)

where, for ease of notation we have defined

Gi(x(t),η(t)) = M0
i (η(t)) +Qi(η(t)) +Ri(x(t),η(t)). (18)
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Similarly, we can bound the dual term

‖λ(t+ 1)− λ∗‖2

= ‖Proj
R

n
+
[λ(t)− β0(t+ 1)(−g(µ(t)) +QN+1(η(t))

+RN+1(η(t),x(t)))]− λ∗‖2

≤ ‖λ(t)− λ∗ − β0(t+ 1)(−g(µ(t)) +QN+1(η(t))

+RN+1(x(t),η(t)))‖2

= ‖λ(t)− λ∗‖2−2β0(t+ 1)(−g(µ(t)),λ(t)− λ∗)

− 2β0(t+ 1)(QN+1(η(t)) +RN+1(x(t),η(t)),λ(t)− λ∗)

+ β2
0(t+ 1)‖GN+1(x(t),η(t))‖2, (19)

with

GN+1(x(t),η(t))

= −g(µ(t)) +QN+1(η(t)) +RN+1(x(t),η(t)). (20)

Thus, taking into account the Martingale properties in (13) and (14) of the terms Rj , j ∈ [N +1], we obtain

LV (η) = E[‖η(t+ 1)− η∗‖2|η(t) = η]− ‖η − η∗‖2

=

N
∑

i=1

(

E[‖µi(t+ 1)− µ∗
i ‖2|η(t) = η]− ‖µi − µ∗

i ‖2
)

+ E[‖λ(t+ 1)− λ∗‖2|η(t) = η]− ‖λ− λ∗‖

≤ − 2

N
∑

i=1

βi(t+ 1)(M0
i (η),µi − µ∗

i )

− 2β0(t+ 1)(−g(µ),λ− λ∗)

− 2

N
∑

i=1

βi(t+ 1)(Qi(η),µi − µ∗
i )

− 2β0(t+ 1)(QN+1(η),λ− λ∗)

+

N
∑

i=1

β2
i (t+ 1)E{‖Gi(x(t),η(t))‖2|η(t) = η}

+ β2
0(t+ 1)E{‖GN+1(x(t),η(t))‖2|η(t) = η}. (21)

Now, we bound the first two terms in the last expression above.

− 2

N
∑

i=1

βi(t+ 1)(M0
i (η),µi − µ∗

i )

− 2β0(t+ 1)(−g(µ),λ− λ∗)

= −2βmin(t+ 1)(M0(η),η − η∗)

+ 2βmin(t+ 1)(M0(η),η − η∗)

− 2

N
∑

i=1

βi(t+ 1)(M0
i (η),µi − µ∗

i )

− 2β0(t+ 1)(−g(µ),λ− λ∗)

≤ −2βmin(t+ 1)(M0(η),η − η∗)

+ 2(βmax(t+ 1)− βmin(t+ 1))‖M0(η)‖‖η − η∗‖
≤ −2βmin(t+ 1)(M0(η),η − η∗)

+ 2(βmax(t+ 1)− βmin(t+ 1))k1(1 + V (η)), (22)
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for some constant k1 > 0, where the last inequality is due to the linear behavior of the mapping M0(η) at
infinity (see Assumption 4). Hence, (21) and (22) imply

LV (η) ≤ −2βmin(t+ 1)(M0(η),η − η∗)

+ 2(βmax(t+ 1)− βmin(t+ 1))k1(1 + V (η))

+ 2

N
∑

i=1

βi(t+ 1)‖Qi(η)‖‖µi − µ∗
i ‖

+ 2β0(t+ 1)‖QN+1(η)‖‖λ− λ∗‖

+

N
∑

i=1

β2
i (t+ 1)E{‖Gi(x(t),η(t))‖2|η(t) = η}

+ β2
0(t+ 1)E{‖GN+1(x(t),η(t))‖2|η(t) = η}.

(23)

Let us analyze the terms containing Qi for i ∈ [N + 1] in (23). First, we will show that the mapping

M̃
0

i (η(t)) (see (12)) evaluated at η(t) is equivalent to the extended game mapping (see Definition 6) in
mixed strategies, that is, for i ∈ [N + 1]

M̃
0

i (η(t)) =

∫

RNd

M0
i (x,λ)p(µ(t),x)dx. (24)

Indeed, using the notations

µi−k = (µi1, . . . , µ
i
k−1, µ

i
k−1, . . . µ

i
d) ∈ R

d−1,

xi−k = (xi1, . . . , x
i
k−1, x

i
k−1, . . . x

i
d) ∈ R

d−1,

p(µi−k, x
i
−k) =

1

(
√
2πσi)d−1

exp







−
∑

j 6=k

(xij − µij)
2

2σ2
i







p(µ−i,x−i) =

N
∏

j 6=i,j=1

1

(
√
2πσj)d

exp

{

−
d
∑

k=1

(xjk − µjk)
2

2σ2
j

}

,

we can show that for any i ∈ [N ], k ∈ [d], M̃0
i,k(η)

M̃0
i,k(η) = M̃0

i,k(µ,λ)

=
1

σ2
i

∫

RNd

J0
i (x,λ)(x

i
k − µik)p(µ,x)dx

= −
∫

RNd

J0
i (x,λ)p(µ

i
−k, x

i
−k)p(µ

−i,x−i)
1√
2πσi

× d

(

e
−

(xi
k
−µi

k
)2

2σ2
i

)

dx−i

= −
∫

RNd−1

(

J0
i (x,λ)e

−
(xi

k
−µi

k
)2

2σ2
i

)

∣

∣

∣

∣

∞(xi
k)

−∞(xi
k
)

× p(µi−k, x
i
−k)p(µ

−i,x−i)
1√
2πσi

dx−i

+

∫

RNd

∂J0
i (x,λ)

∂xik
p(µ,x)dx

=

∫

RNd

∂J0
i (x,λ)

∂xik
p(µ,x)dx. (25)
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The above holds since according to Assumption 4,

lim
xi
k
→∞(−∞)

J0
i (x,λ)e

−
(xi

k
−µi

k
)2

2σ2
i = 0,

for any fixed µik, x
−i, and λ. Thus, (24) holds for each regular player i ∈ [N ]. Moreover, for the dual player

M̃
0

N+1(η) =

∫

RNd

∇λJ
0
N+1(x,λ)p(µ,x)dx

= −
∫

RNd

g(x)p(µ,x)dx. (26)

Since Qi(η(t)) = M̃
0

i (η(t))−M0
i (η(t)) and due to Assumption 2 and equation (24), we obtain the following:

‖Qi(η)‖ = ‖
∫

RNd

[M0
i (x,λ)−M0

i (µ,λ)]p(µ,x)dx‖

≤
∫

RNd

‖M0
i (x,λ)−M0

i (µ,λ)‖p(µ,x)dx

≤
∫

RNd

Li(λ)‖x− µ‖p(µ,x)dx

≤
∫

RNd

Li(λ)

(

N
∑

i=1

d
∑

k=1

|xik − µik|
)

p(µ,x)dx

= O(

N
∑

i=1

σi)(1 + ‖η − η∗‖), (27)

where the last equality is due to the fact that the first central absolute moment of a random variable with
a normal distribution N(µ, σ) is O(σ) and Li(λ) is a linear function of λ (see Assumption 2) and, hence,
Li(λ) ≤ k(1 + ‖η − η∗‖) for some constant k. Thus,

‖Qi(η)‖‖µi − µ∗
i ‖≤ O(

N
∑

i=1

σi)(1 + V (η)). (28)

Similarly, using Assumption 2 and equality (26), we have

‖QN+1(η)‖= ‖M̃0

N+1(η) + g(µ)‖≤ O(
N
∑

i=1

σi),

‖QN+1(η)‖‖λ− λ∗‖≤ O(

N
∑

i=1

σi)(1 + V (η)). (29)

Finally, we bound the last two terms in (23). Since E(ξ − Eξ)2 ≤ Eξ2 and taking into account (13), we
have

E{‖Ri(x(t),η(t))‖2|η(t) = η}

≤
d
∑

k=1

∫

RNd

J0
i

2
(x,λ)

(xik − µik)
2

σ4
i (t)

p(µ,x)dx. (30)

Thus, we can use Assumption 4, Remark 3, and the fact that J0
i (x,λ) is affine in λ to get the next inequality:

E{‖Ri(x(t),η(t))‖2|η(t) = η}

≤ f(µ,σ(t))

(

1

σ4
i (t)

+ k2V (η)

)

, (31)
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where f(µ,σ(t)) is a polynomial of µi and σi(t), i ∈ [N ], and k2 is some positive constant.
Furthermore, taking into account boundedness of µ(t) and affinity of the mapping M0(η) with respect

to λ, we obtain the following bound for any i ∈ [N ]:

β2
i (t+ 1)E{‖Gi(x(t),η(t))‖2|η(t) = η}
≤ β2

i (t+ 1)(‖M0
i (η)‖2+‖Qi(η(t))‖2)

+ 2β2
i (t+ 1)‖M0

i (η)‖‖Qi(η)‖
+ β2

i (t+ 1)(E{‖Ri(x(t),η(t))‖2|η(t) = η})
≤ β2

i (t+ 1)(k3 + k4‖λ‖2+O(σ2
i (t))(1 + ‖η − η∗‖)2)

+ 2β2
i (t+ 1)(k5 + k6‖λ‖)O(σi(t)(1 + ‖η − η∗‖))

+O(γ2i (t+ 1)) +O(β2
i (t+ 1))V (η)

≤ O(β2
i (t+ 1)(1 + σ2

i (t) + σi(t)) + γ2i (t+ 1))

× (1 + V (η)), (32)

where kj , j = 3, . . . , 6, are some positive constants.
For the term E{‖GN+1(x(t),η(t))‖2|η(t) = η} we can first derive the following bound:

E{‖RN+1(x(t),η(t))‖2|η(t) = η}

≤
∫

RNd

‖g(x)‖2p(µ,x)dx = φ(µ,σ(t)),

where φ(µ,σ(t)) is a polynomial of µi and σi(t), i ∈ [N ] (see Remark 3). Hence, according to boundedness
of µ(t) and the fact that σ(t) goes to zero, we obtain

β2
0(t+ 1)E{‖GN+1(η(t))‖2|η(t) = η}
≤ β2

0(t+ 1)(‖g(µ)‖2+‖QN+1(η(t))‖2)
+ 2β2

0(t+ 1)‖g(µ)‖‖QN+1(η)‖
+ β2

0(t+ 1)(E{‖RN+1(η(t))‖2|η(t) = η})
≤ β2

0(t+ 1)(k7 +O(σ2
max(t)) +O(σmax(t))), (33)

where k7 is some positive constant.
Since η∗ is a NE in Γa(A× R

n
+), Assertion 1) in Theorem 1 implies that

(M0(η∗),η − η∗) ≥ 0,

for any η ∈ A×R
n
+. According to pseudo-monotonicity of M0 in Assumption 2, the inequality above implies

(M0(η),η − η∗) ≥ 0 for any η ∈ A× R
n
+. (34)

Thus, bringing (23), (28), (29), (32), and (33) together, we get

LV (η) ≤− 2βmin(t+ 1)(M0(η),η − η∗)

+ p(t)(1 + V (η)),

p(t) =O(βmax(t+ 1)− βmin(t+ 1))

+O(βmax(t+ 1)σmax(t) + γ2max(t+ 1)). (35)

Hence, using conditions on parameters in Assumption 5, we get
∑∞
t=0 p(t) <∞. Finally, taking into account

(34), (35),
∑∞
t=0 βmin(t) = ∞, and Theorem 4, we conclude that η(t) is finite almost surely for any t ∈ Z+

during the run of the algorithm irrespective of η(0).
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4.2 Convergence of the Algorithm Iterates

Having established boundedness of the iterates in the algorithm (6)-(7), in this subsection we prove Theo-
rem 1.

Proof of Theorem 1. Under Assumption 6, the game can be reformulated as a constrained optimization
problem. Indeed, if the game Γ is potential with a strictly convex potential function f(a), then M(a) =
∇f(a) and the problem of finding a variational equilibrium is equivalent to solving

minimize f(a)

subject to gj(a) ≤ 0, j = 1, . . . ,m

a ∈ A = A1 × . . .×AN ⊆ R
Nn. (36)

This equivalence follows from the fact that, due to the definition of potential games, the unique minimum
solving the problem above is a variational Nash equilibrium in the game, whereas strict monotonicity of
the game mapping M implies uniqueness of the solution of V I(Q,M) (see, for example, [32]) and, thus,
uniqueness of the variational generalized Nash equilibrium. We call the above the primal problem.

Consider the Lagrangian function for the primal problem

L(a,λ) = f(a) + (λ,g(a)). (37)

Then the dual function is defined as supλ∈R
n
+
infa∈A L(a,λ). Given Assumption 6, we conclude that for any

primal-dual optimal pair (a∗,λ∗) the vector a∗ is the unique (due to strict monotonicity) variational Nash
equilibrium in the game Γ. Under Assumption 3 the Karush-Kuhn-Tucker (KKT) [18] conditions hold and
consequently, (a∗,λ∗) is a primal-dual optimal pair if and only if:

(1) a∗ is primal feasible and λ∗ ∈ R
n
+ (λ∗ is dual feasible);

(2) a∗ attains the minimum in infa∈A L(a,λ∗);
(3) λ∗ attains the maximum in supλ∈R

n
+
L(a∗,λ). Using the above characterization with the bounds

derived in the previous section, we can establish convergence of the algorithm. First, from Inequality (35)
we obtain that for any Nash equilibrium η∗

E{‖η(t+ 1)− η∗‖2|Ft} ≤ ‖η(t)− η∗‖2

−2βmin(t)(M
0(η(t)),η(t)− η∗) + h(t), (38)

where Ft is the σ-algebra generated by the random variables {η(k), k ≤ t} and h(t) = p(t)(1 + V (η(t))).
Due to Lemma 2, η(t) is bounded almost surely and, thus, according to the estimations for p(t) in the proof
of Lemma 2,

∑∞
t=0 h(t) < ∞. Second, we will bound the term (M0(η(t)),η(t) − η∗) using the Lagrangian

of the game L(a,λ).
Due to definition of the mapping M0 and Assumption 6,

(M0(η(t)),η(t)− η∗) =(∇µL(µ(t),λ(t)),µ(t)− µ∗)

− (∇λL(µ(t),λ(t)),λ(t)− λ∗),

where L(µ,λ) is the Lagrangian function defined in (37). Due to convexity of f and g1, . . . , gm, according
to KKT optimal conditions above, we get for any µ ∈ A and λ ∈ R

n
+

L(µ,λ∗)− L(µ∗,λ∗) ≥ 0, (39)

L(µ∗,λ∗)− L(µ∗,λ) ≥ 0. (40)

Due to convexity of L(µ,λ) in µ for any λ ∈ R
n
+

(∇µL(µ(t),λ(t)),µ(t)− µ∗) ≥ L(µ(t),λ(t))− L(µ∗,λ(t)) (41)

and due to linearity of L(µ,λ) in λ, we obtain

(∇λL(µ(t),λ(t)),λ(t)− λ∗) = L(µ(t),λ(t))− L(µ(t),λ∗). (42)
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Bringing (41) and (42) together and taking into account (39), (40), adding and subtracting L(µ∗,λ∗) we
conclude that

E{‖η(t+ 1)− η∗‖2|Ft} ≤ ‖η(t)− η∗‖2−2βmin(t) (43)

× [L(µ(t),λ∗)− L(µ∗,λ∗) + L(µ∗,λ∗)− L(µ∗,λ(t))]

+ h(t).

Thus, we can apply the result of Robbins and Siegmund (Lemma 5) to the inequality (43) to conclude that
almost surely

1) ‖η(t+ 1)− η∗‖ converges,
2)
∑∞
t=0 βmin(t)(L(µ(t),λ

∗)− L(µ∗,λ∗) + L(µ∗,λ∗)− L(µ∗,λ(t))) <∞.
As
∑∞
t=0 βmin(t) = ∞, 2) implies that there exists a subsequence η(tl) = (µ(tl),λ(tl)) such that almost

surely

lim
l→∞

{[L(µ(tl),λ∗)− L(µ∗,λ∗)]

+[L(µ∗,λ∗)− L(µ∗,λ(tl))]} = 0.

Since L(µ(tl),λ
∗)−L(µ∗,λ∗) ≥ 0 and L(µ∗,λ∗)−L(µ∗,λ(tl)) ≥ 0 for any l, the above holds if and only if

lim
l→∞

L(µ(tl),λ
∗) = L(µ∗,λ∗)

lim
l→∞

L(µ∗,λ(tl)) = L(µ∗,λ∗).

As a subsequence of {η(t)}, the sequence η(tl) = (µ(tl),λ(tl)) is bounded almost surely. Hence, we can
choose an almost surely convergent subsequence η(tls) = (µ(tls),λ(tls)) such that lims→∞ η(tls) = η̂ =

(µ̂, λ̂) with probability 1, where µ̂ ∈ A and λ̂ ∈ R
n
+ (since A and {λ : λ ∈ R

n
+} are closed). Due to the last

two equalities above, almost surely

lim
s→∞

L(µ(tls),λ
∗) = L(µ̂,λ∗) = L(µ∗,λ∗)

lim
s→∞

L(µ∗,λ(tls)) = L(µ∗, λ̂) = L(µ∗,λ∗).

Since f is strictly convex and gi, i = 1, . . . ,m are convex over A, the equality L(µ̂,λ∗) = L(µ∗,λ∗) =

minµ∈A L(µ,λ∗) implies that µ̂ = µ∗. Moreover, due to dual feasibility of λ̂, the equality µ̂ = µ∗ together

with the equality L(µ∗, λ̂) = L(µ∗,λ∗) = maxλ∈R
n
+
L(µ∗,λ) imply that η̂ = (µ∗, λ̂) is an optimal primal

dual pair and hence, a Nash equilibrium of the game. Since assertion 1) above holds for any Nash equilibrium
η∗, replacing η∗ by η̂ in (43), we conclude that ‖η(t+ 1)− η̂‖ converges. Since there exists a subsequence
η(tls) which converges to η̂, we get that almost surely limt→∞ η(t) = η̂. Hence, Pr{limt→∞ µ(t) = µ∗} = 1.

Finally, Assumption 5 implies that limt→∞ σi(t) = 0 for all i ∈ [N ]. Taking into account that x(t) ∼
N(µ(t),σ(t)), we conclude that x(t) converges weakly to a Nash equilibrium a∗ = µ∗ as time runs. Moreover,
according to Portmanteau Lemma [17], this convergence is also in probability.

5 Convergence with only local constraints

5.1 Convergence to Nash equilibria under relaxed conditions

We consider the game without coupling constraints, namely C = R
Nd (or equivalently g ≡ 0), and relax the

assumption existence of a potential function in the game Γ. In particular, Assumptions 1 and 6 are replaced
by the following one.

Assumption 7. For all i ∈ [N ] the set Ai is convex and compact, the cost function Ji(a
i,a−i) is defined

on R
Nd, continuously differentiable in a and the game mapping M is strictly monotone.
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In this case, as C = R
Nd, the payoff-based procedure (6)-(7) is modified as follows:

µi(t+ 1) = (44)

ProjAi

[

µi(t)− γi(t+ 1)σ2
i (t+ 1)Ĵi(t)

xi(t)− µi(t)

σ2
i (t)

]

,

where i ∈ [N ], γi(t + 1) is a step-size parameter chosen by player i and Ĵi(t) = Ji(x(t)) is the current
observation of the ith player’s cost function in the game Γ.

We make the following assumption regarding parameters γi(t), σi(t), and βi(t) = γi(t)σ
2
i (t) in the

procedure (44).

Assumption 8. The variance parameters σi(t) and the step-size parameters γi(t), i ∈ [N ], are chosen such
that

1)
∑∞
t=0 βmin(t) = ∞,

2)
∑∞
t=0 βmax(t)− βmin(t) <∞,

3)
∑∞
t=0 γ

2
max

(t)σ2
max

(t) <∞,
∑∞
t=0 γmax(t)σ

3
max

(t) <∞.

Theorem 2. Let Assumptions 2-4, 7, and 8 hold in a game Γ(N, {Ai}, {Ji},RnN ). Let the players choose the
states {xi(t)} at time t according to the normal distribution N(µi(t), σi(t)), where the mean parameters are
updated as in (44). Then, as t → ∞, the mean vector µ(t) converges almost surely to the Nash equilibrium
µ∗ = a∗ of the game Γ, given any initial vector µ(0), and the joint state x(t) converges in probability to a∗.

Proof. As before, let V (µ) = ‖µ−µ∗‖2, where µ∗ is the unique Nash equilibrium in the game Γ (existence
and uniqueness of µ∗ follows from Proposition 2.3.3 in [32]). Following the discussion in the proof of Lemma 2,
we can rewrite the inequality (23) as follows

LV (µ) ≤ −2βmin(t+ 1)(M(µ),µ− µ∗) (45)

+ 2(βmax(t+ 1)− βmin(t+ 1))k1(1 + V (µ))

+ 2
N
∑

i=1

βi(t+ 1)‖Q0
i (µ)‖‖µi − µ∗

i ‖

+

N
∑

i=1

β2
i (t+ 1)E{‖G0

i (x(t),µ(t))‖2|µ(t) = µ},where

G0
i (x(t),µ(t)) = M i(µ(t)) +Q0

i (µ(t)) +R0
i (x(t),µ(t)), (46)

and Q0
i (µ(t)), R

0
i (x(t),µ(t)) are obtain from Qi(η(t)), Ri(x(t),η(t)) by letting g ≡ 0. Similarly to (27)

and (28),

‖Q0
i (µ)‖ = O(

N
∑

i=1

σi) (47)

‖Q0
i (µ)‖‖µi − µ∗

i ‖ ≤ O(

N
∑

i=1

σi)(1 + V (µ)). (48)

Moreover, similarly to (30), we conclude that

E{‖Ri(x(t),µ(t))‖2|µ(t) = µ}

≤
d
∑

k=1

∫

RNd

Ji
2(x)

(xik − µik)
2

σ4
i (t)

p(µ,x)dx. (49)

Thus, we can use Assumption 4 to get

E{‖Ri(x(t),µ(t))‖2|µ(t) = µ} ≤ f(µ,σ(t))

σ2
i (t)

, (50)
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where f(µ,σ(t)) is a quadratic function of µi and polynomial in σi(t), i ∈ [N ]. Taking into account (46)-(50)
and Assumption 4, we conclude that for some positive constants k2, k3

β2
i (t+ 1)E{‖Gi(x(t),µ(t))‖2|µ(t) = µ}
≤ β2

i (t+ 1)(‖M i(µ)‖2+‖Q0
i (µ(t))‖2)

+ 2β2
i (t+ 1)‖M i(µ)‖‖Q0

i (µ)‖
+ β2

i (t+ 1)(E{‖Ri(x(t),µ(t))‖2|µ(t) = µ})
≤ β2

i (t+ 1)(k2 +O(σ2
i (t))(1 + ‖µ− µ∗‖)2)

+ 2β2
i (t+ 1)k3(1 + ‖µ− µ∗‖)O(σi(t))

+O(γ2i (t+ 1)σ2
i (t+ 1))(1 + V (µ))

≤ O(β2
i (t+ 1) + γ2i (t+ 1)σ2

i (t+ 1))(1 + V (µ)). (51)

Next, bringing estimations (48) and (51) into (45), we obtain

LV (µ) ≤− 2βmin(t+ 1)(M(µ),µ− µ∗)

+O(s(t))(1 + V (µ)), (52)

where s(t) = βmax(t)− βmin(t) + γmax(t)σ
3
max(t) + γ2max(t)σ

2
max(t). Taking into account that A is compact,

we conclude that

E{‖µ(t+ 1)− µ∗‖2|Ft} ≤ ‖µ(t)− µ∗‖2

− 2βmin(t+ 1)(M(µ(t)),µ(t)− µ∗)

+O(s(t)). (53)

Moreover, for any t we have (M(µ(t)),µ(t)− µ∗) > (M(µ∗)),µ(t)− µ∗) ≥ 0, due to pseudo-monotonicity
of M and the fact that µ∗ is the Nash equilibrium. Thus, using Theorem 5 we conclude that almost surely

1) ‖µ(t+ 1)− µ∗‖ converges,
2)
∑∞
t=0 βmin(t)(M(µ(t)),µ(t)− µ∗) <∞.

As
∑∞
t=0 βmin(t) = ∞, 2) implies that there exists a subsequence µ(tl) such that almost surely

lim
l→∞

(M(µ(tl)),µ(tl)− µ∗) = 0. (54)

Since µ(tl) is bounded almost surely for any l, we can choose a convergent subsequence µ(tls) such that
lims→∞ µ(tls) = µ′ for some µ′. Hence, due to (54),

(M(µ′),µ′ − µ∗) = 0, (55)

which together with strict monotonicity of M implies µ′ = µ∗. Thus, as ‖µ(t + 1) − µ∗‖ converges
almost surely and there exists a subsequence µ(tls) which converges to µ∗ almost surely, we get that
Pr{limt→∞ µ(t) = µ∗} = 1. Finally, Assumption 5 implies that limt→∞ σi(t) = 0 for all i ∈ [N ]. Taking into
account that x(t) ∼ N(µ(t),σ(t)), we conclude that x(t) converges weakly to a Nash equilibrium a∗ = µ∗

as time runs. Moreover, according to Portmanteau Lemma [17], this convergence is also in probability.

Remark 6. In a prior work [48], we showed convergence to Nash equilibria under pseudo-monotonicity of
the game mapping, leveraging the proof technique in [54]. Recently, in [12] it was shown with a counterex-
ample that pseudo-monotonicity is not sufficient for the convergence results in [54]. This implies that our
payoff-based algorithm also would not converge to a Nash equilibrium under merely the pseudo-monotonicity
assumption. However, a closer look at the required conditions following Equation (55) reveals that the proof
remains valid if instead of strictly monotone, the game mapping is a) pseudo-monotone and additionally
satisfies b) ∀µ ∈ A and µ∗ Nash equilibrium, (M(µ′),µ′ − µ∗) = 0 ⇒ µ′ = µ∗. This latter condition
holds for example, when M is pseudo-monotone and co-coercive. Hence, our new proof method of Theorem
2 corrects our mistake in [48].
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The challenge in generalizing the proof of Theorem 1 to non-potential games lies in the fact that the
extended game mapping M0 cannot be strictly monotone, nor can it be co-coercive. This implies that con-
vergence of a subsequence of {η(t)} will not suffice to establish convergence of the sequence to a Nash equi-
librium. Nevertheless, given a strictly convex potential function in the game we could use equivalence of the
variational Nash equilibrium to an optimal primal dual pair for the Lagrangian, and establish convergence of
the sequence of iterates to the variational Nash equilibrium.

5.2 Convergence rate of the algorithm

Below, we show that if the strict monotonicity condition for the game mapping in Assumption 7 is strength-
ened to strong monotonicity, we obtain a convergence rate for the procedure (44) as a function of the stepsize
and variance parameters.

Theorem 3. Let Assumptions 2-4, and 7 hold and M be strongly monotone with strong monotonicity
constant κ > 1. Furthermore, assume the time step and variance parameters are chosen as γi(t) =

1
(t+Ri)a

,

σi(t) = 1
(t+Ri)b

, i ∈ [N ], where a + 2b ∈ (0.5, 1], 2a > 1, and a + 3b > 1. Then in the long run of the

algorithm (10)-(11)

E{‖µ(t)− µ∗‖2} ≤ C

t2(a+b)−1
= O(1/t2(a+b)−1), (56)

where C is some positive constant and µ∗ is the unique equilibrium of the game Γ to which the vector µ(t)
converges almost surely.

Proof. We we will use the following lemma.

Lemma 3. Let the sequence {at}, at ≥ 0 t ∈ Z+, satisfy the following iteration:

at+1 ≤ (1− κ/t)at + ψ/tc,

for some constants 1 < c ≤ 2, κ > 1, ψ > 0. Then, at ≤ C
tc−1 , where C = max{a0, ψ

κ−1}.
Please see the appendix for the proof.
Using estimation (53) and the fact that (M(µ∗),µ(t)− µ∗) ≥ 0 for any t, we obtain

E{‖µ(t+ 1)− µ∗‖2|Ft} ≤ ‖µ(t)− µ∗‖2

− 2βmin(t+ 1)(M(µ(t))−M(µ∗),µ(t)− µ∗)

+O(s(t))

≤
(

1− κ

t

)

‖µ(t)− µ∗‖2+ ψ

t2(a+b)
, (57)

where in the last inequality we used the strong monotonicity of the map M over A, conditions for the
parameters γi(t), σi(t), and definition of βi, which implies that there exists t0 such that βmin(t) ≥ 1

2t for any
t ≥ t0. Finally, taking into account that 1 < 2(a+ b) ≤ 2 and using Lemma 3 for c = 2(a+ b), we conclude
that E{‖µ(t)− µ∗‖2} ≤ C/t2(a+b)−1, where C = max{E{‖µ(0)− µ∗‖2}, ψ

κ−1}.

The result above demonstrates that the convergence rate of the proposed payoff-based learning procedure
is sublinear. This is consistent with the results on related optimization algorithms based on the stochastic
approximation techniques [15, 49]. Note also that Theorem 3 presents the asymptotic estimation of the
convergence rate, whereas its tightness and more details on characterization of the constant C need to be
analyzed separately and are subject of our future work.

6 Numerical Case Study

We illustrate the proposed payoff-based learning approach through a game arising in a classical Cournot
economic model. There are N firms, each producing a good and each needs to determine its production
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amount. Each firm (referred to also as a player or an agent) has an individual production cost Qi(ai) and
receives a payment p(a)ai for the quantity produced ai. The price p(a) depends on the total production
of all firms. The production of the firms is coupled by the fact that there is a network capacity constraint
[1]. Such constraints may arise from the amount that can be delivered through a link to the consumers
(consider for example an electricity network with line limits). In contrast to past approaches on computing
Nash equilibria, we consider a scenario in which the form of the price function p is unknown to agents and
there is no communication graph between the agents.

Let ai = [ai1, . . . , a
i
d]

⊤ ∈ R
d denote the decision variable of firm i (also referred to as player or agent),

i ∈ [N ], which is its production level over a horizon of d steps4. Each player has a limit on maximum
production at each step

0 ≤aik ≤ āi for k = 1, . . . , d. (58)

The convex and compact set defined by the constraints above is considered the action set Ai for player i.
The coupling constraints arising from a network capacity limit is

N
∑

i=1

aik ≤ āk for k = 1, . . . , d. (59)

For the simulations, we consider a linear price function and quadratic production cost functions, which
are standard assumptions in Cournot models [19, 13, 22, 30]. The function to be minimized by each agent
can then be compactly written as

Ji(a
i,a−i) = Qi(ai)− p(a)ai (60)

= ai⊤Qiai + 2(C
1

N

N
∑

j=1

aj + c)⊤ai,

with Qi, C ∈ R
d×d, c ∈ R

d for all i ∈ [N ]. The production cost is assumed convex and hence Qi ∈
R
n
+, whereas C ∈ R

n
+ follows from the fact that the price is a decreasing function of total production

[13, 52, 1, 19, 27, 32]. It is readily verified that the resulting game mapping (see Definition (2)) is affine and,
hence, Lipschitz on R

Nd. Moreover, the game mapping is symmetric positive definite and hence, the game
admits a strongly convex potential function. Consequently, Assumptions 1-6 hold.

We let the agents follow the payoff-based algorithm described by (6)-(7) to find their Nash equilib-
rium strategies. Each player submits its proposed production profile over time horizon of d units, xi(t) =
[xi1(t), . . . , x

i
d(t)]

⊤ at iteration t. It then observes J0
i consisting of the cost functions corresponding to prices

of the good, the violation of the coupling constraint, as well as its individual production cost.
For the simulation, we let d = 4, the matrices Qi, i ∈ [N ] and C, in (60) are the identity matrices in

R
d×d, and the vector c ∈ R

d is chosen randomly according to a normal distribution. The action set Ai for
each player i ∈ [N ] is defined by (58)-(59), where āi = 9 and āk is a random variable taking values in the
interval (3N, 3N + 100). The initial vector (µ(0),λ(0)) is chosen from a uniform distribution on A× [0, 5].

Figure 1 presents the relative error
‖µ(t)−a∗‖

‖a∗‖ during the algorithm’s run for N = 3, 10, 30, where a∗ is

the unique generalized Nash equilibrium of the game. We see that after the first iteration the iterates quickly
approach the Nash equilibrium. However, convergence of the error to zero is slow. The slow decrease of the
relative error after the first iteration can be explained by the choice of the rapidly decreasing parameter σ(t)
and γ(t). The convergence is also slower for increasing number of players in the game. It is interesting to
derive explicit dependence of the convergence rate derived based on the number of players.

7 Conclusion

We proposed a novel payoff-based learning approach for convergence to variational Nash equilibria in convex
games with jointly convex coupling constraints. In this approach, each agent determined its next state by

4The formulation here also can be interpreted as production levels of each firm at d different locations [1].
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Figure 1: Relative error
‖µ(t)−a∗‖

‖a∗‖ during the payoff-based algorithm, N = 3 (blue line), N = 10 (green

line), N = 30 (red line).

sampling from a Gaussian distribution, whose mean was updated using the payoff information. We proved
almost sure convergence of the means of the distributions to a variational Nash equilibrium, given appro-
priate choice of algorithms’ step-sizes and variances of the distributions. The convergence result relied on
existence of a strictly convex potential function. In the absence of coupling constraint, convergence to a Nash
equilibrium was established based on strict monotonicity of the game mapping. Furthermore, in this case,
under strong monotonicity of the game mapping, the convergence rate of the algorithm was derived. Further
relaxing conditions for convergence of the payoff-based algorithm with and without coupling constraint is
subject of our current work. We are also developing algorithms that ensure constraint satisfaction during
the algorithm iterates.
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.1 Proofs

Proof of Lemma 1. Assume the set Y is compact and is expressed by the following inequality constraints:
Y = {y ∈ R

d : h(y) = [h1(y), . . . , hm(y)]T ≤ 0}, where hi : R
d → R, i ∈ [m], are convex functions

defined on Rd. Then, using Slater’s condition for the set Y and continuity of T , conditions analogous to
the Karush-Kuhn-Tucker ones can be formulated for SOL(Y,T ) (see Proposition 1.3.4 in [32]). Namely,
y∗ ∈ SOL(Y,T ) if and only if there exists ν ∈ R

m such that

0 = T (y∗) +
m
∑

i=1

(νi,∇hi(y∗)),

0 = (ν,h(y∗)), ν ≥ 0, h(y∗) ≤ 0. (61)

Thus, we can associate a multiplier ν with any solution y∗ of V I(Y,T ). We further call the vector (y∗,ν)
a KKT tuple.

Now consider the associated game Γa(A × R
n
+) defined in (4). Note that the variational equilibria in

game Γ are characterized as SOL(Q,M). Hence, a∗ is a variational equilibrium in Γ if and only if (a∗,ν) is
a KKT tuple for V I(Q,M). And from Lemma 3 in [30], under Assumptions 1 and 3, (a∗,ν) is a KKT tuple
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for the V I(Q,M) if and only if the pair [a∗,λ∗] is a Nash equilibrium of the game Γa(A × R
n
+), where λ∗

denotes the coordinate of the multiplier ν corresponding to the constraint g(a) ≤ 0. Thus, Assertion 1) and
2) are proven. Furthermore, taking into account Propositions 1.3.4 and 1.4.2 in [32] such a KKT tuple exists
since V I(Q,M) has a solution. It follows that there exists a Nash equilibrium in Γa(A×R

n
+) and Assertion

3) is proven. Finally, Assertion 4) holds since under Assumptions 1 and 3, Lemma 5.1 in [54] shows that
‖λ∗‖ is bounded.

Proof of Lemma 3. The proof is based on a standard rate estimate, analogous to the result in (5.292) in [43].
We prove the claim by induction. Let us assume that a0 ≥ ψ

κ−1 . Then, according to the induction step,

at+1 ≤
(

1− κ

t

) a0
tc−1

+
ψ

tc
.

Thus, it suffices to show that the right-hand-side of the inequality above is not more than a0
(t+1)c−1 . As

ψ
a0

− κ ≤ −1,

(

1− κ

t

) a0
tc−1

+
ψ

tc
=
a0
tc

(

t− κ+
ψ

a0

)

≤ a0
tc
(t− 1)

≤ a0
(t+ 1)c−1

,

since a0 > 0 and
(

1 + 1
t

)c−1 ≤
(

1 + 1
t−1

)

. The case a0 ≤ ψ
κ−1 can be considered analogously.

.2 Supporting Theorems

Let {X(t)}t, t ∈ Z+, be a discrete-time Markov process on some state space E ⊆ R
d, namely X(t) = X(t, ω) :

Z+×Ω → E, where Ω is the sample space of the probability space on which the process X(t) is defined. The
transition function of this chain, namely Pr{X(t+1) ∈ Γ|X(t) = X}, is denoted by P (t,X, t+1,Γ), Γ ⊆ E.

Definition 8. The operator L defined on the set of measurable functions V : Z+ × E → R, X ∈ E, by

LV (t,X) =

∫

P (t,X, t+ 1, dy)[V (t+ 1, y)− V (t,X)]

= E[V (t+ 1,X(t+ 1)) | X(t) = X]− V (t,X),

is called a generating operator of a Markov process {X(t)}t.

Next, we formulate the following theorem for discrete-time Markov processes, which is proven in [29],
Theorem 2.5.2.

Theorem 4. Consider a Markov process {X(t)}t and suppose that there exists a function V (t,X) ≥ 0 such
that inft≥0 V (t,X) → ∞ as ‖X‖→ ∞ and

LV (t,X) ≤ −α(t+ 1)ψ(t,X) + f(t)(1 + V (t,X)),

where ψ ≥ 0 on R × R
d, f(t) > 0,

∑∞
t=0 f(t) < ∞. Let α(t) be such that α(t) > 0,

∑∞
t=0 α(t) = ∞. Then,

almost surely supt≥0‖X(t, ω)‖= R(ω) <∞.

The following is a well-known result of Robbins and Siegmund on non-negative random variables [35].

Theorem 5. Let (Ω, F, P ) be a probability space and F1 ⊂ F2 ⊂ . . . a sequence of sub-σ-algebras of F . Let
zt, bt, ξt, and ζt be non-negative Ft-measurable random variables satisfying

E(zt+1|Ft) ≤ zt(1 + bt) + ξt − ζt.

Then, almost surely limt→∞ zt exists and is finite for the case in which {
∑∞
t=1 bt < ∞,

∑∞
t=1 ξt < ∞}.

Moreover, in this case,
∑∞
t=1 ζt <∞ almost surely.
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