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Abstract. In this paper we are concerned with the problem of learning how to solve planning problems in one
domain given a number of solved instances. This problem is formulated as the problem of inferring a function that
operates over all instances in the domain and maps states and goals into actions. We call such functions generalized
policies and the question that we address is how to learn suitable representations of generalized policies from data.
This question has been addressed recently by Roni Khardon (Technical Report TR-09-97, Harvard, 1997). Khardon
represents generalized policies using an ordered list of existentially quantified rules that are inferred from a training
set using a version of Rivest’s learning algorithm (Machine Learning, vol. 2, no. 3, pp. 229–246, 1987). Here, we
follow Khardon’s approach but represent generalized policies in a different way using a concept language. We show
through a number of experiments in the blocks-world that the concept language yields a better policy using a smaller
set of examples and no background knowledge.
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1. Introduction

Planning is an essential part of intelligent behavior. In
AI, a planner is given an initial state and a goal, and
finds a sequence of actions that maps the state into the
goal. This problem has been tackled by a number of
algorithms and in recent years substantial progress has
been made [1, 2]. Still the problem is computation-
ally hard and the best algorithms are bound to fail on
certain classes of instances [3]. An alternative that has
been proposed is to use knowledge of the planning do-
main for guiding the planning process (e.g., [4]). In the
blocks world, for example, one may want to say ‘never
to move a block A that is well-placed’ where the pred-
icate ‘well-placed’ is defined in a suitable way. Plan-
ners that rely on domain-dependent control knowledge
can outperform the best domain-independent plan-

ners [4, 5] but such knowledge is not always easy to
provide.

In this paper, we are concerned with the problem of
learning domain-dependent control knowledge. More
precisely, we will be interested in the problem of learn-
ing how to solve a problem in a domain, given solutions
to a number of small instances. This problem is formu-
lated as the problem of inferring a function that operates
over all instances in the domain and maps states and
goals into actions. We call such functions generalized
policies in contrast with the policies used in dynamic
programming that have a more limited scope. A gen-
eralized policy for the blocks-world may say things
like ‘pick up a misplaced block if clear’, ‘put current
block on destination if destination block is clear and
well placed’, etc. The question that we address is how
to learn suitable representations of such policies from
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a number of solved instances. This question has been
addressed recently by Roni Khardon [6]. Khardon rep-
resents generalized policies using an ordered list of
existentially quantified rules and infers such represen-
tations from data using a version of Rivest’s learning
algorithm [7]. Khardon’s results are encouraging and
show that the learned policies can solve problems that
the planner used as teacher cannot solve. The approach,
however, has also some weaknesses. First, it relies on
background knowledge in the form of support predi-
cates that express key features of the domain, and sec-
ond, the resulting policies do not generalize so well. In
this paper we aim to show that these weaknesses can be
addressed by learning generalized policies expressed
using a concept language [8–11]. Concept languages
have the expressive power of fragments of standard
first-order logic but with a syntax that is suited for rep-
resenting and reasoning with classes of objects. For ex-
ample, the class of ‘well-placed’ objects in the blocks
world domain can be defined in a very compact way in
terms of the primitive blocks world predicates such as
on, clear, etc. In this paper, we aim to show that this
convenience also makes it simpler to learn such con-
cepts while simultaneously learning the policies based
on them.

2. Policies

A problem in classical planning is given by a set of
actions, an initial state, and a goal. These problems can
be formulated as problems of search from the initial
state to the set of goal states by applying actions that
map one state into another. The result of this search is
a path in state-space or a plan. A related state-space
formulation can be obtained by viewing planning from
the perspective of dynamic programming [12]. In a dy-
namic programming formulation, the solutions of the
planning problem is not an action sequence but a policy
π that maps states into actions. The plan a0, a1, . . . , an

that achieves the goal from an initial state s0 can be ob-
tained by setting a0 to the action π (s0), a1 to the action
π (s1), and so on, where si+1 is the result of applying
action ai in state si . Note that while a plan encodes
the solution of a single planning instance, a policy en-
codes the solution of a class of instances; namely, the
instances that differ from the original instance in the
initial state.

Using the same ideas it is possible to represent solu-
tions of larger classes of problems by defining suitable
policies. For example, a policy defined over all states

and all goals can encode the solutions of the class of
problems that differ on both the initial state and the
goal. Such policies map states and goals into actions.

In this paper, we are interested in finding the solution
to a still larger class of problems. We are interested
in learning how to solve any problem instance in a
given domain. The type of policies needed to solve
such large class of instances can be made precise by
making explicit the description of planning problems.
A planning problem is normally made up of two parts:

• a domain description in the form of some action
schemas, and

• an instance description in the form of a set of object
names, a state, and a goal

This distinction is explicit in the PDDL language, a re-
cent standard for stating planning problems [13].

Given this distinction, a general policy for solving
all problems in the domain must take an instance de-
scription as input, and map it into an action. We call
such policies defined over all the domain instances,
generalized policies.

The algorithms used for computing policies over the
state-space cannot be generalized easily to the space
of all instances. However, while no general method is
known for computing such generalized policies, such
policies can be defined for many domains. Such poli-
cies are not optimal but are general, can be applied
efficiently (they involve no search), and often produce
good results. For example, a generalized policy for the
blocks world can be given as follows (see [14, 15] for
better policies for this domain):

1. put all blocks on the table, and then;
2. move block x on block y when x should be on y,

both blocks are clear, and y is well placed.

Here a block is ‘well placed’ when it is on the ‘right’
block (or table) and all blocks beneath it are well placed
too. This strategy puts all blocks on the table and
then moves them in order to their target positions. The
strategy is completely domain-dependent (it only ap-
plies to the blocks-world), but is completely instance-
independent (it applies to all the domain instances).
Moreover, the length of the plans it produces is never
more than twice the length of the optimal plans [14].

Similar policies can be defined for many planning
domains; e.g., [5] formulates a general policy for logis-
tics problems. An important question is whether such
policies can be inferred automatically from domain
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descriptions. This question has been addressed recently
by Khardon [6].

3. Learning Rule-Based Policies

Khardon assumes a representation of generalized poli-
cies (that he calls action strategies) in terms of an or-
dered list of existentially quantified rules. For example,
some of the rules look as:

Obj(x), Obj(y), clear(y), holding(x), inplace(y),

G(on(x, y)) ⇒ Stack(x, y)

The left-hand side of these rules expresses the condi-
tions that are checked in the situation, and the right-
hand side expresses the action to be taken when the
conditions are true for certain bindings of the variables.
A situation is a problem instance; i.e., a set of object
names, a state, and a goal. The conditions that are pre-
ceded by the marker G are evaluated with respect to
the goal, the object predicate Obj is evaluated with re-
spect to the set of objects, and the other conditions are
evaluated with respect to the state. The rule above says
to stack an object x on top of an object y, if y is clear,
x is being held, y is ‘in place’, and x is on top of y in
the goal.

Khardon refers to an ordered list of such rules as a
production rule strategy or PRS. The action determined
by a PRS in a given situation is the action in the right-
hand side of the first rule whose conditions are true in
the situation. If several bindings of the variables match,
the first binding (in some order) is selected.

The vocabulary for the rule conditions involves the
primitive predicates that appear in the domain descrip-
tion (e.g., on, clear), support predicates defined by the
user (e.g., above, in place), the goal marker G, and the
object predicate Obj.

Khardon shows how such policies can be learned
from a training set given by a set of situation-action
pairs obtained by solving a number of small problem in-
stances. The learning algorithm is variation of Rivest’s
algorithm for learning decision lists [7]. In this algo-
rithm, all candidate rules are first enumerated, and the
PRS is obtained by selecting the rule that ‘best’ cov-
ers the instances in the training set, and iterating this
procedure over the instances that are not covered. The
basic idea behind the algorithm is shown in Fig. 1. The
algorithm is guaranteed to find an ordered list of rules
compatible with the data if such list exists [7].

Figure 1. Rivest’s Learning Algorithm: the input is the training set
and the set of candidate rules; the output is an ordered list of rules.

For the enumeration to work, the set of candidate
rules need to be finite and not too large. This is achieved
by setting limits to the number of conditions and vari-
ables allowed in each rule. The size of the resulting set
of rules is the main source of complexity in the learning
algorithm.

Khardon reports results in two domains: blocks-
world and logistics. We focus on the blocks-world. For
the experiments he uses rules with two conditions and
three variables. The primitive predicates are on(x, y),
clear(x), on table(x), and holding(x) and the actions are
pickup(x), putdown(x), unstack(x, y), and stack(x, y).
In addition to the primitive predicates, Khardon intro-
duces four support predicates that encode background
knowledge about the domain. These include the above
predicate and the in place predicate (that expresses that
a block is not misplaced). Given a training set consist-
ing of 4800 block-world instances involving 8 blocks
and their solutions, the system infers a rule-based pol-
icy that solves 79% of the 8-blocks instances, 60%
of the 15-block instances, and 48% of the 20-block
instances. Interestingly, the planner used as a ‘teacher’
(Graphplan [1]) does not solve any of the large
instances.

These results are encouraging and show that the per-
formance of a planner can be boosted by using a learn-
ing component, and that generalized policies can be
learned from data. While there have been a number of
proposals for learning control knowledge to guide a
search engine (e.g., [16]), few approaches have aimed
at learning knowledge that completely eliminates the
need to search.

The results obtained by Khardon, however, exhibit
two weaknesses. First, the results are obtained using
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support predicates such as above and in place that
encode key features for solving the problem. This is
domain-dependent knowledge that may be as difficult
to provide as the domain-specific control knowledge
that is sought. Second, the learned policies do not gen-
eralize so well: while solving 49% of the 20-block
instance is better than what can be achieved by the
domain-independent planner used a teacher, it is still
far from what can be achieved with the simple policy for
the blocks-world in which all blocks are put on the table
and then stacked in order into their target positions.

In the rest of the paper we aim to show these weak-
nesses may be overcome by using an alternative lan-
guage for representing policies.

4. Learning Concept-Based Policies

Consider a control rule that says that ‘if there is a clear
block x that is misplaced, then move x to the table’.
This rule has the form ‘if an object is in a certain class,
then do action a on the object’ Our approach is based
on the observation that rules of this form are very com-
mon in planning, and therefore, a language that makes
the notion of class more central can provide a more
compact description of generalized policies and a more
convenient hypothesis space for learning them.

4.1. Concept Languages

The notion of classes of objects is central in the lan-
guages developed in AI known as concept languages
or description logics [8–10]. These languages have the
expressive power of subsets of standard first-order logic
but with a syntax that is suited for representing and rea-
soning with classes of objects. From a logical point of
view, one can think of concept languages as languages
for defining complex predicates in terms of primitive
ones. Predicates in concept languages are divided into
two types: unary predicates or concepts that denote
classes of objects, and binary predicates or roles that
denote relations among objects. If we let C and C ′

stand for concepts, R and R′ stand for roles, and C p

and Rp stand for primitive concepts and roles, the com-
plex concepts can be defined by grammar rules of the
form

C, C ′ −→ C p | � | ¬C | C ∧ C ′ | (∀R.C) | R = R′

(1)

while complex roles can be defined as

R, R′ −→ Rp | R−1
p

∣∣ R∗
p | R ◦ R′ (2)

Rule (1) says that concepts can be primitive concepts,
the universal concept, the complement of a concept, the
intersection of two concepts, the class of individuals in
the domain whose R related individuals are all member
of C , or the class of individuals in the domain whose R
related individuals and whose R′ related individuals are
the same. Likewise, (2) says that roles can be primitive
roles, the inverse or transitive closure of primitive roles,
or the composition of two roles. The semantics of these
constructions is formalized by defining the interpreta-
tions (extensions) C I and RI of complex concepts and
roles in terms of the interpretation of its constituents
and the domain of discourse � [10, 17]. As an illus-
tration, the semantic clauses corresponding to some of
the constructions above are

(∀R.C)I = {d1 ∈ � | ∀ d2 : 〈d1, d2〉 ∈ RI → d2 ∈ C I}
(R = R′)I = {d1 ∈ � | ∀ d2 ∈ � → (〈d1, d2〉 ∈ RI

iff 〈d1, d2〉 ∈ R′I
)}

(
R−1

p

)I = {〈d2, d1〉|〈d1, d2〉 ∈ RI
p

}

(R∗
p)I = {〈d1, d3〉|〈d1, d3〉 ∈ RI

p or
〈d1, d2〉 ∈ (R∗

p)I & 〈d2, d3〉 ∈ RI
p

}

(3)
As an illustration, if ons and ong are primitive roles

standing for the relation on in the current state s and
in the goal G respectively, then (ons = ong) is the con-
cept that denotes the objects in the domain (blocks)
that are on the same block in both s and G. Similarly,
(∀ on∗

g. ons = ong) is the concept that stands for the
blocks that in the goal description are above blocks
that are ‘well placed’; i.e., all of which are on the same
block in s and g. Note that equivalent descriptions in
the standard syntax of predicate logic would be less
compact.

4.2. Concepts for Planning

We assume that the planning domain is described in
terms of a set of unary and binary predicates. For each
predicate p, we create two predicates ps and pg: the
first gets evaluated in the state of the given situation, the
second gets evaluated in the goal.1 From these primi-
tive concepts and roles, the grammar above is used to
generate complex concepts and roles. We limit the to-
tal set of concepts generated by imposing a limit on
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the size of the concepts, the size being understood as
the number of connectives involved in the concept, or
equivalently, the number of grammar rules needed to
generate the concept. The notation Ci and Ci will be
used to refer to the set of concepts of size i and size no
greater than i respectively. For example, if the concepts
Ca and Cb have size 2 and 3, then the concept Ca ∧ Cb

will have size 6.
A situation given by a set of objects O , a state s, and

a goal G provides an interpretation over the concept
language. The domain of the interpretation � is given
by the set of objects O , the interpretation pI

s of the
primitive predicates ps is given by the state s, while
the interpretation pI

g of the primitive predicates pg is
given by the goal G. The interpretation C I of all other
concepts in C is given by the semantic rules (3). We
say that a concept C is satisfied in a given situation I
if C I �= ∅ and that o is an instance of C in I if o ∈ C I .

For example, a goal description on(a, b) ∧ on(b, c)
defines the interpretation onI

g of the primitive role ong

as the set containing the two pairs 〈a, b〉 and 〈b, c〉. The
semantic clauses above then make the interpretation of
the complex role on∗

g to be equal to the union of these
two pairs and the pair 〈a, c〉.

4.3. Simple Concept-Based Policies

In domains where all action predicates take a single
argument, we define the simple concept-based policies
as the ones expressed by an ordered list of concept-
action pairs of the form:

C1 :a1, C2 :a2, C3 :a3, . . . , Cm :am (4)

where each Ci and ai stand for a concept and an action
predicate respectively. A policy of this form says to
perform an action ai (o) in a situation I when o is an
instance of the concept Ci and Ci is the first concept in
the list that is satisfied in I . In other words, (4) says to
do action a1 on an object o1 if there is one such object
in C I

1 , else do action a2 on o2 if there is one such object
in C I

2 , and so on.
Such policy is non-deterministic in the sense that the

object oi on which the action ai is performed is chosen
non-deterministically (randomly) from the class C I

i . So
during problem solving, the policy (4) can produce dif-
ferent actions when the same situation is encountered
more than once.2

The policies defined by (4) are also incomplete in the
sense that in a given situation it may be the case that

none of the concepts Ci is satisfied and therefore no
action is produced. We say in that case that the policy
fails. This problem can be avoided by setting the last
concept Cn in (4) to the universal concept � that is
always satisfied. However, in the algorithm below for
learning policies of the form (4) no special provision is
made for precluding policies from failing in this way,
and actually they very seldom do.

We call each of the concept-action pairs Ci : ai , a
rule. Note that if there are n p action predicates and all
concepts up to size n are considered, the number of
candidate rules Ci :ai is |Cn| · n p.

4.4. Non-Simple Concept-Based Policies

When actions have arity greater than 1, the simple
concept-based policies defined by (4) do not apply.
While we don’t deal with such case in this paper, we
will briefly discuss it in Section 7.

4.5. Learning Simple Concept-Based Policies

We focus now on the algorithm for learning simple
concept-based policies. The algorithm is a slight vari-
ation of the learning algorithm depicted in Fig. 1 from
[7], where rules are of the form Ci : ai , and examples
in the training set are of the form I : A, where I is a
situation (set of objects, state, and goal) and A is a set
of actions. The distinctions from Khardon’s approach
are thus two: the rule language based on a concept lan-
guage, and the use of sets of actions in the examples in
the training set. The examples are obtained by running a
planner on a set of small random instances and collect-
ing all actions that are optimal in each of the situations
encountered. The planner used is a modification of HSP

[18].
In order to apply the learning algorithm we have to

specify when a rule Ci : ai covers an example I : A
and when the rule covers the example correctly. Thus
we say that the rule Ci : ai covers the example I : A
when C I

i is not empty, and that it covers the example
I : A correctly when for every object d in C I

i , ai (d)
is in A.3 In other words, a rule covers the example
when the rule applies to the example, and covers the
example correctly when the set of actions it suggests
are all compatible with the actions deemed appropriate
in the example.

The rule Ci : ai that best covers a set of examples is
obtained by considering several criteria: first, the one
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that covers the minimum number of examples incor-
rectly Ni ; if ties appear, from these ones, the rule that
covers the highest number of examples correctly Np; in
case ties still remain, the less complex rule (measured
by the size of Ci ). Remaining ties are broken randomly.

5. Experiments

5.1. Setting

The above ideas were applied to the problem of learning
generalized policies in the blocks-world. The concept
language is defined by the grammar rules (1) and (2)
from the set of primitive concepts (unary predicates)
clears , clearg and holdings ,4 the constant predicates
true and null (that are satisfied and not satisfied respec-
tively by all/any block), and the primitive roles (bi-
nary predicates) ons and ong . The actions considered
are pick(b1), put on(b2) and put on table(b3), where b1

refers to the block to be picked, b2 refers to the block
on which the block being held is to be placed, and b3

denotes the block that is to be placed on the table.5

The universe of concepts was initially restricted to
the class C7 of concepts with size up to 7. This set, how-
ever, contains several million concepts which turned
out to be too large for our current Lisp prototype. So
we decided to pick a subset of C7 by restricting the
concepts in this subset to be conjunctive combinations
of concepts C of size up to 4. As the number of con-
cepts still remained too high, we restricted also the
size of the complex roles that can be used in a for-
mula to 1, (that is, no complex roles were allowed).
In other words, the subset of concepts considered, that
we call C4,1,7, stands for the concepts in C7 of the form
C1 ∧ C2 ∧ · · · ∧ Cn such that each ‘building block’
Ci is a concept in C4, each of them containing roles of
complexity 1 at most. The choice of this set of con-
cepts is largely arbitrary; yet much smaller sets such as
C5 with less complex concepts produced poor results,
while much larger sets such as C8 turn out to be in-
tractable. Later on (see Section 7) we will discuss how
the selection of a suitable hypothesis space can be au-
tomated by an iterative search procedure in which the
sets C1, C2, . . . are considered in sequence.

The resulting number of concepts in the hypothe-
sis space C4,1,7 is 240.381 after excluding redundant
concepts such as ¬¬C , C ∧ C , etc. We also removed
concepts that were not sufficiently discriminating by
generating a limited number of random situations (100)
and excluding all concepts whose extensions over all

these situations were equivalent to the universal or null
concepts. We will say more about this below.

Given the 3 unary action predicates in the domain
and the 240.381 concepts, the total number of candidate
rules C :a considered was 721.143.

The training set was generated by solving 50 ran-
dom instances with 5 blocks. These instances were
generated using the program BWSTATES of Slaney and
Thiébaux [19]. For each situation arising in the solu-
tion of these problems we recorded the complete set
of actions that were found to be optimal in each situa-
tion. This produced a set of 1.086 examples (situation-
actions pairs).

5.2. Results

In our current Lisp prototype, computing the coverage
of the 721.143 rules over the set of 1.086 examples
takes several hours. This time can probably be reduced
substantially but we haven’t devoted much time to op-
timization. From the coverage information the compu-
tation of the list of rules Ci :ai representing the policy
is very fast.

Figure 2 shows the policy obtained. As it can be
seen, the policy is quite compact. Understanding the
rules, however, requires some familiarity with concept
languages. For example, the concept

(∀ on−1
g .holding

)

appearing in the first rule expresses the class of blocks
B such that the block being held goes on top of B in
the goal. This rule thus says to put the block currently
being held on a block B such that B is above the same
blocks in the state and the goal, the block being held
goes on top of B in the goal, and B is currently clear.
If there is no such block B, the rule does not apply, and
the following rules are considered in order.

The second rule says to put what’s being held on the
table. The third rule is interesting and says to pick up

Figure 2. Policy learned from initial set of examples.
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a block B if it’s clear, and its target block C is clear
and well-placed. This last condition is captured by the
subconcept

(∀ ong. (∀ on∗
g. (ong = ons)))

Also note that in the same rule the intersection

(∀ ong. (∀ on∗
g. (ong = ons))) ∧ (∀ ong. clears)

denotes the NEXT-NEEDED-BLOCK concept; namely,
the blocks whose destination block is a clear WELL-
PLACED-BLOCK. The rest of the rules admit similar
readings.6

The policy in Fig. 2 was tested over a large set of
randomly generated block-world problems of different
size: 1.000 problems of 5 and 10 blocks each, and 500
problems of 15 and 25 blocks each. These instances
were generated using the program BWSTATES of Slaney
and Thiébaux [19]. The percentage of problems solved
by this policy is shown in first row of Table 1.

The policy solves a problem when it leads to the goal
within a maximum number of steps,7 and otherwise
fails (this includes situations where no rule applies).
The coverage, as it can be seen from the table, is sig-
nificantly better than the coverage obtained by the rule-
based policies reported by Khardon, and although it is
very close to the 100% coverage than can be achieved
by the simple policy of putting all blocks on the table
and then stacking the blocks in order, it is not totally
reliable. Nevertheless, a 100% reliable policy can still
be found as it is shown in the following section.

Table 1. Percentage of problems solved by the original learned
policy and new policies obtained using the incremental refine-
ment described in text.

Coverage of resulting policy
Number of
examples 5 blocks 10 blocks 15 blocks 25 blocks

1.086 99,1 99,7 99,6 99,0

1.103 96,8 81,3 67,0 38,4

1.139 95,2 82,3 55,8 32,2

1.194 100,0 97,2 91,6 87,6

. . . . . . . . . . . . . . .

1.282 99,4 91,5 81,2 69,4

1.288 100,0 100,0 100,0 100,0

5.3. Incremental Refinement

The learned policy shown in Fig. 2 failed on 9 of the
1.000 problems in the test set with 5 blocks. For these
9 problems, we computed the optimal solutions and
detected the situations arising in these problems that
were not covered correctly by the policy. This resulted
in the identification of 17 new situations-actions pairs
that were added to the training set. Since the coverage
of the previous 1.086 examples was stored, only the
coverage of the new 17 examples had to be computed
for each of the 721.143 candidate rules. This refinement
was much faster than the original computation, leading
to a different policy.

The results of this new policy are shown in the sec-
ond row of Table 1. The row displays the percentage
of problems solved by the new policy on a new set
of randomly generated problems. The new policy is
worse than the previous policy in average, but it covers
correctly all 1.103 examples used to generate it, while
the previous policy failed in 17 of them. If we want to
obtain a totally reliable policy, we must continue the
learning process. On the smallest 5-block problems the
new policy fails on 32 of the 1.000 test problems. We
performed the same refinement as before by computing
all optimal plans for these 32 problems, identifying 36
new situation-actions pairs that were not accounted for
correctly. These 36 examples were added to the training
set and the learning algorithm was re-run resulting in
a third policy whose performance is shown in the third
row of Fig. 1. This procedure was repeated using the
failed problems of the test set with the smallest num-
ber of blocks in which a failed problem appears. Finally
(after 7 applications of this incremental refinement), a
100% reliable policy (shown in Fig. 3) was obtained
even when tested in problems with 200 blocks.

The improvement obtained has to do with the fact
that the examples added were not chosen randomly but
were identified from the failures of the existing policy.
This incremental learning process is akin to a form of

Figure 3. Policy learned after selective extension of training set.
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Table 2. Average number of steps taken by the learned pol-
icy over the problems that are solved, in comparison with the
simple policy of putting all blocks in the table first, and the
optimal policy.

Policy 5 blocks 10 blocks 15 blocks 25 blocks

Learned 10,17 24,38 39,72 71,06

Simple 11,50 27,74 44,78 79,75

Optimal 10,16 23,90 38,22 68,92

active learning in which the training data is selected to
boost performance while reducing the amount of data
needed. Note that the performance of the in between
policies obtained is usually lower than the original pol-
icy and that improvement is not monotonic. This can
be due (in machine learning terminology) to a unbal-
anced training set, that is, because the examples used
for computing the covering of the candidate rules con-
tains more exotic difficult cases (all the failed cases in
the previous policies) than the average.

On the other hand, the quality of the solutions
obtained by the learned policy is better on average than
the quality of the simple policy described in Section 2,
but of course, is not as good as the quality of the optimal
solutions that can be found. These results are shown
in Table 2 that displays the number of steps taken on
average by each one of these three policies.8 As it can
be seen, the quality performance of the learned policy
is very close to the performance of the optimal policy.

6. Related Work

This work presents an approach for learning general-
ized policies from data that is a variation of the ap-
proach taken by Khardon in [6]. Khardon represents
generalized policies (action strategies) in a rule lan-
guage and learns the policies in a supervised manner
using a variation of Rivest’s decision list learning al-
gorithm [7] and additional background knowledge. We
use the same learning algorithm but represent policies
in terms of a concept language. The motivation for this
is that planning involves the selection of the ‘right’
actions on the ‘right’ classes of objects, and concept
languages provide a convenient, compact syntax for
defining the useful classes of objects and learning them.
Through a number of experiments in the blocks-world
we have shown that the same learning algorithm pro-
duces better policies with less data and no background
knowledge. We expect that similar results can be ob-
tained in other richly structured domains even though

there are a number of obstacles that must be overcome
(see Section 7).

The approach described in this paper (as well as
Khardon’s) applies not only to classical, determinis-
tic planning domains but also to stochastic planning
domains where actions can be probabilistic.9 In that
case, the examples in the training set must be obtained
by a dynamic programming procedure rather than by
a classical planner. No other changes are required and
the same procedures can yield suitable policies over
such domains. In this sense, it’s worth comparing this
approach with reinforcement learning methods that are
also concerned with learning policies for classical and
stochastic planning problems [20]. One difference is
that our approach is supervised as it relies on the exis-
tence of set of small solved instances while reinforce-
ment learning (RL) is unsupervised (it doesn’t need a
teacher). A second difference is that in reinforcement
learning the representation of the policy takes the form
of a value function. While value functions can general-
ize across different states and even across different goal
descriptions, they cannot cope easily with changes in
the size of the state space as when we move from a
problem with 5 blocks to a problem with 25 blocks.
Thus, value functions do not appear suitable for learn-
ing generalized policies.

The concept-based representation of generalized
policies has the flavor of the functional-indexical repre-
sentations of policies advocated by Agre and Chapman
[21]. However, in Agre’s and Chapman’s approach,
useful concepts like the NEXT-NEEDED-BLOCK are de-
fined by the programmer and their denotation is as-
sumed to be provided by sensors. In the approach
described here, the concepts are learned from the ex-
amples and their denotation is given by their logi-
cal structure. The two ideas, however, are related; a
concept-based policy can be executed faster when the
denotation of the top concepts needs not be inferred
from the denotation of the basic predicates but is pro-
vided directly by sensors. Thus the top concepts appear-
ing in the policy express the aspects of the world that are
actually worth sensing. Moreover, in the concept lan-
guage as in functional-indexical representations, ob-
jects are not referred by their particular names (e.g.,
block A, B, etc.) but by the role they play in going
from the current state to the goal.

The use of learning algorithm on top of rich, logical
representations, relates this work to the work in Induc-
tive Logic Programming. For example, FOIL is a system
that learns first-order rules from data in a supervised
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manner [22]. Like Rivest’s learning algorithm, FOIL

selects the ‘best’ rules one by one, eliminating the ex-
amples that are covered, and iterating this procedure on
the examples that are left. The main difference is in the
way the ‘best’ rules are selected. In Rivest’s algorithm,
this is done by an exhaustive evaluation of all rules.
This provides a completeness guarantee (if there are
decision lists consistent with the data, the algorithm
will find one such list) but does not scale up to very
large rule sets. The greedy approach, on the other hand,
does not provide guarantees but can be used over much
larger rule sets. We have followed the first approach.

Finally, it’s worth mentioning the work on comput-
ing generalized policies by evolutionary methods. For
example, both Koza in [23] and Baum in [24], develop
evolutionary algorithms for obtaining generalized poli-
cies for versions of the blocks world. In Koza’s ap-
proach, the policies are represented by Lisp programs,
while in Baum’s approach they are represented by a
collection of rules in a syntax adapted to the applica-
tion. While the results obtained in both cases are good,
a comparison is not easy as both approaches appear
to rely on domain-specific background knowledge in
the form of useful domain features (‘the-next-needed-
block’ [23]; ‘top-of-the-stack’ [24]) or domain-specific
state representations. Like RL methods, these evolu-
tionary methods are non-supervised, but unlike RL
methods, they can compute generalized policies over
all problem instances in the domain.

7. Discussion

Building on the work of Khardon [6], we have pre-
sented a representation for generalized policies based
on a concept language and have shown through a num-
ber of experiments in the blocks-world that the new
representation appears to produce better policies with
less training data and no background knowledge.

The challenge is to show that these ideas can be
applied successfully to other structured planning do-
mains. The main obstacle is the combinatorics of the
learning algorithm that requires computing the deno-
tation of each one of the concepts in Cn in each one of
the situations in the training set. The number |Cn| of
concepts of size up to n grows exponentially with n.
Currently, we consider very small values of n and ex-
clude a number of redundant concepts such as ¬¬C ,
C ∧C , etc. However this pruning is not enough in gen-
eral. We could use a more complete subsumption test
over concepts but it’s not clear whether such tests are

cost-effective. An alternative approach that we plan to
explore in the future is to generate the sets Cn incre-
mentally, for n = 0, 1, . . . , pruning all conceptsthat
‘appear’ equivalent to simpler concepts. This can be
done quickly over a set of random examples: two con-
cepts ‘appear’ equivalent when they have the same ex-
tensions over each one of the examples. While such
pruning is not sound, it may allow us to deal with richer
domains with more predicates with a small penalty in
the quality of the policies obtained. An alternative that
seems less appealing is to move away from Rivest’s al-
gorithm, replacing the exhaustive search and evaluation
of all possible rules by an incomplete search.

Another limitation of the approach presented in this
paper is the arbitrary choice of the set Cn of con-
cepts considered. However, the incremental pruning
approach can provide a solution to this problem: rather
than choosing the value of n a priori, we can do an itera-
tive search procedure, evaluating the policies resulting
from the set of concepts C1, C2, . . . in sequence, until
a good policy is found.

A more serious limitation is the restriction to unary
actions. One option there is to break actions of higher
arity into several actions of lower arity and suitable
fluents and preconditions. This transformation can be
done automatically in a domain-dependent manner but
it may not be effective in general. A second option is
to extend the rules Ci : ai in the simple policies (4)
by rules of the form C1

i , C2
i , . . . , Cm

i : ai , where m is
the arity of the action predicate ai . The tuple of argu-
ments upon which the action ai is done is then selected
from the corresponding tuple of concepts. This idea is
simple but does not exploit the fact that the action ar-
guments are usually functionally related (e.g., move a
clear block to its target location). A more promising
approach is to allow the concept Ck

i that stands for the
k-th argument of the action to refer to the previous argu-
ments C j

i , j < k. Thus, if the number m is a reference
to the m-th action argument, an action like ‘moving a
clear block to its target position’ would be expressible
as

(
clears,

(∀ on−1
g . 1

) ∧ clears ∧ (∀on∗
g.(ong = ons))

)

:move

A final issue that is worth mentioning is that in
some domains more powerful concept languages may
be needed; e.g., languages involving number restric-
tions or min-max operators. We hope to address this
and the other limitations discussed in future work.
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Notes

1. For predicates p that are not used in the goal description a single
predicate ps suffices.

2. Such policies can be made deterministic by fixing an ordering
among the objects in the domain and always selecting the first
such object in C I

i . See below.
3. This definition is suitable for the non-deterministic interpreta-

tion of concept-based policies. For the deterministic interpreta-
tion where a fixed linear ordering among the objects is assumed
a priori, it is more adequate to test only the first object d in C I

i
rather than every object.

4. The primitive concept holdingg representing the class of objects
being held in the goal was not used as the predicate holding does
not appear in the goal descriptions of the instances considered.

5. We chose this formulation because it makes all action predicates
unary. In the standard formulations, some of these actions take
two arguments, but while such arguments are needed in Strips,
they are not needed in other action languages; e.g., [25].

6. It’s important to understand the rules in the context of the other
rules. E.g., the first rule appears as it may place a block on top of
a ‘bad’ tower sometimes, however, this won’t happen if the rules
that select the blocks to be picked, pick up the ‘correct’ blocks.

7. This maximum number of steps was defined as four times the
number of blocks. This is the maximum number of actions (pick’s
and put’s) that corresponds to the policy of moving all blocks to
the table and then to their target positions.

8. Optimal solutions to these problems were obtained using the op-
timal block-world solver BWOPT of Slaney and Thiébaux [19].

9. A (fully observable) planning problem with probabilistic action
is a Markov Decision Process (MDP) whose solution can be cast
as a policy that maps states into actions [12].
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