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Abstract: Predicting the SARS-CoV-2 epidemic and "immune escape" mutations 

remain crucial problems. We present a theoretical framework called 

Phenotype-Embedding (P-E) theorem and prove that the virus fitness can calculate by 

selecting appropriate sequence embedding under the VAE framework. Starting from 30 

the P-E theorem and based on a modified Transformer model, we obtain a calculable 

quantitative relationship between "immune escape" mutations and the fitness of the 

virus lineage and plot a genotype-fitness landscape in the embedded space. We 

accurately calculated the viral fitness and the basic reproduction number (R!) using 

only the sequence data of SARS-CoV-2 spike protein. In addition, our model can 35 

simulate viral neutral evolution and spatio-temporal selection, decipher the effects of 

epistasis and recombination, and more accurately predict viral mutations associated 

with immune escape.  Our work provides a theoretical framework for constructing 

genotype-phenotype landscapes and a paradigm for the interpretability of deep 

learning in virus evolution research. 40 

 

Keywords: Genotype-phenotype landscape; genotype-fitness landscape; interpretable 

deep learning; immune escape; SARS-CoV-2 

 

One-Sentence Summary: Computing virus immune escape mutations and the 45 

basic  reproduction number (R!) in embedding space to construct genotype-fitness 

landscapes. 
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Introduction 

Evolutionary mutations in viruses often lead to vaccine failure and escape of 50 

neutralizing antibody recognition and induce a weakened or ineffective drug effect, 

resulting in a substantial increase in the infection rate. Virus mutations cause 

phenotypic changes that enhance fitness and become fixed in the population. 

Therefore, people hope to detect the evolutionary mutations that drive virus "immune 

escape" through various high-throughput experimental techniques (1, 2), given an 55 

empirical description of the genotype-fitness landscape whose topological properties 

have decisive effects on the evolutionary process and the predictability of evolution. 

However, experimental techniques have always faced challenges when 

considering the possibility of epistasis and recombination across virus strains and 

directly giving the association between "immune escape" mutations and virus fitness.  60 

Since the global COVID-19 outbreak, the GISAID database [https://gisaid.org] 

has collected more than 20 million SARS-CoV-2 genome sequences with the 

Spatio-temporal information. Such massive data gives us an advantage in discovering 

the biological mechanisms behind it. We can use virus genome sequence information 

to decipher the dynamic mechanism driving virus evolution test the role of epistatic 65 

and recombination constraints (3), identify and predict virus "immune escape" 

mutations, obtain virus epidemic-related fitness information, and provide evidence for 

further experimental verification and verification.  

In this regard, B. Hie et al. have done pioneering work (4). Using a natural 

language model, they have constructed a language "embedding" for a given virus 70 
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sequence, building a quantitative correlation between mutated sequence structures and 

language regulations, and correlating it with immune evasion ability. The model can 

predict whether a mutation will occur given a sequence context.  

To obtain the per-lineage fitness of  SARS-CoV-2, F. Obermeyer et al. (5) 

estimated virus growth as a linear combination of the effects of individual mutation 75 

and developed a hierarchical Bayesian multinomial logistic regression model PyR0. 

The model can infer the relative prevalence of all virus lineages within a geographic 

area and detects fitness-related mutations and lineages with increased prevalence rates. 

The model can identify amino acid substitutions most significantly associated with 

increased fitness and define significance as the posterior mean or posterior standard 80 

deviation.  

M. C. Maher et al. (6) developed statistical models incorporating epidemiological 

covariates, taking into account the effects of drivers and the related fitness of different 

viruses.  

Our work focuses on virus fitness calculations by constructing a computable 85 

quantitative representation of the genotype-fitness landscape. For this purpose, we set 

up a theoretical framework called the P-E theorem. It proves that the fitness of the 

virus population can calculate precisely by selecting appropriate embedding 

expressions for virus genome mutation under the Variational  Auto-Encoder (VAE) 

framework. Then, following the basic idea learning language of virus evolution (4), 90 

through our developed deep learning natural language model CoT2G-F, we realized 

the accurate calculation of virus population fitness without introducing and artificially 
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coupling macro-epidemiological information and obtained a precise mathematical 

representation of the virus genotype-fitness landscape in embedding space. 

Based on the CoT2G-F model and following the P-E theorem, we derive a 95 

quantitative relationship between the fitness of the SARS-CoV-2 lineages and 

"immune escape" mutations. The fitness as a macroscopic observable biological 

variable can be accurately described as the mathematical expectation of a latent 

variable function according to a hidden state distribution. 

This result can be regarded as the correspondence in the biology of the core 100 

concept in statistical mechanics that "macroscopically observable physical quantities 

are the ensemble averages of a corresponding microscopic state variables function". 

We call this the Genotype-Phenotype (G-P) principle，it is an important corollary of 

the P-E theorem. 

The formulation of the G-P principle and its strict mathematical formulation 105 

provide a new valuable perspective and interpretability to apply deep learning 

methods in the research of the virus evolution. Our research paradigm of directly 

calculating R0 through "immune escape" mutations provides a feasible way to 

construct genotype-phenotype landscapes. 

In addition, our model can more accurately predict virus  "immune escape" 110 

mutations because our model has the power to simulate virus-neutral evolution and 

the spatiotemporal selection and decipher the effects of epistasis and recombination 

on immune escape. We applied the model to publicly available SARS-CoV-2 spike 

proteins and obtained better, earlier and more comprehensive predictions for "immune 
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escape" mutations. Finally, based on the discriminant ability of the model itself, our 115 

model can be used as a generative model to predict the likely occurrence of "immune 

escape" mutations within the next three to six months and to calculate the fitness of 

these virus strains carrying "immune escape" mutations after forming lineages. Our 

prospective and retrospective calculations (Figure 3B) have confirmed the above 

results. Of course, when using our model to predict possible "immune escape" 120 

mutations in the future, it is necessary to fine-tune the model using current data to 

make the prediction more accurate.  
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Results 

Phenotype-Embedding (P-E) theorem for constructing genotype-fitness 

landscape 125 

Understanding the evolutionary causes and consequences of the genotype-fitness 

landscape is fundamental and challenging work. The features of the genotype-fitness 

landscape has a decisive effect on the evolutionary process and the predictability of 

evolution. But, the impact of the genotype-fitness landscape concept on evolutionary 

biology has been limited owing to the lack of empirical information about the 130 

topography of real genotype-fitness landscapes and the precise and quantified 

relationship between genomic variation and fitness. Or because this relationship is too 

complicated to calculate (10). We attempt to solve this problem from the basic 

statistical theory combined with a deep learning model to give a computable 

quantitative description of the genotype fitness landscape of the virus based on the 135 

genome sequence of the SARS-CoV-2 alone.  

Starting from the definitions of evolutionary biology (10，14), we obtain a formal 

expression for the fitness of the virus population, which is consistent with the 

mathematical expression given in (5). Under the Variational Autoencoder (VAE) 

framework, we introduce the Bayes theorem, and combine it with Gaussian Mixed 140 

Model (GMM) expansion and Expectation-Maximum (EM) algorithm to deduce the 

P-E theorem: “An observable macrobiological phenotype can be calculated under the 

VAE framework if we can find a reasonable embedded representation of the related 

microscopic genotype”. The P-E theorem provides a way to establish a deep learning 
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model to calculate virus fitness (see and supplemental note 1, formulas (1-11)). It 145 

means that under the VAE framework with a reasonable embedding representation, we 

can accurately calculate the fitness of the virus population as an observable 

macrobiological phenotype by using only virus genome sequence data and construct 

the genotype-fitness landscape of virus population (Box 1 and Fig. 1A). 

Modelling of virus evolution mechanisms based on virus sequences 150 

Based on the P-E theorem, we try to set up a natural language model under the 

VAE framework and calculate the fitness of the virus population. In the natural 

language that determines the structure of a virus genome sequence, each DNA or 

amino acid sequence of a virus must conform to the "grammar" of the biological 

world. By learning and understanding these grammars, we can grasp the evolutionary 155 

laws and the composition rules of virus genomic sequences, and then find out the 

driver mutations that induce "immune escape", obtaining essential information related 

to virus fitness. In recent years, significant progress has been made in learning the 

composition rules of DNA or amino acid sequences through natural language models 

and studying the evolution mechanism of biological species (4, 7–9) .  160 

Referring to B. Hie's work (4), we construct a natural language model CoT2G-F, 

which is a Co-attention-based Transformer model to bridge Genotype and Fitness: (i) 

Introducing co-attention and self-attention mechanisms to extract the Spatio-temporal 

correlation and long-range site interaction information within and across virus 

sequences. These mechanisms enable the model to extract epistatic and recombination 165 

signals that promote the occurrence of immune escape mutations. (ii) Dividing 
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training process into two stages: pre-training, simulating the neutral evolution of the 

virus by randomly masking one or more continuous bases at any position of the input 

virus sequence, learning the "grammar" rules of sequence composition; and 

fine-tuning, in chronological order construct the evolutionary map of the virus 170 

sequences dynamically, perform supervised fine-tuning according to the 

Spatial-temporal correlation constraints and target sequences, reproduce the role of 

environmental selection, bringing the model closer to the virus evolution process (fig. 

S4). (iii) Using Transformer to replace BiLSTM (4) as the kernel of the natural 

language pre-training model. When constructing the "semantic" representation or 175 

"embedding" of the input virus sequences, the Transformer model with self-attention 

mechanism can further extract the upstream and downstream long-range related 

mutation information of the sequence itself.  

As of November 2022, 14.96 million SARS-CoV-2 spike proteins in GISAID 

(www.gisaid.org) after strict quality control were selected to train the CoT2G-F model 180 

(table S1). All the data is for pre-training, but the data used for fine-tuning carries out 

in stages to verify the model's predictive ability. According to the model CoT2G-F, the 

hidden state distribution of DNA bases or amino acids can be obtained, and a 

sequence "embedding" that satisfies this hidden state distribution is guaranteed to 

conform to the "grammar" rules even if there are "semantic" changes. Thus, given an 185 

"embedded" representation of input mutated sequences, the "immune escape" 

mutations can be identified and inferred from the degree of "semantic" change (Fig. 

1B, 1C and 1B and see supplemental notes 2-4). Further work is to start from the P-E 
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theorem (Formula (11)) and use the CoT2G-F model to determine the micro-state 

function of a latent variable corresponding to the virus fitness in the hidden space.  190 

Identifying and predicting "immune escape" mutations  

Following the CSCS decision rule for semantics and syntax changes by B. Hie (4), 

we tested the ability of the model CoT2G-F. We compare the performance of our 

model with the other two related mainstream models from the framework design in 

three technical dimensions, and our model demonstrates superior performance (see 195 

supplementary materials). It can be seen from Fig. 2A that our model performs better 

than BiLSTM and Vanilla Transformer models, and the ability to identify and predict 

immune escape mutations has significantly improved. Since we consider the 

Spatio-temporal dynamics of virus evolution during training processes, the model 

should have the ability both identify existing and predict future "immune escape" 200 

mutations. We proved this using more than 1 million SARS-CoV-2 genomic sequence 

data from the United Kingdom as an example and got better and more comprehensive 

prediction results (Fig. 2B, 2C and 2D). This lays a foundation for the subsequent 

fitness calculation. 

We take SARS-CoV-2 genome data collected and submitted by the UK to the 205 

GISAID database (the Omicron is not yet pandemic) from August 2021 to October 

2021 to perform the prediction (table S1). The model has good reproducibility for 

already emerged immune escape mutations, and the Omicron strains BA.1 and 

BA.2.10.4 have been predicted (fig. S5). To verify the predictive ability, we took the 

data from the United Kingdom submitted to GISAID after March and before October 210 
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2022 as input and step-by-step to predict the future occurrence of immune escape 

mutations. Almost all of the immune escape mutations carried by the Omicron lineage 

were forecasted, which emerged after March 2022 (Fig. 2D). Considering that our 

model training use data in GISAID as of March 31, 2022, this result is undoubtedly 

exciting. It shows that our model can give the correct prediction six months in 215 

advance, forecasting the subsequently emerged virus lineages, even without dynamic 

fine-tuning (see supplementary materials, fig. S4). 

Since we randomly mask a sequence span with an average amino acid length of 3 

during pre-training, our model can not only simulate various patterns of continuous 

evolution-related genetic drift, but also can reproduce and predict the occurrence of 220 

discrete evolutionary events caused by so-called "catastrophes" events. (see 

supplemental notes 2-4). In our prediction results, there are a large number of 

predicted indels, which contain considerable indels that occur in the Omicron virus 

lineage (see supplementary materials, table S2). Due to the limited space and the topic 

of this paper, we have not started the detailed analysis, but it is worthy of further 225 

study.  

Deciphering the intrinsic correlation between “Semantic” change related 

"immune escape" mutations and virus fitness 

The immune escape ability of a virus lineage determines its fitness or the 

basic  reproduction number (R!). The problem is how to establish the quantitative 230 

relationship between the "immune escape" mutation and the fitness of the virus 

conforming to the P-E theorem under the framework of the natural language model. B. 
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Hie et al. propose in their natural language model that the degree of "semantic" 

change is related to the immune evasion ability, and the "grammatical" fitness is 

related to the fitness of the virus (4). Meanwhile, F. Obermeyer et al. use a 235 

hierarchical Bayesian regression model to fit the relative growth of virus lineages 

through multinomial likelihood (5). They point out that the regression coefficient of 

their model is equivalent to the per-lineage fitness of the virus.  

Very interestingly, the per-lineage fitness defined by regression coefficients is the 

product of two parameters. One relates to virus mutations, corresponding to 240 

"semantic" changes in the natural language model. Another is a macroscopic 

observable measure related to virus sequence classification and occurrence frequency. 

It has no corresponding concept in the existing natural language model that then 

appears in the P-E theorem as the transformation coefficient λ associated with the 

posterior distribution of a latent variable connecting real space and embedded space 245 

(see supplemental note 1,  formula (11)). According to our model, λ should relate to 

the "synthetic" fitness corresponding to the hidden state distribution of the 

"embedded" virus sequence. 

If evolution by natural selection is to occur, there must be a genotype change in 

the virus population across generations. Therefore, the fitness of the population is a 250 

concept of change. If the genotype doesn't change, there's no fitness change. The 

syntactic nature of the stable genome composition does not directly contribute to the 

fitness of the virus. If the genome composition already conforms to its syntactic 

nature, then only the "semantic" changes that affect the gain of genomic function and 
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contribute to the virus fitness change. The "grammar" rules of the natural language 255 

model determine the global composition of the sequence to ensure virus survival, and 

the "semantic" changes correspond to the changes in the "immune escape" ability. 

Therefore, "semantics" and "grammar" together determine the fitness of viruses. 

Under the theoretical framework of deep learning, above property can be expressed 

naturally as the convolution of "semantic" and "grammatical" terms of CSCS criterion 260 

(4). And when multiplied by the coefficient λ, the final mathematical representation is 

consistent with the P-E theorem (see supplemental note 1 and note 4, formulas (11) 

and (31)). This results suggest that the term related to the "semantics" change of the 

model CoT2G-F and the CSCS criterion (4) may be the micro-state function of the 

latent variable corresponding to the virus fitness that we hope to obtain. 265 

Viewing the correlation between the trends of virus epidemics and the absolute 

mean distribution of conditional semantic change score CSC 

The P-E theorem proves that we can construct the function of a latent variable 

through the VAE model or its extension model. The mathematical expectation of this 

function in terms of the hidden state distribution is the corresponding macroscopic 270 

observable variable that we hope to obtain. We can extend and define a conditional 

semantic change score (CSC score) from the CSCS score presented by B. Hie et al. 

(4). The conditional semantic change score CSC, as a function of latent variables 

describing "semantic" changes, is used to measure the "immune escape" ability related 

to virus sequence mutation. Thinking that the absolute mean of the CSC score is an 275 

index of the immune escape ability of a virus lineage, we want to see how this index 
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changes across different virus lineages (see supplemental notes 2-4, formula (27)). We 

selected 3.7 million SARS-CoV-2 spike protein sequence data from the UK to 

calculate the absolute mean distribution of the CSC score according to the hidden 

state probability distribution (Fig. 3).  280 

Fig. 3A and 3B clearly show that from the Wuhan lineage to the Delta lineage 

and then to the Omicron lineage, the immune evasion ability of the emerging virus 

lineages continues increasing and even presents an accelerated trend. The absolute 

mean of the "immune escape" ability of the virus strain is a calculable and 

quantifiable parameter directly related to virus genome sequence mutation. It can use 285 

to assess the cumulative effects of the immune escape ability of an emerging virus 

lineage. The absolute mean of the CSC score accurately describes the changing trend 

of the "immune escape" ability of virus lineages and then reveals the epidemic 

potency of the virus. This result further suggests that the CSC score is the microstate 

function corresponding to the virus fitness indicated by the P-E theorem. 290 

Expressing the fitness of a virus lineage as a convolution of "semantics" and 

"grammar" and the mathematical expectation of a semantic change function 

according to a hidden state probability distribution 

It has always been a long-term goal in biology to create genotype-fitness 

landscapes by mapping DNA sequences to mutation combinations observed in 295 

phylogeny or evolutionary experiments. Due to consideration of the epistatic effects 

of mutations, when the mutation number is too large, the model will become very 

complicated and difficult to calculate and verify experimentally (10–12) . E. D. 
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Vaishnav et al. (13) argue that the complete fitness landscape defined by a fitness 

function maps every sequence (including mutations) in the sequence space to every 300 

fitness associated with it. But so far, no theoretical model can explicitly give a concise 

computational model and framework for the genotype-fitness landscape while fully 

considering epistasis and recombination potential. Under the framework of the P-E 

theorem, we try to solve this problem through our deep learning natural language 

model CoT2G-F combined with CSC scores. 305 

Based on the functional relationship between CSC score and the latent variable of 

CoT2G-F model (see supplemental note 4, formula (22)), we know that the CSC score 

is a relative semantic change corresponding to the relative immune escape ability of 

the virus. The CSC score measures the genomic mutation degree of emerging virus 

strains relative to wild-type virus strains. Furthermore, the "semantic" mutation 310 

corresponding to genomic mutation - CSC score and the "grammatical" coincidence 

degree corresponding to mutation state distribution - hidden state distribution together 

determine a measure of the virus immune escape ability in the form of convolution 

(see supplemental note 4, formula (31)). Referring to the P-E theorem and by the 

properties of the CSC score and the formal equivalence of formulas (11) and (31), the 315 

CSC score should be the corresponding hidden space microstate function of the 

macroscopic observable variable R!. Formula (30) is the concrete realization of the 

P-E theorem (see formula (11)) under the CoT2G-F model. 

Finally, we acquire the basic formula for calculating R0 (see supplemental note 4 

and formula (33)). The correctness of the derived calculation formula for the 320 
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per-lineage fitness is obvious and verified (Fig. 3A and 3B, Fig. 4). This result and the 

P-E theorem provide a mathematical basis for redefining macro-phenotypes such as 

R0 and the resulting computability. 

The genotype-fitness landscape 

The calculation formula of the R0 has a whole novel meaning now (see 325 

supplemental note 4, formula (31), (32) and (33)): The R0 is the convolution of the 

semantic change function and the syntactic state distribution function in the 

embedding space. The meaning of convolution here is to give the average of the 

cumulative effects of the contribution of all sampled virus variants to the R0 according 

to the reference sequence (we select Wuhan-Hu-1 as a reference sequence, see 330 

supplementary materials). More importantly, the R0 can precisely rewrite as a 

mathematical expectation of a semantic change function according to a hidden state 

probability distribution giving the quantitative relationship between the "immune 

escape" ability of the virus and the fitness of the virus lineage. Finally, we present a 

comprehensive and precise formulation of the virus genotype-fitness landscape. The 335 

discovery of consistency between these two different representations provides a solid 

mathematical basis and research paradigm for applying deep learning models to 

biological problems and gaining interpretability (see supplemental notes 1-4). 

Studying the intrinsic relationship between statistical mechanics and deep 

learning has always been an intriguing subject (15–17). We know that the core 340 

concept of statistical mechanics is: "The macroscopic physical observables can 

characterize as the ensemble average of the corresponding microstate variable 
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functions". Inspired by this, the inference is naturally drawn: "Under the VAE 

framework, an observable macro-biological variable can express as the mathematical 

expectation of a function of a latent variable according to a hidden state distribution in 345 

decoder space". We call this framework bridging Genotype-Phenotype landscapes the 

G-P principle, which is an important corollary of the P-E theorem and gives a novel 

interpretable application of deep learning theory to life science (Fig. 5, supplemental 

note 1 and 4, formulas (11), (34) and (35) ). 

Finally, we can plot the genotype-fitness landscape in the embedded space based 350 

on the variation state of the viral genome sequence according to formula (30). It is a 

two-dimensional hypersurface, and we can obtain the fitness of the virus lineage by 

integrating the surface density of the specific region corresponding to the virus 

lineage on this hypersurface, get and define the immune escape force of the virus (see 

supplemental note 4). 355 

Inferring the R0 of the virus lineage 

According to our theoretical framework, computing the fitness of each virus 

lineage and the fold increase in relative fitness to obtain R0 requires adequate 

sampling for each virus lineage in a specific region and time interval. In this region 

and time interval where and when the virus begins to emerge, sustaining spreads, 360 

increases in the number and eventually reaches a plateau. Based on the biological 

definition of fitness, the selected sampling time interval needs to ensure the virus is 

transmitted for enough generations to reduce the violent fluctuation of the signal (5). 

It is also crucial for determining the occurrence frequency of the largest cluster of the 
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different lineages and simultaneously calculating the absolute mean of the CSC score 365 

(see supplemental note 4, formula (30), fig. S3A and 3B). Currently, the GISAID 

(www.gisaid.org) contains over 4 million genome sequences of SARS-CoV-2 from 

the United Kingdom [http://gisaid.org], and the Spatio-temporal distribution of the 

virus lineages reflects the major trend of the world epidemic of SARS-CoV-2, which 

can serve as a model system for a reliable and feasible G-P principle.  370 

When computing the virus per-lineage fitness, we used 3.7 million SARS-CoV-2 

spike proteins from the GISAID database (www.gisaid.org) and fully adopted the 

Pango lineage designation and assignment. For acquiring the factor λ"  in the 

calculation of the per-lineage fitness (see supplemental note 4, formula (30)), lineage 

assignment is performed with Pangolin firstly. Then, the k#$ lineage and its nearest 375 

sublineages were selected to form a population, sampling for a given time interval 

t%&', and λ" is the occurrence frequency of the k#$ lineage in this small population. 

The calculation result has shown in Figure 4, where the time interval we choose is 10 

days (see fig. S6). Our model correctly infers the WHO classification variant Omicron 

(Pango lineage BA.2.37) to have a very high relative fitness in line with current 380 

official monitoring results: ~18 times higher than the original Wuhan lineage (Fig. 4，

[95% confidence interval (CI) 17.29 to 18.00], fig. S7), accurately predicts its rise in 

the spread regions.  

The general trends of the R0 are consistent with the results of (5), but the R0 

value is higher overall. It is because when calculating the contribution of immune 385 

escape mutation sites to immune escape abilities and R0, our model considers all 
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possible interactions between all sequence sites of the virus and mutations and takes 

into account tempo-spatial correlations and recombination effects. This result 

validates our proposed P-E theorem and G-P principle. Now the relative fitness of the 

virus lineage and R0 is precisely computable.  390 

Discussion and conclusion  

Applicating AI and deep learning methods to biology have two key points. One is 

how to make the model more in line with biological logic, and the other is to go deep 

into the connotation of the model and give the interpretability. This study explores 

these two aspects and presents an initial research paradigm. We first came up with a 395 

general theorem, the P-E theorem, and in the second step, we construct a model 

CoT2G-F that more closely matches the evolutionary biology scenario. The 

calculation of R0 realizes by the model under the guidance of the P-E theorem. 

In our model the R0 is a mathematical expectation of the "semantic" change 

according to a hidden state probability distribution. It is also a convolution of the 400 

"semantic" change function and a hidden state distribution function. The hidden state 

probability distribution as a prior probability distribution determines the 

"grammatical" term in the CSCS criterion (Fig. 5, supplementary notes 3 and 4). Both 

directly gives quantitative relationships among "semantics" change and "grammatical 

" fitness, "immune escape" mutation and the fitness of virus lineages (see 405 

supplementary materials, supplemental note 4, formula (30) and (33)). This result can 

be the correspondence in the biology of the core concept in statistical mechanics that 

"macroscopic observable physical quantities are the ensemble average of the 
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corresponding microscopic state variable functions". We call this the G-P 

(Genotype-Phenotype) principle and it can be regarded as a corollary of the P-E 410 

theorem. The G-P principle provides a new valuable perspective and interpretability 

for applying deep learning to virus evolution. It reveals the intrinsic correlation 

between deep learning theory and statistical mechanics studied by many researchers 

(15–17).  

Currently, most deep learning algorithms for biological studies attempt to 415 

establish the relationship between microscopic molecular biology characteristics and 

macroscopic biology variables to obtain the interpretability of the models (18–24). 

However, it is always challenging to establish a direct, quantitative and computable 

correlation between them. The practice and results of the R0 calculation in the present 

work face the question and give a feasible paradigm for the computational modelling 420 

of genotype-phenotype landscapes, which is a concrete and successful example of the 

G-P principle or the P-E theorem. We believe that according to our research path 

proposed in the present work, many research examples that follow the G-P principle 

or the P-E theorem will emerge future. Our model, the derived mathematical 

representation of R!, and computational results provide a beautiful commentary on 425 

the first principle of "selection imprinting recorded in viral genomic mutation." 

In addition, the model uses the Transformer as a kernel and further introduces the 

co-attention and continuous span masking mechanism considering the 

Spatial-temporal related virus evolution. The model has advantages in extracting the 

upstream and downstream long-range correlation mutation information from the 430 
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sequence itself and the ability to get the Spatio-temporal features related to virus 

evolution. With the introduction of a continuous mask mechanism, the model can 

mimic genetic drift and determine what kind of mutations will be fixed by selection. 

All together, inputting the virus genome sequence alone, the model can more 

accurately identify and predict possible future "immune escape" mutations by 435 

calculating the conditional "semantic" change related to the latent variables. The 

model's power has demonstrated in (Fig. 2A, 2B, 2C and 2D).  

Due to the introduction of a continuous masking mechanism, our model is able to 

reproduce and predict the occurrence of discontinuous evolutionary events caused by 

so-called "catastrophes" to some extent. In our prediction results, there is a large 440 

number of predicted indels, including quite of few amino acid insertions of the spike 

protein presented by the Omicron lineage. These insertions conform to the 

"semantics" plus "grammar" constraints of the sequence composition (table S2). It is 

worthy of further in-depth research and experimental verification.  

Importantly, we plotted a three-dimensional virus genotype-fitness landscape in 445 

embedding space starting from the quantitative relationship between "immune escape" 

mutations and viral lineage fitness. It is a two-dimensional hypersurface. The 

topological properties of this hypersurface can describe the virus evolution and the 

driving force of immune escape. This two-dimensional hypersurface in an embedding 

space is the first precise mathematical representation of a virus' genotype-fitness 450 

landscape. The realization of this description method undoubtedly provides a 
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groundbreaking theoretical and technical framework for future research, and the 

research paradigm has certain universality. 

Finally, it is worth pointing out that the proposed P-E theorem is universal in 

biological research. There are many fundamental states of biology, such as brain 455 

homeostasis, metabolic homeostasis, cell fate state, tumor microenvironment, 

advanced ageing state, etc. The maintenance, imbalance and remodeling of these 

macroscopically observable phenotypic states can effectively study based on the P-E 

theorem. The P-E theorem provides a solid mathematical foundation for the 

deterministic description of biological homeostasis and deciphering its stability 460 

mechanism behind it. 
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• Box 1. The mathematical foundation and derivation of P-E theorem 
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Population genetics (14) : the average fitness 𝜔# of the virus population:  
         ω#  = λ1ω1+λ2ω2+……+λKωK = ∑ λ"ω"	#

"$%  = 𝝀&𝝎              （1） 
𝝀 = (	λ%, 	λ', 	 …… , 	λ#), λk is the occurrence frequency of the k() virus lineage in the whole 
population, which is an observable measure related to amino acid substitution characteristics, 
and 𝝎=(	ω%, 	ω', 	 …… , 	ω#), ω" is the fitness of the k() virus lineage, and 𝒙 = ( x1 , 
x2 ,..., xi ,..., xL ) represent L variation sites. Thus, each ω" can involve the epistatic interaction 
of multiple mutation sites in the input sequence (12) as following: 

ω*(𝒙)=𝑎(!)+∑𝑎-
(%) 𝑥* i +∑𝑎-.

(') 𝑥* i	𝑥* j +∑𝑎-.*
(/) 𝑥* i	𝑥* j	𝑥*k +…+∑𝑎%,',…2

(2) 𝑥*1	𝑥*2…𝑥*L    （2） 

We define a function P(𝒙) as a probability state distribution quantifying the virus lineages’ 
fitness changes caused by sequence variation states, and P(𝒙) can have a expand form using 
a Gaussian Mixture Model (GMM). 
      P(𝒙) = ∑ π"#

"$% N(𝒙|𝝁* , 𝜮*)                 （3） 
π"N(𝒙|𝝁* , 𝜮*) is the kth component in the mixture model,	π" is the mixture coefficient, 
𝝁*	and 𝜮*	are the mean and variance values of the relative fitness, and they can obtain 
indirectly through the EM algorithm or deep neural network. Combining formulas (1) and (3), 
the formal representation of the average fitness of the virus population can obtain as follows: 
          	ω# =  E(ω) = ∫𝝎(𝒙)P(𝒙)d𝒙 = 	∑ π"ω#"	#

"$%               （4）         
Let 𝜆* be the occurrence frequency of the dominant cluster in the k() virus lineage when 
sampling virus strains, we can redefine the (dominant) per-lineage fitness as 

              ω#" ≝ 3!
4"
∑ ω5

"4"
5$%                         （5） 

Referring to formula (3), let 𝝎(𝒙) = 𝝎𝒌(𝒙), 		P(𝒙) = N(𝒙|𝝁* , 𝜮*), the per-lineage fitness of 
the virus can express formally again as: 
               ω#" = ω# |8(𝒙) = ∫𝝎(𝒙) P(𝒙) d𝒙                 （6）                                                             
The subscript P (·) represents different spaces corresponding to k. As long as we find a 
suitable functional form of  𝝎(𝒙) and a corresponding probability distribution P(𝒙), we can 
obtain the per-lineage fitness of viruses by calculating their mathematical expectations by the 
formula (6), then get the average fitness of the virus population by formula (4). We can now 
try to do this within the context of deep learning, despite the fact that it is typically difficult to 
obtain and calculate 𝝎(𝒙) and P(𝒙) directly from real-world data with noise.  
Let Qθ(𝒛|𝒙)	and P(𝒛) be the hidden state probability distribution in encoder-decoder spaces 
under the VAE framework, and P(𝒙) and Pφ(𝒙|𝒛) be the prior and posterior probability 
related to the input and output of the model. The relationship among P(𝒙), Qθ(𝒛|𝒙), Pφ(𝒙|𝒛) 
and P(𝒛) is given by Bayes' theorem: 
      P(𝒙)Qθ(𝒛|𝒙) = Pφ(𝒙|𝒛)P(𝒛)                  （7） 
The function relationship defined by formula (1) still holds when P(𝒙)Qθ(𝒛|𝒙) maps to 
Pφ(𝒙|𝒛)P(𝒛). When the prior probability P(𝒙) is unknown, obtaining the fitness of virus 
lineages in the encoder or decoder space is transformed into finding the hidden state 
probability distributions Qθ(𝒛|𝒙) and P(𝒛), the posterior probability distribution Pφ(𝒙|𝒛) 
and the counterpart 𝝎(𝒛) of 𝝎(𝒙). 
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Under the VAE framework together with Bayes' theorem, because 𝒙 = 𝑊𝒛 + B, and :𝒙
:𝒛

 = 

Pφ(x│z)/Qθ(z│x) = 𝑊, 		we have  

ω# |8(𝒙) = ∫𝝎(𝒙) P(𝒙)d𝒙 = ∫𝝎(𝑊𝒛)P(𝑊𝒛) :𝒙:𝒛 d𝒛   

																																					= ∫𝝎(𝒛) P(𝒛)(Pφ(x│z)/Qθ(z│x))d𝒛 = ∫𝑊𝝎(𝒛) P(𝒛)	d𝒛 
Considering that the average of states is by virus lineage, the fitness of a virus lineage is 
determined by the dominant virus cluster in the lineage，and then by doing a simple matrix 
operation we can get W𝛚(z) → 𝜆𝛚(z). 𝜆 is a diagonal matrix. Then, we have  
      ω# |8(𝒙) = ∫𝝎(𝒙) P(𝒙) d𝒙 = ∫𝑊𝝎(𝒛) P(𝒛)	d𝒛 = ∫𝜆𝝎(𝒛) P(𝒛)	d𝒛        （8） 
Obviously, formula (8) is the corresponding formal representation of formula (1) under the 
VAE framework of deep learning, then, let 𝝀 = (	λ%, 	λ', 	 …… , 	λ#)  is a vector, which 
components are made up of diagonal elements of the diagonal matrix 𝜆, we have: 
                 ω# |8(𝒙) = 𝝀𝝎# |8(𝒛)                      （9） 
Because of the hierarchical structure of the population, lineage and cluster of the virus, and 
referring to the formula(1), (3), (4), (6) and (8), and based on the basic principles of 
population genetics (14), the elements of the vector λ are the corresponding elements of 
mixture coefficient in formula (4). The element λ is an occurrence frequency of a dominant 
cluster in virus lineage when sampling virus strains, and is a macroscopic parameter that links 
the hidden space with the actual space. Formula (9) gives a mathematical framework for 
representing phenotypes in embedded Spaces, leading to the Phenotype-Embedding (P-E) 
theorem: “An observable macro-biological phenotype can be computed under the VAE 
framework if we can find a reasonable embedded representation of the related microscopic 
genotype.” 
Genotype-fitness landscape:  we can plot the genotype-fitness landscape in the embedded 
space based on the variation state of the viral genome sequence. Starting from P-E theorem,  
we can regard the ω(z) score as the "immune escape" potential of the virus, then, as a 
two-dimensional hypersurface, the genotype-fitness landscape can plot in a 
three-dimensional mapping space with "ω(z)", "P(𝒛)", and “time” as axes. The stable points 
on the hypersurface correspond to the genomic variation states that contribute the most to 
the "immune escape" ability. We can obtain the fitness of the virus lineage by integrating the 
surface density of the specific region corresponding to the virus lineage on this hypersurface. 
Now, if we take the gradient of the ω (z) along the time and the P(𝒛)  axis on a 
two-dimensional hypersurface and we got and defined the immune escape force of the virus. 
 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.09.527693doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.09.527693


 30 

Fig. 1. The P-E theorem, the framework of the CoT2G_F model and simulating 

the real evolution scenario of viruses. (A) The P-E theorem. Based on Bayes 

theorem and the fully connected linear transformation under the VAE architecture, a 575 

quantitative relationship between virus immune escape mutations and its fitness and 

the genotype-fitness landscape can obtain in the embedding space. (B) CoT2G_F is a 

standard encoder-decoder architecture that introduces a co-attention and continuous 

span masking mechanism. (C and D) Shows the pre-training and fine-tuning steps of 

the model (see supplementary materials, Fig. S4). 580 
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Fig. 2. Modeling of virus evolution mechanisms based on virus sequences. (A) 

The figure shows a comparative experiment result among our method (CoT2G-F), 585 

Vanilla Transformer and Bi-LSTM (see supplementary materials). (B) The virus 

lineage with a high prevalence rate has a significantly higher semantic change score 

(CSC) (see supplemental note 4), calculated by the UK-submitted spike protein 

sequence data for June 2020 to February 2022. The left side of the figure (C) 

visualizes the semantic changes and grammaticality output by our model CoT2G-F 590 

with the horizontal axis representing the grammaticality and the vertical axis 

representing the semantic changes. The upper right corner of figure (C) means that the 

bigger the semantic changes and the more likely the virus strain is to immune escape. 

The right side of the figure (C) shows the predicted mutation sites on the Spike 

protein sequence of the Omicron's B.A.2 virus lineage with high semantic changes 595 

and grammatical fitness, these mutation sites are real and marked at the bottom of the 

right figure. (D) Take the virus sequence data collected in the United Kingdom after 

March 2022 as an input to predict subsequent “future” occurrences of "immune 

escape" mutations. 
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Fig. 3. Absolute mean distribution plot of the semantic change parameter 𝐂𝐒𝐂𝐢𝐤. 

Take the virus sequence data collected in the United Kingdom after March 2022. (A) 

Using the ℓ* norm. (B) Using the ℓ+ norm. The horizontal axis in the figures is the 

different virus lineages according to the emerging chronological order. The vertical 605 

axis is the absolute mean of the semantic change CSC&, of the k#$ virus lineage, 

which is defined as the immune escape capacity of the k#$ virus lineage. Figures (A) 

and (B) both clearly show that with the progress of the global epidemic, from the 

Wuhan virus lineage to the Delta lineage and then to the Omicron lineage, the 

immune evasion ability continues to increase and even accelerates. Figures (A) and (B) 610 

show the same absolute mean distribution trend of the CSC&,, but figure (B) changes is 

more smoothly. 
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Fig. 4. Relative fitness derived from the natural language model CoT2G-F versus 615 

date of lineage emergence. Circle size is proportional to the sampling number for 

different lineage in the time interval. This figure uses a time interval of 10 days. 

Referring to the Pango lineage designation and assignment, the R0, which is the fold 

increase in relative fitness of the virus lineages according to the Wuhan lineage, is 

plotted in different colours. The results for 5, and 20-day time intervals have shown in 620 

(fig. S6). All the results are almost consistent, reflecting the robustness of the model. 
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Fig. 5. CoT2G-F framework for building genotype-phenotypic landscapes. 

CoT2G-F is a natural language deep learning model that introduces co-attention and 625 

continuous span masking mechanism and takes the Transformer as a kernel. The 

model links the two hidden state probability distributions Qθ(𝐳|𝐱) and P(𝐳) in the 

encoder-decoder space, the prior probability P(𝐱)  and the posterior probability 

distribution Pφ(𝐱|𝐳) by Bayes' theorem, mapping viral protein sequences as latent 

variables reflecting semantic and grammatical changes in the embedding space. Then 630 

refer to the semantic and grammatical changes to identify the virus sequence mutation. 

According to the hidden state probability distribution P(𝐳) in the decoder space, the 

model can express the R0 as the mathematical expectation of a specific latent variables 

function related to viral sequence mutation according to a hidden state probability 

distribution, building a genotype-fitness landscape.  635 
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