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Abstract

The goal of this paper is to find sparse and representa-

tive spatial priors that can be applied to part-based object

localization. Assuming a GMRF prior over part configura-

tions, we construct the graph structure of the prior by re-

gressing the position of each part on all other parts, and se-

lecting the neighboring edges using a Lasso-based method.

This approach produces a prior structure which is not only

sparse, but also faithful to the spatial dependencies that are

observed in training data. We evaluate the representation

power of the learned prior structure in two ways: first is

drawing samples from the prior, and comparing them with

the samples produced by the GMRF priors of other struc-

tures; second is comparing the results when applying dif-

ferent priors to a facial components localization task. We

show that the learned graph captures meaningful geometri-

cal variations with significantly sparser structure and leads

to better parts localization results.

1. Introduction

Visual objects from the real world can often be repre-

sented in terms of a set of parts or landmarks arranged in

a deformable configuration. In a typical Bayesian formu-

lation of many visual recognition problems, the a priori

geometric relationships among object parts in all possible

deformations can often be expressed by a prior distribution

over the locations of the these parts. Such a distribution is

usually known as a spatial prior.

The Gaussian Markov Random Fields (GMRF) is widely

used as a natural model in computer vision for modelling

spatial priors. Under a GMRF, a priori the (coordinates

of) parts in an (deformable) object follows a multivariate

Gaussian distribution. The graph structure underlying a

GMRF encodes the assumed spatial relationships among

parts, and hence it also determines the computational com-

plexity while performing detection or recognition tasks.

The dependency structures of the spatial priors used in pre-

vious vision recognition approaches vary dramatically from

fully connected joint Gaussian graphs [5] to decomposable

star-structured graph [1], tree-structured graph [4], and fully

disconnected graph [11]. A major motivation for choosing

models with sparse dependencies is the resulting saving in

computational cost, but constructing such “sparse models”

requires substantial manual engineering. For example, the

recently proposed star-structured model known as k-fan [1]

is constructed by first selecting a number of key points as

the reference parts, and then decomposing the joint spatial

prior of all parts based on the assumption that given the ref-

erence parts, all other object parts are conditional indepen-

dent. Although these types of simplifying assumptions can

lead to a highly efficient recognition algorithm, the result-

ing graph structures could severely limit the representation

power of the prior models because of the possibly artifi-

cial constraints on part-deformation they enforce. In this

paper, we depart from the aforementioned heuristic way of

designing a sparse spatial prior, as practiced in almost extant

recognition algorithms known to us, and adopt a methodol-

ogy of automatically learning a sparse spatial prior from

landmarked objects, that can faithfully capture the key ge-

ometrical regularities and spatial constrains of object parts

revealed in the training data.

The sparsity of the learned spatial priors is enforced

by using a Lasso based approach [12] which was origi-

nally proposed by Tibshirani as a variable selection method.

Lasso is extensively used in linear regression because it

produces interpretable models. Dobra et.al, [2] and Mein-

shausen et.al, [10] first applied Lasso regression to the

structure learning problem in GMRFs. Inspired by their

success in constructing sparse, large-scale graphs, we apply

this approach to learn the structure of spatial prior for visual

objects. The resultant structures turn to be very sparse, as

we will show in following sections. We evaluate the repre-

sentation power of the learned graph structures by draw-

ing samples from the corresponding priors, and compar-

ing them with the samples drawn from other priors with

pre-specified structures. From these samples we observe

that the learned prior structures preserve as much mean-

ingful spatial variations as the fully connected graphs. Al-
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though the learned graphs are not necessarily decompos-

able, we can still take the advantage of the graph sparseness

to speed up object localization. We evaluate the capacity of

the learned graph structures using a greedy search algorithm

that incorporates the spatial priors with image evidences to

locate an object and its parts in test images. By iterating and

maximizing the conditional density of randomly chosen lo-

cal graph structures, the algorithm maximizes the posterior

of the object spatial configuration in a greedy manner. The

computation cost of this algorithm is decided by the sparse-

ness of the prior structures.

In the next section we will introduce the basic setting

of the problem. We describe the Lasso-based approach for

structure learning and the algorithm for object localization

in Sections 3.1 and 3.2. Experimental results are shown and

explained in Section 4.

2. Problem Setting

The geometrical structure of an object of interest is usu-

ally described by its part positions in a vector form,

V = (v1, . . . , vd) (1)

where vi = (xi, yi) denotes the image plane coordinate of

the ith part. We seek to construct a graphical model repre-

sentation, in which the parts are modelled by graph vertices

and the spatial relations of the parts are modelled by graph

edges. Given a collection of manually labelled or automati-

cally obtained training shapes {V 1, . . . V N}, our interest is

to find the best graph structure among all models. This is

a non-trivial model selection problem. The desired graph

needs to be representative and sparse, so that it captures all

significant geometrical deformations presented in training

data, yet restricts the computation cost at a relatively low

level while performing object recognition tasks.

Before we proceed forward, we need to clarify that there

are two types of geometry information contained in the

shape vector V : the canonical object shape which is invari-

ant to geometrical transforms, and the object pose which

instantiates the canonical object in an image. For the pur-

pose of modelling part relations we will only be interested

in the former type of information. We use generalized pro-

crustes analysis [6] to compute a reference shape Vo from

training shapes, and normalize it by zero centroid and unit

norm. We align each training shape V i to Vo by solving a

rigid transform Γ̂i that minimizes the difference error,

Γ̂i = argminΓ‖Vo − Γ(V i)‖ (2)

so the centroid, size and orientation of the shape Γ̂i(V i) are

normalized accordingly. We call Γ̂(V ) the canonical shape

and refer it as V in the following sections.

We model the canonical shape V by a Gaussian Markov

Random Field model G = (V , E), which allows the shape

to deform according to a multivariate Gaussian distribution

N (µ, Σ). Let Q = Σ−1 denote the precision matrix or

the concentration matrix. The graph structure is fully deter-

mined by the nonzero pattern of Q. That is, Qij �= 0 if and

only if eij ∈ E . Equivalently, we have

ρij �= 0 ⇔ eij ∈ E (3)

where ρij
∆
= Corr(Vi, Vj |V−ij) = −Qij/

√

QiiQjj de-

notes the ij-th partial correlation, i.e., the conditional cor-

relation of the part Vi and the part Vj given all other parts

V−ij .

3. Learning Spatial Structure for Object

Recognition

3.1. Structures Learning by Lasso Regression

The standard approach to structure learning in GMRFs

is pruning edges from a fully connected graph by testing

the elements of the sample precision matrix Σ−1, such as

the stepwise method [7] or the simultaneous testing method

[3]. However, these methods are not well suited for large

graphs or graphs with singular empirical covariance struc-

tures. In object recognition, placing landmarks evenly along

the contours of objects usually causes strong linear de-

pendencies among their positions, i.e., AV = e, where

e ∼ N (µe, Σe), Σe → 0. And the number of training sam-

ples could be less than the dimension of landmark vectors.

To avoid directly computing Σ−1 in these cases we adopt

a lasso regression based method proposed by Meinshausen

et.al. [10] and Dobra et.al. [2].

The regression of one node Vi on all other nodes V−i in

the graph G = (V , E) is given by,

θ̂i = argmin
θi

E



Vi −
∑

k∈{1..d}\i

Vkθk
i
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(4)

Note that the elements of θ̂i are determined by the precision

matrix Q [7] such as

θ̂k
i = −Qki/Qkk (5)

Therefore eij = 0 is equivalent to θ̂j
i = 0. In other words,

the set of non-zero coefficients of θi determines the neigh-

bors of the i-th node in the graph. This motivates the use of

the lasso regression method to construct a sparse graph by

minimizing the l1-penalized error,

θ̂λ
i = argmin

θi

E
(

Vi − V−iθ
−i
i

)2
+ λi

∑

k

|θk
i | (6)

The edge estimate between node Vi and Vj is defined by

eij ∈ E : θ̂λ
i,j �= 0 θ̂λ

j,i �= 0. Hence each choice of a



penalty parameter λ specifies an estimate of graph structure.

Meinshausen and Buhlmann [10] show that cross-validation

dose not lead to a good choice of λ. In practice we can use

λ∗
i =

2σi√
n

Φ−1
(

1 − α/2d2
)

(7)

where α ∈ [0, 1] controls overall confidence level.

3.2. Object Recognition Using a Sparse GMRF

Now we consider the problem of localizing objects and

their parts in a new testing image. Suppose that the poste-

rior probability of observing the object at a particular spa-

tial configuration V = {v1, . . . , vd} on the image I is given

by p(V |I). The image evidence pi(I|vi) of seeing the i-
th part at the position vi is assumed to be independent to

other parts given their spatial locations. According to this

independence assumption, the posterior p(V |I) can be fac-

torized as,

p(V |I) ∝ p(V, I) = p(v1, . . . , vd)

d
∏

i=1

pi(I|vi) (8)

Here p(v1, . . . , vd) is the spatial prior and its graph struc-

ture of the corresponding GMRF model is learned by lasso

regression.

The image evidence pi(I|v) of a part is modelled by its

local appearance. For the ith part, we sample a small im-

age patch centered on vi, compute the magnitude and the

orientation of the intensity gradient for every pixel within

the patch, and stack them into a histogram vector Fi as de-

scribed in [8]. We model pi(Fi|vi) using a Mixture of Gaus-

sian (MoG), and learn the model parameters from a set of

labelled training images.

The feature detector is run on the image independently

for every part. Suppose for the ith part we find m candidate

positions {v1
i , . . . , vm

i } by computing the modes of the den-

sity pi(Fi|vi). We formulate the problem of object recogni-

tion as finding the best configuration for all d parts. A trivial

resort to maximizing the posterior p(V |I) over all possible

configurations {vj
i : i = 1..d; j = 1..m} is usually compu-

tationally infeasible (O(md)) as d grows large. Instead, we

propose an alternative algorithm that maximizes the poste-

rior p(V |I) in a greedy way.

1. Initialize {v1, . . . , vd} randomly using their candidate

positions.

2. Pick one part vi, i ∈ [1..d] randomly and select its

neighboring parts N (vi).

3. Fix the positions of N (vi), find the best position of

vi from its candidates by maximizing the conditional

probability,

p(Fi|vi)p(vi|N (vi)) (9)

4. Repeat steps 2 and 3 until convergence.

In each iteration, the algorithm maximizes the condi-

tional density p(vi|I,N (vi))) within a randomly picked lo-

cal graph structure {vi,N (vi)}. This greedy maximiza-

tion strategy can effectively reduce the computation com-

plexity while the spatial prior is encoded within a sparse

graph. Since the conditional variance of Var(vi|N (vi)) can

be computed beforehand in the training phrase, the com-

putational cost is determined by calculating the conditional

mean,

µvi|N (vi) = µvi
+Σvi,N (vi)Σ

−1
N (vi)

(N (vi)−µN (vi)) (10)

So the overall computation complexity of the object local-

ization algorithm is reduced fromO(md) to O(kmd), while

k is the number of iterations. The convergence of the algo-

rithm is not guaranteed while the graph structure contains

circles or loops. In practice we resort to multiple initializa-

tion, and compare the global posterior density to ensure its

increase.

The algorithm selects the best spatial configuration V̂ =
{v̂1, . . . , v̂d} from a discrete set of candidate positions {vj

i :
i = 1..d; j = 1..m} given by the density modes of p(I|vi).
Next we adopt a de-nosing step to deal with miss matchings

in {v̂1, . . . , v̂d}: first project the vector V̂ into its principle

subspace; preserve the first several eigen-components, and

reconstruct the vector using these components only. This

step will enforce to correct the miss matching parts in V̂
and move them to “reasonable good” positions. Finally we

refine V̂ by adjusting each v̂i continuously within a small

local region using its image evidence model p(I|vi).

4. Experimental Results

We apply the presented approach to learn the structures

of GMRF priors for three types of objects: face, hand and

human body. We compare the learned structure with three

other different graph structures: the complete graph [5], the

k-fan graph [1] and the fully disconnected graph. We first

compute the MLE estimates of the model parameters, then

draw samples from all graphs and visualize them. Then we

compare the accuracy for face and facial parts localization

using the algorithm presented in section 3.2.

Our experiments involve three databases: 1) AR face

database [9]: 720 frontal face images. Each image con-

tains 83 manually labelled landmarks along the contours of

main facial components. 2) USH human body database:

112 indoor video sequences of 28 different walking per-

sons. All videos are taken from side-view and every frame

contains 74 landmarks. The landmarks on the first frame

of each video sequence are manually labelled, then tracked

through the rest frames using a feature point tracker. 3)

Hand database: 40 hand images, each image is labelled with

56 landmarks.
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Figure 1. The prior structures learned for different objects. From top to bottom the figure shows the results on face, human body and

hand; from left to right the subfigures show: a) the landmarks on the objects; b) the superimposition of training samples; c) the sample

correlation matrices; d) the graph structures learned from training samples. Note that there is an interesting coherence between the graph

structures determined by statistical dependencies among landmarks and the physical structures of objects.

4.1. Structure Learning

Figure 1 shows the databases and the learned graph struc-

tures. The first column (a) shows the landmarks put on the

objects. One way to visualize the variance of the landmarks

is by superimposing training samples, as shown in the sec-

ond column (b). From that we can observe that the marginal

distributions of each landmark are approximately normal.

The third column (c) shows the sample correlation matri-

ces. Although the correlation matrices appear to be dense,

by lasso based variable selection, we can approximate the

partial correlation structures (precision matrices) by sparse

graphs, as shown in the last column (d). The ordering of

landmarks in correlation matrices (c) dose not affect the

learning results.

(a) (b) (c) (d)
Figure 2. Four different GMRFs structures (top) and the typical

samples (bottom) drawn from each of them. a) the graph learned

from data. b) the k-fan graph using nose as the reference part.

c) the fully disconnected graph. d) the complete graph. We com-

pute the MLE of model parameters of different structures using the

same set of training data.



4.2. Comparison by Drawing Samples

It is interesting to observe that the statistically learned

structures resemble the physical structures of the objects

very closely. Although the learning algorithm is not aware

of the physical connections among landmarks, many adja-

cent nodes in the graph are indeed jointed with each other

physically. It is natural to ask how effective dose these

graphs represent or constrain the geometrical deformations

for the corresponding objects.

A straightforward way to compare the representational

capacity of different prior models is by looking at the sam-

ples drawn from them. Figure 2 shows a typical set of face

samples (bottom) drawn from the four types of graphs (top).

More samples are shown in Figure 3. We have several ob-

servations. Although the structure of the learned graph (a)

is considerably sparser than the full graph (d), the samples

drawn from (a) are as natural as those drawn from (d). This

is because only small partial correlation coefficients are dis-

carded in approximating the precision matrix, so the ma-

jor spatial dependencies captured in the training landmarks

are preserved in the learned graph. In contrast, enforcing a

heuristic prior structure on the objects often limits the rep-

resentation power. The top row of the column (b) shows a

k-fan graph. In this particular example, we choose the refer-

ence set (the k part) to be the points along the nose contour,

therefore we have k = 12. That is a very dense graph as

shown in the figure. Conditioning on the reference points

the k-fan graph assumes all other points are independent to

each other. As a result, the other facial components (such as

eyes, mouth and silhouette) of the samples drawn from this

graph are jaggy and uneven comparing to those in (a). The

samples drawn from fully disconnected graph (c) appear to

be more irregular due to the lack of constraint among the

landmarks.

Figure 3 compares more i.i.d. samples drawn from the

four different graph structures. To avoid using fixed land-

marks as the reference part in the k-fan graph, we use the

method in [1] to select the optimal reference landmarks.

The number k is set to be 7 for faces, 6 for human bod-

ies and 4 for hands. This choice leads to relatively dense

graphs (for example, 28 + (7 × 76) = 560 edges for face

compared to 94 edges in Figure 1.d), and a reasonable train-

ing time to find the optimal reference set. The drawn sam-

ples are shown in Figure 3.b. Based on these observations

we conclude that the learned graph structures preserve ap-

proximately same amount of representation power as the

full graphs with significantly less edges.

4.3. Facial Components Localization

We compare the capacity of the learned graph and k-fan

graph in localizing facial components using the approach

described in section 3.2 . The experiment is performed on

the frontal face database. We use 520 face samples for

training and the rest of 200 samples for testing. All test-

ing faces are frontal and upright. The part locations gen-

erated by the algorithm were compared with the manually

labelled ground truth. Since there exists miss matchings

and false alarms in the feature detection results, we com-

puted the 85% trimmed mean of the distance between the

localized parts and the ground truth labels for whole face

and five individual facial components. Table 1 summarizes

the average errors of face and facial component localization

results by using two graph structures.

5. Discussion and Future Work

We have described a novel application of structure learn-

ing techniques for object recognition, especially, in the

sense of using GMRF as a prior for structured data. It is

encouraging to see that the learned model is superior in its

representation power (fig 2 & 3 ), sparseness 2, and it leads

better recognition results when comparing with the-state-

of-art “designed” models.

The algorithm we used for recognition is a coordinate

descent algorithm in its nature. We expect that due to the

continuous nature of our space for shape priors, Monte

Carlo methods may require very long mixing time under

our model, which actually conjoins the mixture of Gaussian

likelihood model and a GMRF prior. But we are aware of

the relative sampling techniques. Our future work will in-

clude implementing a Gibbs sampler for the shape model

for comparison, and a full Bayes treatment of pose parame-

ters.
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Figure 3. More samples drawn from a) the graph learned from data, b) the k-fan graph, c) the fully disconnected graph, d) the full graph.

These samples empirically justify the representation power of each graph. We observe that although the learned graph (a) is significantly

sparser than (b) and (d), it captures the geometrical regularities and spatial constrains of object parts as well as the full graph.
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