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Abstract. We discuss the problem of model selection in Genetic Pro-
gramming using the framework provided by Statistical Learning Theory,
i.e. Vapnik-Chervonenkis theory (VC). We present empirical comparisons
between classical statistical methods (AIC, BIC) for model selection and
the Structural Risk Minimization method (based on VC-theory) for sym-
bolic regression problems. Empirical comparisons of different methods for
model selection suggest practical advantages of using VC-based model
selection when using genetic training.
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1 Introduction

In the last years GP has been applied to a range of complex learning problems, in-
cluding that of symbolic regression in a variety of fields like quantum computing,
electronic design, sorting, searching, game playing, etc. For dealing with these
problems GP evolves a population composed by symbolic expressions built from
a set of functionals F = {f1, . . . , fk} and a set of terminals T = {x1, . . . , c1, . . .}
(including the variables and the constants). Once the functionals and the ter-
minals have been selected, the regression task can be thought as a supervised
learning problem where the hypothesis class H is the tree structured search space
described from the set of leaves T and the set of nodes F . Analogously, the GP
algorithm evolving symbolic expressions representing the concepts of class H can
be regarded as a supervised learning algorithm that selects the best model inside
the class H.

Regarding this consideration of GP as a supervised learning task we propose
the use of tools of Statistical Learning Theory (see [10]) with the purpose of
model selection in Genetic Programming. This point of view is not new and
has been suggested in [6]. This paper presents empirical comparisons between
classical statistical methods, Akaike Information Criterium (AIC), Bayesian In-
formation Criterium (BIC) and the Structural Risk Minimization (SRM) method
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for symbolic regression problems. We consider symbolic regression formulation
under general setting for predictive learning (see [8], [7], [10], [3]). The goal is to
estimate unknown real-valued function in the relationship:

y = g(x) + ϵ; (1)

where ϵ is i.i.d. zero mean random error (noise), x is a multidimensional input
and y is a scalar output. The estimation is made based on a finite number
(n) of samples (training data): The training data (xi, yi)1≤i≤n are independent
and identically distributed (i.i.d.) generated according to some (unknown) joint
probability density function,

ρ(x, y) = ρ(x)ρ(y|x) (2)

The best estimation of the unknown function in Equation 1 is the mean of
the output conditional probability.

g(x) =
∫

yρ(y|x) (3)

A learning method selects the best model f ∈ H, where H is some class of
concepts. In general, the error of the estimator f , ε(f), is written as

ε(f) =
∫

Q(x, f, y)dρ, (4)

where Q measures some notion of loss between f(x) and the target concept y,
and ρ is the distribution from which examples (x, y) are drawn to the learner.
For regression tasks one usually takes Q(x, f, y) = (y − f(x))2.

For a class of models H with finite complexity (for instance –in the case of
GP– trees with bounded size or height) the model can be chosen minimizing the
empirical error:

εn(f) =
1
n

n∑
i=1

Q(xi, f, yi) (5)

The problem of model selection –also called complexity control– arises when a
class of models consists of models of varying complexity (for instance –in the case
of Genetic Programming– trees with varying size or height). Then the problem
of regression estimation requires optimal selection of model complexity (i.e., the
size or the height) in addition to model estimation via minimization of empirical
risk as defined in Equation (5).

Since most model selection criteria, in particular, analytic model selection
and Structural Risk Minimization (SRM) are based on certain assumptions,
mainly linearity and exact computation of the classification capacity of the class
of concepts H, it is important to perform empirical comparisons in order to
understand their practical usefulness in settings when these assumptions may
not hold, which is the case of Genetic Programming algorithms.



The aim of this paper is to study the practical usefulness of analytic model
selection and SRM model selection when they are used in the framework of
Genetic Programming. The paper is organized as follows. Section 2 describes
classical model selection criteria (AIC and BIC) and SRM approach used for
empirical comparisons. Section 3 describes the experimental setting and results.
Section 4 contains some conclusive remarks.

2 Analytical Model Selection Criteria

In general, analytical estimates of error (Equation 4) as a function of empirical
error (Equation 5) take one of the following forms:

ε(f) = εn(f).pen(h, n) (6)

ε(f) = εn(f) + pen(h/n, σ2), (7)

where f is the model, pen is called the penalization factor, h is the model com-
plexity, n is the size of the training set and σ is the standard deviation of the
additive noise (Equation 1). In this paper we shall make use of three analytical
estimates of error.

– Akaike Information Criterium (AIC) which is as follows (see [1]):

ε(f) = εn(f) +
2h

n
σ2 (8)

– Bayesian Information Criterium (BIC) (see [2]):

ε(f) = εn(f) + (ln n)
h

n
σ2 (9)

– Structural Risk Minimization (SRM) (see [10])

ε(f) = εn(f).

(
1 −

√
p − p ln p +

ln n

2n

)−1

, (10)

where p = h
n .

2.1 Estimation of σ

When using a linear estimator with parameters, the noise variance can be esti-
mated from the training data (xi, yi) as:

σ2 =
n

n − h

1
n

∑
1≤i≤n

(yi − ŷi), (11)

ŷi is the estimation of value yi by model f , i.e. ŷi = f(xi) . Then one can use
Equation 11 in conjunction with AIC or BIC for each (fixed) model complexity.



2.2 Model Complexity of GP-trees

The above described model selection criteria are used in the framework of linear
estimators and the model complexity h, in this case, is the number of free param-
eters of the model (for instance, in the familiar case the models are polynomials,
h is the degree of the polynomial).

For GP trees we use in this paper the number of non-scalar nodes of the tree,
that is, nodes which are not labeled with {+,−} operators. This is a measure
of the non-linearity of the considered model and can be seen as a generalization
of the notion of degree to the case of GP-trees. This notion is related with
the Vapnik-Chervonenkis (VC) dimension of the set of models given by GP-
trees using a bounded number of non-scalar operators. The exact relationship
between non-scalar size of a GP-tree (more generally, a computer program) and
its VC dimension is showed in [4].

3 Experimentation

3.1 Experimental Settings

We consider instances of symbolic regression problem for our experimentation.
We have executed the algorithms over two groups of target functions. The first
group includes the following three functions that also were used in [3] for exper-
imentation:
Discontinuous piecewise polynomial function:

g1(x) =


4(x2(3 − 4x) x ∈ [0, 0.5]
(4/3)x(4x2 − 10x + 7) − 3/2 x ∈ (0.5, 0.75]
(16/3)x(x − 1)2 x ∈ (0.75, 1]

(12)

Sine-square function:

g2(x) = sin2(2πx), x ∈ [0, 1] (13)

Two-dimensional sin function:

g3(x) =
sin

√
x2

1 + x2
2

x2
1 + x2

2

, x1, x2 ∈ [−5, 5] (14)

The second group of functions is constituted by five functions of several
classes: trigonometric functions, polynomial functions and one exponential func-
tion. These functions are the following:

f1(x) = x4 + x3 + x2 + x x ∈ [−5, 5]
f2(x) = e−sin 3x+2x x ∈ [−π

2 , π
2 ]

f3(x) = e x2 + π x x ∈ [−π, π]
f4(x) = cos(2x) x ∈ [−π, π]
f5(x) = min{ 2

x , sin(x) + 1} x ∈ [0, 15]

(15)



For the first group of target functions we use the following set of functionals
F = {+,−, ∗, //}, incremented with the sign operator for the target function
g1. In the above set F, ”//” indicates the protected division, i.e. x//y returns
x/y if y ̸= 0 and 1 otherwise. The terminal set T consists of the variables of the
corresponding function and includes the set of constants {0, 1}.

For the second group of functions, the basic set of operations F is also in-
cremented with other operators. This aspect for each function is showed in the
following table.

Table 1. Function set for the second group of target functions.

Function Function set

f1 F ∪ {sqrt}
f2 F ∪ {sqrt, sin, cos, exp}
f3 F ∪ {sin, cos}
f4 F ∪ {sqrt, sin}
f5 F ∪ {sin, cos}

We use GP-trees with height bounded by 8. As it was mentioned above, the
model complexity h is measured by the number of non-scalar nodes of the tree.
The rest of the parameters for the genetic training process are the following: pop-
ulation size M = 100; maximum number of generations G = 1000; probability of
crossover pc = 0, 9 and probability of mutation pm = 0, 1. Tournament selection
and the standard operators of crossover and mutation for tree-like structures are
used. For all the executions, the genetic training process finishes after 107 oper-
ations have been computed. Observe that the number of computed operations
equals the internal nodes of the trees that are visited during the process. Training
sets of n = 30 examples are generated where the x- values follow from uniform
distribution in the input domain. For the computation of the y-values, the equa-
tion 1 is used in order to corrupt the values with noise. The noise variance σ was
fixed to 0.2.

The experimentation scheme is as follows: For each model selection criterium
(AIC, BIC, SRM) and each target function, we use a simple competitive co-
evolution strategy where 10 populations of 100 individuals evolve independently,
considering same training set. Then, we select the model proposed by the best
of these 10 executions. The above process completes one experiment. We have
performed 100 experiments and for each one a different random realization of
30 training samples was considered. Hence for each target function, we have
executed each algorithm 1000 times and finally 100 models have been selected.
These models are the best ones of each group of 10 populations related to same
training set.



3.2 Experimental Results

When the competitive genetic training processes finishes, the best individual is
selected as the proposed model for the corresponding target function. In order
to measure the quality of the selected model, it makes sense to consider a new
set of points generated without noise from the target function. This new set
of examples is known as the test set or validation set. So, let (xi, yi)1≤i≤ntest

a validation set for the target function g(x) (i.e. yi = g(xi)) and let f(x) be
the model estimated from the training data. Then the prediction risk εntest

is
defined by the mean square error (MSE) between the values of f and the true
values of the target function g over the validation set:

εntest =
1

ntest

ntest∑
i=1

(f(xi) − yi)2 (16)

Figures 1 and 2 show comparison results for AIC, BIC and SRM, after that
the 100 experiments were completed. The empirical distribution of the prediction
risk for each model selection is displayed using standard box plot notation with
marks at 25%, 50% and 75% of that empirical distribution. The first and last
mark in each case, stands for the prediction risk of the best and the worst selected
model respectively. In all cases the size ntest of the validation set is 200. Note
that the scaling is different for each function.

A first analysis of the figures concludes that the three model selection pro-
cedures perform quite similar. Nevertheless it seems that SRM produces better
models for the target functions than AIC and BIC. Note that for the most part
of the target functions, the SRM strategy obtains prediction risk values for the
best solution and also for the solutions ranked at positions 25 and 50, that are
lower than or equal to those obtained by AIC and BIC. Motivated by this fact
we display in the following tables the best prediction risk value for each target
function and model selection criterium (table 2) and the mean of the prediction
risk values considering the 5 and the 25 best selected models (table 3).

Table 2. Prediction risk values of the best obtained model for each target function

Function AIC BIC SRM

f1 4.05E-28 4.22E-28 3.92E-28
f2 0.00E+00 0.00E+00 0.00E+00
f3 1.72E-03 1.85E-03 0.10E-03
f4 9.61E-06 9.53E-06 1.12E-32
f5 3.28E-02 4.04E-02 1.83E-02
g1 2.39E-02 3.09E-02 1.38E-02
g2 1.21E-01 1.23E-01 1.18E-01
g3 1.10E-01 1.17E-01 0.92E-01



Fig. 1. Empirical distribution of the prediction risk εntest for target functions f1 to f5,
over 100 experiments

Fig. 2. Empirical distribution of the prediction risk for target functions g1 to g3, over
100 experiments



Table 3. Mean prediction risk of the best 5% and 25% of the models, for each target
function

5% 25%

Function AIC BIC SRM AIC BIC SRM

f1 4.92E-28 4.69E-28 4.61E-28 6.11E-28 5.87E-28 5.74E-28
f2 8.90E-02 8.25E-30 3.92E-02 5.85E-01 2.68E-01 4.42E-01
f3 3.26E-03 2.80E-03 0.89E-03 1.02E-02 1.42E-02 0.94E-02
f4 9.68E-06 9.63E-06 7.68E-06 0.27E-03 1.63E-03 2.16E-03
f5 3.84E-02 4.10E-02 2.73E-02 4.41E-02 4.95E-02 3.95E-02
g1 2.80E-02 3.48E-02 2.15E-02 4.56E-02 6.32E-02 4.01E-02
g2 1.23E-01 1.23E-01 1.21E-01 1.25E-01 1.25E-01 1.25E-01
g3 1.30E-01 1.21E-01 1.18E-01 2.04E-01 1.60E-01 1.89E-01

As we can see in table 2, the quality of the best solutions are very similar for
the three model selection criteria. Nevertheless, SRM produces the best obtained
model for all target functions. In this sense, it can be also deduced from the
results showed in table 3, that considering for each target function and each
model selection strategy a reasonable set of the best solutions, the mean quality
of the set related to the strategy SRM is better than those related to the other
two studied strategies.

Finally, in table 4 we present the mean prediction risk, considering all the
performed executions. Cause we have 10 executions for each experiment and 100
experiments were completed, each result presented in table 4 corresponds to a
mean value over 1000 runs.

Table 4. Mean prediction risk of the 1000 executions for each pair strategy-target
function

Function AIC BIC SRM

f1 6.44E-28 1.93E-03 7.32E-28
f2 24.2E+00 24.3E+00 3.23E+00
f3 5.58E-02 7.78E-02 4.79E-02
f4 4.15E-03 8.48E-03 6.23E-03
f5 9.03E-02 10.2E-02 6.98E-02
g1 8.01E-02 9.44E-02 7.42E-02
g2 1.33E-01 1.44E-01 1.47E-01
g3 4.33E-01 11.8E-01 3.53E-01

The results in table 4 confirm that after the proposed genetic training pro-
cess, the studied model selection criteria always obtain quite good hypotheses
for the selected target functions. However, again SRM presents the best results



for the most part of the target functions. Taking into account the above exper-
imentation we can conclude that Structural Risk Minimization method (based
on VC-theory) as a model selection criterium when using genetic training from
noisy data, slightly outperforms classical statistical methods as AIC or BIC. In
general, SRM obtain better solutions than AIC or BIC in almost all studied
cases.

4 Conclusive Remarks

In this paper we have presented an empiral comparative study of three model
selection criteria for learning problems with GP-trees. The first two methods
(AIC and BIC) are classical statistical methods and the third one (SRM) is a
selection criterium based on VC-theory. The strategy used for the selection of
the model was a genetic training method over a finite set of noisy examples. For
measuring the quality of the selected model after the training process, a valida-
tion set of noise free examples was generated and a mean square error fitness
of the model over the validation set is computed. An extensive experimentation
over several symbolic regression problem instances, suggests that SRM selection
criterium performs better than the other two considered methods. However AIC
and BIC methods, that usually are employed in combination with least-squares
fitting techniques, also perform quite well when using genetic training.

As final remark we note that it is impossible to draw any conclusions based
on empirical comparisons unless one is sure that model selection criteria use
accurate estimates of model complexity. There exist experimental methods for
measuring the VC-dimension of an estimator ([9], [5]); however they are difficult
to apply for general practitioners. In this paper we have used a new complexity
measure for GP-trees. Essentially, under this approach we combine the known
analytical form of a model selection criterium, with appropriately tuned measure
of model complexity taken as a function of (some) complexity parameter (i.e.
the value h that measures the non-linearity of the considered tree). This alterna-
tive practical approach is essentially to come up with empirical ’common-sense’
estimates of model complexity to be used in model selection criteria.
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