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Abstract—Likelihood-based learning of graphical models faces challenges of computational complexity and robustness to model

misspecification. This paper studies methods that fit parameters directly to maximize a measure of the accuracy of predicted

marginals, taking into account both model and inference approximations at training time. Experiments on imaging problems suggest

marginalization-based learning performs better than likelihood-based approximations on difficult problems where the model being fit is

approximate in nature.
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1 INTRODUCTION

GRAPHICAL models are a standard tool in image proces-
sing, computer vision, and many other fields. In

imaging, exact learning or inference is usually intractable
due to the high treewidth of the graph.

Much previous work involves approximations of the

likelihood (Section 4). In this paper, we suggest that

parameter learning can instead be done using “margin-

alization-based” loss functions. These directly quantify the

quality of the predictions of a given marginal inference

algorithm. This has two major advantages. First, approx-

imation errors in the inference algorithm are taken into

account while learning. Second, this is robust to model

misspecification.
The contributions of this paper are, first, the general

framework of marginalization-based fitting as implicit

differentiation. Second, we show that the parameter

gradient can be computed by “perturbation”—that is, by

rerunning the approximate algorithm twice, with the

parameters perturbed slightly based on the current loss.

Third, we introduce the strategy of “truncated fitting.”

Inference algorithms are based on optimization, where one

iterates updates until some convergence threshold is

reached. In truncated fitting, algorithms are derived to fit

the marginals produced after a fixed number of updates,

with no assumption of convergence. We show that this

leads to significant speedups. We also derive a variant of

this that can apply to likelihood-based learning. Finally,

experimental results confirm that marginalization-based

learning gives better results on difficult problems where

inference approximations and model misspecification are

most significant.

2 SETUP

2.1 Markov Random Fields (MRFs)

MRFs are probability distributions that may be written as

pðxÞ ¼
1

Z

Y

c

 ðxcÞ
Y

i

 ðxiÞ: ð1Þ

This is defined with reference to a graph, with one node for

each random variable. The first product in (1) is over the set

of cliques c in the graph, while the second is over all

individual variables. For example, the graph

corresponds to the distribution

pðxÞ ¼
1

Z
 ðx1; x2Þ ðx2; x3; x5Þ ðx3; x4Þ ðx5; x6Þ

�  ðx1Þ ðx2Þ ðx3Þ ðx4Þ ðx5Þ ðx6Þ:

Each function  ðxcÞ or  ðxiÞ is positive, but otherwise

arbitrary. The factor Z ensures normalization.
The motivation for these types of models is the

Hammersley-Clifford theorem [1], which gives specific

conditions under which a distribution can be written as in

(1). Those conditions are that, first, each random variable is

conditionally independent of all others, given its immediate

neighbors, and, second, that each configuration x has

nonzero probability. Often, domain knowledge about

conditional independence can be used to build a reasonable

graph, and the factorized representation in an MRF reduces

the curse of dimensionality encountered in modeling a

high-dimensional distribution.

2.2 Conditional Random Fields

One is often interested in modeling the conditional

probability of x, given observations y. For such problems,

it is natural to define a conditional random field [2]:
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pðx j yÞ ¼
1

ZðyÞ

Y

c

 ðxc;yÞ
Y

i

 ðxi;yÞ:

Here,  ðxc;yÞ indicates that the value for a particular
configuration xc depends on the input y. In practice, the
form of this dependence is application dependent.

2.3 Inference Problems

Suppose we have some distribution pðx j yÞ, we are given
some input y, and we need to guess a single output
vector x�. What is the best guess?

The answer clearly depends on the meaning of “best.”
One framework for answering this question is the idea of a
Bayes estimator [3]. One must specify some utility function
Uðx;x0Þ, quantifying how “happy” one is to have guessed x

if the true output is x0. One then chooses x� to maximize the
expected utility:

x� ¼ argmax
x

X

x0

pðx0 j yÞUðx;x0Þ:

One natural utility function is an indicator function,
giving one for the exact value x0, and zero otherwise. It is
easy to show that for this utility, the optimal estimate is the
popular maximum a posteriori (MAP) estimate.

Theorem. If Uðx;x0Þ ¼ I½x ¼ x0�, then

x� ¼ argmax
x

pðx j yÞ:

Little can be said, in general, about whether this utility
function truly reflects user priorities. However, in high-
dimensional applications, there are reasons for skepticism.
First, the actual maximizing probability pðx� j yÞ in an MAP
estimate might be extremely small, so much so that
astronomical numbers of examples might be necessary
before one could expect to exactly predict the true output.
Second, this utility does not distinguish between a predic-
tion that contains only a single error at some component xj,
and one that is entirely wrong.

An alternative utility function, popular for imaging
problems, quantifies the Hamming distance, or the number
of components of the output vector that are correct.
Maximizing this results in selecting the most likely value
for each component independently.

Theorem. If Uðx;x0Þ ¼
P

i I½xi ¼ x
0
i�, then

x�i ¼ argmax
xi

pðxi j yÞ: ð2Þ

This appears to have been originally called maximum
posterior marginal (MPM) inference [4], though it has been
reinvented under other names [5]. From a computational
perspective, the main difficulty is not performing the trivial
maximization in (2), but rather computing the marginals
pðxi j yÞ. The marginal-based loss functions introduced in
Section 4.2 can be motivated by the idea that at test time,
one will use an inference method similar to MPM where
one is concerned only with the accuracy of the marginals.

The results of MAP and MPM inference will be similar
if the distribution pðx j yÞ is heavily “peaked” at a single
configuration x. Roughly, the greater the entropy of
pðx j yÞ, the more there is to be gained in integrating over

all possible configurations, as MPM does. A few papers
have experimentally compared MAP and MPM inference
[6], [7].

2.4 Exponential Family

The exponential family is defined by

pðx; ����Þ ¼ expð���� � fðxÞ �Að����ÞÞ;

where ���� is a vector of parameters, fðxÞ is a vector of
sufficient statistics, and the log-partition function

Að����Þ ¼ log
X

x

exp ���� � fðxÞ ð3Þ

ensures normalization. Different sufficient statistics fðxÞ
define different distributions. The exponential family is
well understood in statistics. Accordingly, it is useful to
note that an MRF (1) is a member of the exponential family,
with sufficient statistics consisting of indicator functions for
each possible configuration of each clique and each
variable [8], namely,

fðXÞ ¼ fI½Xc ¼ xc� j 8c;xcg [ fI½Xi ¼ xi� j 8i; xig:

It is useful to introduce the notation �ðxcÞ to refer to the
component of ���� corresponding to the indicator function
I½Xc ¼ xc�, and similarly for �ðxiÞ. Then, the MRF in (1)
would have  ðxcÞ ¼ e

�ðxcÞ and  ðxiÞ ¼ e
�ðxiÞ. Many opera-

tions on graphical models can be more elegantly repre-
sented using this exponential family representation.

A standard problem in the exponential family is to
compute the mean value of f ,

����ð����Þ ¼
X

x

pðx; ����ÞfðxÞ;

called the “mean parameters.” It is easy to show that these
are equal to the gradient of the log-partition function

dA

d����
¼ ����ð����Þ: ð4Þ

For an exponential family corresponding to an MRF,
computing ���� is equivalent to computing all the marginal
probabilities. To see this, note that, using a similar notation
for indexing ���� as for ���� above,

����ðxc; ����Þ ¼
X

X

pðX; ����ÞI½Xc ¼ xc� ¼ pðxc; ����Þ:

Conditional distributions can be represented by thinking
of the parameter vector ����ðy; ����Þ as being a function of the
input y, where ���� are now the free parameters rather than ����.
(Again, the nature of the dependence of ���� on y and ���� will
vary by application.) Then, we have that

pðx j y; ����Þ ¼ expð����ðy; ����Þ � fðxÞ �Að����ðy; ����ÞÞÞ; ð5Þ

sometimes called a curved conditional exponential family.

2.5 Learning

The focus of this paper is learning of model parameters
from data. (Automatically determining graph structure
remains an active research area, but is not considered here.)
Specifically, we take the goal of learning to be to minimize
the empirical risk
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Rð����Þ ¼
X

x̂

L
�

����; x̂
�

; ð6Þ

where the summation is over all examples x̂ in the dataset,
and the loss function Lð����; x̂Þ quantifies how well the
distribution defined by the parameter vector ���� matches
the example x̂. Several loss functions are considered in
Section 4.

We assume that the empirical risk will be fit by some
gradient-based optimizations. Hence, the main technical
issues in learning are which loss function to use and how to
compute the gradient dLd���� .

In practice, we will usually be interested in fitting
conditional distributions. Using the notation from (5), we
can write this as

Rð����Þ ¼
X

ðŷ;x̂Þ

Lð����ðŷ; ����Þ; x̂Þ:

Note that if one has recovered dL
d���� ,

dL
d���� is immediate from

the vector chain rule as

dL

d����
¼
d����T

d����

dL

d����
: ð7Þ

Thus, the main technical problems involved in fitting a

conditional distribution are similar to those for a gen-

erative distribution: One finds ���� ¼ ����ðŷ; ����Þ, computes L and
dL
d���� on example x̂ exactly as in the generative case, and

finally, recovers dL
d���� from (7). So, for simplicity, y and ���� will

largely be ignored in the theoretical developments below.

3 VARIATIONAL INFERENCE

This section reviews approximate methods for computing
marginals, with notation based on Wainwright and Jordan
[8]. For readability, all proofs in this section are presented in
Appendix A, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.
1109/TPAMI.2013.31.

The relationship between the marginals and the log-
partition function in (4) is a key to defining approximate
marginalization procedures. In Section 3.1, the exact
variational principle shows that the (intractable) problem
of computing the log-partition function can be converted to
a (still intractable) optimization problem. To derive a
tractable marginalization algorithm, one approximates this
optimization, yielding some approximate log-partition
function ~Að����Þ. The approximate marginals are then taken
as the exact gradient of ~A.

We define the reverse mapping ����ð����Þ to return some
parameter vectors that yield thatmarginals����.While thiswill,
in general, not be unique [8, Section 3.5.2], any two vectors
that produce the same marginals ���� will also yield the same
distribution, and so, pðx; ����ð����ÞÞ is unambiguous.

3.1 Exact Variational Principle

Theorem (Exact variational principle). The log-partition
function can also be represented as

Að����Þ ¼ max
����2M

���� � ����þHð����Þ; ð8Þ

where

M¼ f����0 : 9����; ����0 ¼ ����ð����Þg

is the marginal polytope and

Hð����Þ ¼ �
X

x

pðx; ����ð����ÞÞ log pðx; ����ð����ÞÞ

is the entropy.

In tree-like graphs, this optimization can be solved
efficiently. In general graphs, however, it is intractable in
two ways. First, the marginal polytope M becomes
difficult to characterize. Second, the entropy is intractable
to compute.

Applying Danskin’s theorem to (8) yields that

����ð����Þ ¼
dA

d����
¼ argmax

����2M
���� � ����þHð����Þ: ð9Þ

Thus, the partition function (8) and marginals (9) can
both be obtained from solving the same optimization
problem. This close relationship between the log-partition
function and marginals is heavily used in the derivation of
approximate marginalization algorithms. To compute ap-
proximate marginals, first, derive an approximate version
of the optimization in (8). Next, take the exact gradient of
this approximate partition function. This strategy is used in
both of the approximate marginalization procedures con-
sidered here: mean field (MNF) and tree-reweighted (TRW)
belief propagation.

3.2 Mean Field

The idea of MNF is to approximate the exact variational
principle by replacing M with some tractable subset F �
M such that F is easy to characterize, and for any vector
���� 2 F , we can exactly compute the entropy. To create such
a set F , instead of considering the set of mean vectors
obtainable from any parameter vector (which characterizes
M), consider a subset of tractable parameter vectors. The
simplest way to achieve this is to restrict consideration to
parameter vectors ���� with �ðxcÞ ¼ 0 for all factors c:

F ¼ f����0 : 9����; ����0 ¼ ����ð����Þ; 8c; �ðxcÞ ¼ 0g:

It is not hard to see that this corresponds to the set of fully
factorized distributions. Note also that this is (in non-tree-
like graphs) a nonconvex set because it has the same convex
hull as M, but is a proper subset. So, the MNF partition
function approximation is based on the optimization

~Að����Þ ¼ max
����2F

���� � ����þHð����Þ; ð10Þ

with approximate marginals corresponding to the max-
imizing vector ����, i.e.,

~����ð����Þ ¼ argmax
����2F

���� � ����þHð����Þ: ð11Þ

Since this is maximizing the same objective as the exact
variational principle, but under a more restricted constraint
set, clearly ~Að����Þ � Að����Þ.

Here, since the marginals are coming from a fully
factorized distribution, the exact entropy is available as
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Hð����Þ ¼ �
X

i

X

xi

�ðxiÞ log�ðxiÞ: ð12Þ

The strategy we use to perform the maximization in (10)
is block-coordinate ascent. Namely, we pick a coordinate j,
then set �ðxjÞ to maximize the objective, leaving �ðxiÞ fixed
for all i 6¼ j. The next theorem formalizes this.

Theorem (MNF updates). A local maximum of (10) can be

reached by iterating the updates

�ðxjÞ  
1

Z
exp �ðxjÞ þ

X

c:j2c

X

xcnj

�ðxcÞ
Y

i2cnj

�ðxiÞ

0

@

1

A;

where Z is a normalizing factor ensuring that
P

xj
�ðxjÞ ¼ 1.

3.3 Tree-Reweighted Belief Propagation

Whereas MNF replaced the marginal polytope with a
subset, TRW belief propagation replaces it with a superset,
L 	M. This clearly can only increase the value of the
approximate log-partition function. However, a further
approximation is needed as the entropy remains intract-
able to compute for an arbitrary mean vector ����. (It is not
even defined for ���� 62 M.) Thus, TRW further approx-
imates the entropy with a tractable upper bound. Taken
together, these two approximations yield a tractable upper
bound on the log-partition function.

Thus, TRW is based on the optimization problem

~Að����Þ ¼ max
����2L

���� � ����þ ~Hð����Þ: ð13Þ

Again, the approximate marginals are simply the maximiz-

ing vector ����, i.e.,

~����ð����Þ ¼ argmax
����2L

���� � ����þ ~Hð����Þ: ð14Þ

The relaxation of the local polytope used in TRW is the

local polytope

L ¼ ���� :
X

xcni

�ðxcÞ ¼ �ðxiÞ;
X

xi

�ðxiÞ ¼ 1

8

<

:

9

=

;
: ð15Þ

Since any valid marginal vector must obey these con-
straints, clearlyM� L. However, L in general also contains
unrealizable vectors (though on trees L ¼MÞ. Thus, the
marginal vector returned by TRW may, in general, be
inconsistent in the sense that no joint distribution yields
those marginals.

The entropy approximation used by TRW is

~Hð�Þ ¼
X

i

Hð�iÞ �
X

c

�cIð�cÞ; ð16Þ

where Hð�iÞ ¼ �
P

xi
�ðxiÞ log�ðxiÞ is the univariate en-

tropy corresponding to variable i, and

Ið�cÞ ¼
X

xc

�ðxcÞ log
�ðxcÞ

Q

i2c �ðxiÞ
ð17Þ

is the mutual information corresponding to the variables in

the factor c. The motivation for this approximation is that if

the constants �c are selected appropriately, this gives an

upper bound on the true entropy.

Theorem (TRW entropy bound). Let PrðGÞ be a distribution
over tree structured graphs and define �c ¼ Prðc 2 GÞ. Then,
with ~H as defined in (16),

~Hð����Þ 
 Hð����Þ:

Thus, TRW is maximizing an upper bound on the exact
variational principle, under an expanded constraint set.
Since both of these changes can only increase the maximum
value, we have that ~Að����Þ 
 Að����Þ.

Now, we consider how to actually compute the approx-
imate log-partition function and associated marginals.
Consider the message-passing updates

mcðxiÞ /
X

xcni

e
1
�c
�ðxcÞ

Y

j2cni

e�ðxjÞ
Q

d:j2dmdðxjÞ
�d

mcðxjÞ
; ð18Þ

where “/ ” is used as an assignment operator to mean
assigning after normalization.

Theorem (TRW updates). Let �c be as in the previous theorem.
Then, if the updates in (18) reach a fixed point, the marginals
defined by

�ðxcÞ / e
1
�c
�ðxcÞ

Y

i2c

e�ðxiÞ
Q

d:i2dmdðxiÞ
�d

mcðxiÞ
;

�ðxiÞ / e
�ðxiÞ

Y

d:i2d

mdðxiÞ
�d

constitute the global optimum of (13).

So, if the updates happen to converge, we have the
solution. Meltzer et al. [9] show that on certain graphs made
up of monotonic chains, an appropriate ordering of messages
does assure convergence. (The proof is essentially that
under these circumstances, message passing is equivalent to
coordinate ascent in the dual.)

TRW simplifies into loopy belief propagation by choosing
�c ¼ 1 everywhere, though the bounding property is lost.

4 LOSS FUNCTIONS

For space, only a representative sample of prior work can be
cited. A recent review [10] is more thorough.

Though, technically, a “loss” should be minimized, we
continue to use this terminology for the likelihood and its
approximations, where one wishes to maximize.

For simplicity, the discussion below is for the generative
setting. Using the same loss functions for training a
conditional model is simple (Section 2.5).

4.1 The Likelihood and Approximations

The classic loss function would be the likelihood, with

Lð����;xÞ ¼ log pðx; ����Þ ¼ ���� � fðxÞ �Að����Þ: ð19Þ

This has the gradient

dL

d����
¼ fðxÞ � ����ð����Þ: ð20Þ

One argument for the likelihood is that it is efficient;
given a correct model, as data increase, it converges to true
parameters at an asymptotically optimal rate [11].
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Some previous works use tree-structured graphs where
marginals may be computed exactly [12]. Of course, in high-
treewidth graphs, the likelihood and its gradient will be
intractable to compute exactly due to the presence of the
log-partition function Að����Þ and marginals ����ð����Þ. This has
motivated a variety of approximations. The first is to
approximate the marginals ���� using Markov chain Monte
Carlo [13], [14]. This can lead to high computational expense
(particularly in the conditional case, where different chains
must be run for each input). Contrastive divergence [15]
further approximates these samples by running the Markov
chain for only a few steps, but starting at the data points
[16]. If the Markov chain is run long enough, these
approaches can give an arbitrarily good approximation.
However, Markov chain parameters may need to be
adjusted to the particular problem, and these approaches
are generally slower than those discussed below.

4.1.1 Surrogate Likelihood

A seemingly heuristic approach would be to replace the
marginals in (20) with those from an approximate
inference method. This approximation can be quite
principled if one thinks instead of approximating the log-
partition function in the likelihood itself (19). Then, the
corresponding approximate marginals will emerge as
the exact gradient of this surrogate loss. This “surrogate
likelihood” [17] approximation appears to be the most
widely used loss in imaging problems, with marginals
approximated by either MNF [18], [19], TRW [20], or LBP
[21], [22], [23], [24], [25]. However, the terminology of
“surrogate likelihood” is not widespread, and in most
cases, only the gradient is computed, meaning the
optimization cannot use line searches.

If one uses a log-partition approximation that provides a
bound on the true log-partition function, the surrogate
likelihood will then bound the true likelihood. Specifically,
mean field-based surrogate likelihood is an upper bound on
the true likelihood, while TRW-based surrogate likelihood
is a lower bound.

4.1.2 Expectation Maximization

In many applications, only a subset of variables may be
observed. Suppose that we want to model x ¼ ðz;hÞ where
z is observed, but h is hidden. A natural loss function here
is the expected maximization (EM) loss

Lð����; zÞ ¼ log pðz; ����Þ ¼ log
X

h

pðz;h; ����Þ:

It is easy to show that this is equivalent to

Lð����; zÞ ¼ Að����; zÞ �Að����Þ; ð21Þ

where Að����; zÞ ¼ log
P

h exp ���� � fðz;hÞ is the log-partition
function with z “clamped” to the observed values. If all
variables are observed, Að����; zÞ reduces to ���� � fðzÞ.

On substituting a variational approximation for Að����; zÞ, a
“variational EM” algorithm [8, Section 6.2.2] can be
recovered that alternates between computing approximate
marginals and parameter updates. Here, because of
the close relationship to the surrogate likelihood, we
designate “surrogate EM” for the case where Að����; zÞ and

Að����Þ may both be approximated, and the learning is done
with a gradient-based method. To obtain a bound on the
true EM loss, care is required. For example, lower bounding
Að����; zÞ using MNF and upper bounding Að����Þ using TRW
means a lower bound on the true EM loss. However, using
the same approximation for both Að����Þ and Að����; zÞ appears
to work well in practice [26].

4.1.3 Saddle-Point Approximation

A third approximation of the likelihood is to search for a
“saddle point.” Here, one approximates the gradient in (20)
by running an (presumably approximate) MAP inference
algorithm, and then imagining that the marginals put unit
probability at the approximate MAP solution and zero
elsewhere [27], [28], [21]. This is a heuristic method, but it
can be expected to work well when the estimated MAP
solution is close to the true MAP and the conditional
distribution pðx j yÞ is strongly “peaked.”

4.1.4 Pseudolikelihood

Finally, there are two classes of likelihood approximations
that do not require inference. The first is the classic
pseudolikelihood [29], where one uses

Lð����;xÞ ¼
X

i

log pðxi j x�i; ����Þ:

This can be computed efficiently, even in high
treewidth graphs, since conditional probabilities are easy
to compute. Besag [29] showed that, under certain
conditions, this will converge to the true parameter vector
as the amount of data becomes infinite. The pseudolikeli-
hood has been used in many applications [30], [31].
Instead of the probability of individual variables given
all others, one can take the probability of patches of
variables given all others, sometimes called the “patch”
pseudolikelihood [32]. This interpolates to the exact like-
lihood as the patches become larger, though some types of
inferences are generally required.

4.1.5 Piecewise Likelihood

More recently, Sutton and McCallum [33] suggested the
piecewise likelihood. The idea is to approximate the log-
partition function as a sum of log-partition functions of the
different “pieces” of the graph. There is flexibility in
determining which pieces to use. In this paper, we will
use pieces consisting of each clique and each variable,
which worked better in practice than some alternatives.
Then, one has the surrogate partition function

~Að����Þ ¼
X

c

Acð����Þ þ
X

i

Aið����Þ;

Acð����Þ ¼ log
X

xc

e�ðxcÞ; Aið����Þ ¼ log
X

xi

e�ðxiÞ:

It is not too hard to show that Að����Þ � ~Að����Þ. In practice,
it is sometimes best to make some heuristic adjustments to
the parameters after learning to improve test-time perfor-
mance [34], [35].

4.2 Marginal-Based Loss Functions

Given the discussion in Section 4.1, one might conclude that
the likelihood, while difficult to optimize, is an ideal loss
function since, given a well-specified model, it will converge
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to the true parameters at asymptotically efficient rates.
However, this conclusion is complicated by two issues. First,
of course, the maximum likelihood solution is computation-
ally intractable, motivating the approximations above.

A second issue is that of model misspecification. For
many types of complex phenomena, we will wish to fit a
model that is approximate in nature. This could be true
because the conditional independencies asserted by the
graph do not exactly hold or because the parameterization
of factors is too simplistic. These approximations might be
made out of ignorance, due to a lack of knowledge about
the domain being studied, or deliberately because the true
model might have too many degrees of freedom to be fit
with available data.

In the case of an approximate model, no “true”
parameters exist. The idea of marginal-based loss functions
is to instead consider how the model will be used. If one
will compute marginals at test-time—perhaps for MPM
inference (Section 2.3)—it makes sense to maximize the
accuracy of these predictions. Further, if one will use an
approximate inference algorithm, it makes sense to opti-
mize the accuracy of the approximate marginals. This
essentially fits into the paradigm of empirical risk mini-
mization [36], [37]. The idea of training a probabilistic
model using an alternative loss to the likelihood goes back
at least to Bahl et al. [38] in the late 1980s.

There is reason to think the likelihood is somewhat
robust to model misspecification. In the infinite data limit, it
finds the “closest” solution in the sense of KL divergence
since if q is the true distribution, then

KLðqkpÞ ¼ const:� IE
q
log pðx; ����Þ:

4.2.1 Univariate Logistic Loss

The univariate logistic loss [39] is defined by

Lð����;xÞ ¼ �
X

i

log�ðxi; ����Þ;

where we use the notation � to indicate that the loss is
implicitly defined with respect to the marginal predictions
of some (possibly approximate) algorithms, rather than the
true marginals. This measures the mean accuracy of all
univariate marginals, rather than the joint distribution. This
loss can be seen as empirical risk minimization of the KL
divergence between the true marginals and the predicted
ones since

X

i

KLðqik�iÞ ¼
X

i

X

xi

qðxiÞ log
qðxiÞ

�ðxi; ����Þ

¼ const:� IE
q

X

i

log�ðxi; ����Þ:

If defined on exact marginals, this is a type of composite
likelihood [40].

4.2.2 Smoothed Univariate Classification Error

Perhaps the most natural loss in the conditional setting
would be the univariate classification error:

Lð����;xÞ ¼
X

i

S max
x0i 6¼xi

�ðxi; ����Þ � �ðxi; ����Þ

 !

;

where Sð�Þ is the step function. This exactly measures the
number of components of x that would be incorrectly
predicted if using MPM inference. Of course, this loss is
neither differentiable nor continuous, which makes it
impractical to optimize using gradient-based methods.
Instead Gross et al. [5] suggest approximating with a
sigmoid function SðtÞ ¼ ð1þ expð��tÞÞ�1, where � controls
approximation quality.

There is evidence [36], [5] that the smoothed classifica-
tion loss can yield parameters with lower univariate
classification error under MPM inference. However, our
experience is that it is also more prone to getting stuck in
local minima, making experiments difficult to interpret.
Thus, it is not included in the experiments below. Our
experience with the univariate quadratic loss [41] is similar.

4.2.3 Clique Losses

Any of the above univariate losses can be instead taken
based on cliques. For example, the clique logistic loss is

Lð����;xÞ ¼ �
X

c

log�ðxc; ����Þ;

which may be seen as empirical risk minimization of the
mean KL divergence of the true clique marginals to the
predicted ones. An advantage of this with an exact model is
consistency. Simple examples show cases where a model
predicts perfect univariate marginals despite the joint
distribution being very inaccurate. However, if all clique
marginals are correct, the joint must be correct by the
standard moment matching conditions for the exponential
family [8].

4.2.4 Hidden Variables

Marginal-based loss functions can accommodate hidden
variables by simply taking the sum in the loss over the
observed variables only. A similar approach can be used with
the pseudolikelihood or piecewise likelihood.

4.3 Comparison with Exact Inference

To compare the effects of different loss functions in the
presence of model misspecification, this section contains a
simple example where the graphical model takes the
following “chain” structure:

Here, exact inference is possible, so comparison is not
complicated by approximate inference.

All variables are binary. Parameters are generated by
taking �ðxiÞ randomly from the interval ½�1;þ1� for all i and
xi. Interaction parameters are taken as �ðxi; xjÞ ¼ t when
xi ¼ xj, and �ðxi; xjÞ ¼ �t when xi 6¼ xj, where t is ran-
domly chosen from the interval ½�1;þ1� for all ði; jÞ.
Interactions �ðyi; yjÞ and �ðxi; yiÞ are chosen in the same way.

To systematically study the effects of differing “amounts”
of misspecification, after generating data we apply various
circular shifts to x. Thus, the data no longer correspond
exactly to the structure of the graphical model being fit.
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Thirty-two different random distributions were created.
For each, various quantities of data were generated by
Markov chain Monte Carlo, with shifts introduced after
sampling. The likelihood was fit using the closed-form
gradient (Section 4.1), while the logistic losses were trained
using a gradient obtained via backpropagation (Section 7).
Fig. 1 shows the mean test error (estimated on 1,000 exam-
ples), while Fig. 2 shows example marginals. We see that
the performance of all methods deteriorates with misspe-
cification, but the marginal-based loss functions are more
resistant to these effects.

4.4 MAP-Based Training

Another class of methods explicitly optimizes the perfor-
mance of MAP inference [42], [43], [44], [45], [25]. This
paper focuses on applications that use marginal inference,
and that may need to accommodate hidden variables, and
so concentrates on likelihood and marginal-based losses.

5 IMPLICIT FITTING

We now turn to the issue of how to train high-treewidth
graphical models to optimize the performance of a margin-
al-based loss function, based on some approximate in-
ference algorithms. Now, computing the value of the loss
for any of the marginal-based loss functions is not hard.
One can simply run the inference algorithm and plug the

resulting marginal into the loss. However, we also require
the gradient dLd���� .

Our first result is that the loss gradient can be obtained
by solving a sparse linear system. Here, it is useful to
introduce notation to distinguish the loss L, defined in
terms of the parameters ���� from the loss Q, defined directly
in terms of the marginals ����. (Note that though the notation
suggests the application to marginal inference, this is a
generic result.)

Theorem. Suppose that

����ð����Þ :¼ argmax
����:B����¼d

���� � ����þHð����Þ: ð22Þ

Define Lð����;xÞ ¼ Qð����ð����Þ;xÞ. Then, letting D ¼ d2H
d����d����T ,

dL

d����
¼
�

D�1BT ðBD�1BT Þ�1BD�1 �D�1
� dQ

d����
:

A proof may be found in Appendix B, available in the
online supplemental material. This theorem states that,
essentially, once one has computed the predicted margin-
als, the gradient of the loss with respect to marginals dQ

d����

can be transformed into the gradient of the loss with
respect to parameters dL

d���� through the solution of a sparse
linear system.

The optimization in (22) takes place under linear
constraints, which encompasses the local polytope used in
TRW message-passing (15). This theorem does not apply to
MNF, as F is not a linear constraint set when viewed as a
function of both clique and univariate marginals.

In any case, the methods developed below are simpler to
use, as they do not require explicitly forming the constraint
matrix B or solving the linear system.

6 PERTURBATION

This section observes that variational methods have a
special structure that allows derivatives to be calculated
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Fig. 1. Mean test error of various loss functions trained with exact
inference. In the case of a well-specified model (shift of zero), the
likelihood performs essentially identically to the marginal-based loss
functions. However, when misspecification is introduced, quite different
estimates result.

Fig. 2. Exact and predicted marginals for an example input. Predicted marginals are trained using 1,000 data. With low shifts, all loss functions lead
to accurate predicted marginals. However, the univariate and clique logistic loss are more resistant to the effects of model misspecification. Legends
as in Fig. 1.



without explicitly forming or inverting a linear system. We
have, by the vector chain rule, that

dL

d����
¼
d����T

d����

dQ

d����
: ð23Þ

A classic trick in scientific computing is to efficiently
compute Jacobian-vector products by finite differences. The
basic result is that, for any vector v,

d����

d����T
v ¼ lim

r!0

1

r
ð����ð����þ rvÞ � ����ð����ÞÞ;

which is essentially just the definition of the derivative of ����
in the direction of v. Now, this does not immediately seem
helpful since (23) requires d����T

d���� , not d����

d����T
. However, with

variational methods, these are symmetric. The simplest way
to see this is to note that

d����

d����T
¼

d

d����T
dA

d����

� �

¼
dA

d����d����T
:

Domke [46] lists conditions for various classes of entropies
that guarantee that A will be differentiable.

Combining the above three equations, the loss gradient is
available as the limit

dL

d����
¼ lim

r!0

1

r
���� ����þ r

dQ

d����

� �

� ����ð����Þ

� �

: ð24Þ

In practice, of course, the gradient is approximated using
some finite r. The simplest approximation, one-sided
differences, simply takes a single value of r in (24), rather
than a limit. More accurate results at the cost of more calls
to inference are given using two-sided differences, with

dL

d����
�

1

2r
���� ����þ r

dQ

d����

� �

� ���� ����� r
dQ

d����

� �� �

;

which is accurate to order oðr2Þ. Still more accurate results
are obtained with “four-sided” differences, with

dL

d����
�

1

12r
����� ����þ 2r

dQ

d����

� �

þ 8���� ����þ r
dQ

d����

� ��

� 8���� ����� r
dQ

d����

� �

þ ���� ����� 2r
dQ

d����

� ��

;

which is accurate to order oðr4Þ [47].
Algorithm 1 shows more explicitly how the loss gradient

could be calculated, using two-sided differences.

Algorithm 1. Calculating dL
d���� by perturbation (two-sided).

1) Do inference. �����  argmax
����2M

���� � ����þHð����Þ

2) At �����, calculate the gradient
dQ

d����
.

3) Calculate a perturbation size r.

4) Do inference on perturbed parameters.

a) ����þ  argmax
����2M
ð����þ r

dQ

d����
Þ � ����þHð����Þ

b) �����  argmax
����2M
ð����� r

dQ

d����
Þ � ����þHð����Þ

5) Recover full derivative as
dL

d����
 

1

2r
ð����þ � �����Þ.

The issue remains of how to calculate the step size r.
Each of the approximations above becomes exact as r! 0.

However, as r becomes very small, numerical error
eventually dominates. To investigate this issue experimen-
tally, we generated random models on a 10� 10 binary
grid, with each parameter �ðxiÞ randomly chosen from a
standard normal, while each interaction parameter �ðxi; xjÞ
was chosen randomly from a normal with a standard
deviation of s. In each case, a random value x was
generated, and the “true” loss gradient was estimated by
standard (inefficient) two-sided finite differences, with
inference rerun after each component of ���� is perturbed
independently. To this, we compare one-, two-, and four-
sided perturbations. In all cases, the step size is, following
Andrei [48], taken to be r ¼ m�

1
3ð1þ k����k1Þ=k

dQ
d���� k1, where �

is machine epsilon, and m is a multiplier that we will vary.
Note that the optimal power of � will depend on the finite
difference scheme; 1

3
is optimal for two-sided differences

[49, Section 8.1]. All calculations take place in double
precision with inference run until marginals changed by a
threshold of less than 10�15. Fig. 3 shows that using many-
sided differences leads to more accuracy, at the cost of
needing to run inference more times to estimate a single loss
gradient. In the following experiments, we chose two-sided
differences with a multiplier of 1 as a reasonable tradeoff
between accuracy, simplicity, and computational expense.

Welling and Teh [50] used sensitivity of approximate
beliefs to parameters to approximate joint probabilities of
nonneighboring variables.

7 TRUNCATED FITTING

The previous methods for computing loss gradients are
derived under the assumption that the inference optimiza-
tion is solved exactly. In an implementation, of course, some
convergence thresholds must be used.

Different convergence thresholds can be used in the
learning stage and at test time. In practice, we have
observed that too loose a threshold in the learning stage
can lead to a bad estimated risk gradient, and learning
terminating with a bad search direction. Meanwhile, a loose
threshold can often be used at test time with few
consequences. Usually, a difference of 10�3 in estimated
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Fig. 3. An evaluation of perturbation multipliers m. Top: TRW. Bottom:
MNF. Two effects are in play here: First, for too small a perturbation,
numerical errors dominate. Meanwhile, for too large a perturbation,
approximation errors dominate. We see that using two- or four-sided
differences reduces approximation error, leading to better results with
larger perturbations.



marginals has little practical impact, but this can still be
enough to prevent learning from succeeding [51].

It seems odd that the learning algorithm would spend
the majority of computational effort exploring tight con-
vergence levels that are irrelevant to the practical perfor-
mance of the model. Here, we define the learning objective in
terms of the approximate marginals obtained after a fixed
number of iterations. To understand this, one may think of
the inference process not as an optimization, but rather as a
large, nonlinear function. This clearly leads to a well-
defined objective function. Inputting parameters, applying
the iterations of either TRW or MNF, computing predicted
marginals, and finally, a loss are all differentiable opera-
tions. Thus, the loss gradient is efficiently computable, at
least in principle, by reverse-mode automatic differentiation
(autodiff), an approach explored by Stovanov et al. [36],
[52]. In preliminary work, we experimented with autodiff
tools, but found these to be unsatisfactory for our applica-
tions for two reasons. First, these tools impose a computa-
tional penalty over manually derived gradients. Second,
autodiff stores all intermediate calculations, leading to large
memory requirements. The methods derived below use less
memory, both in terms of constant factors and big-O
complexity. Nevertheless, some of these problems are
issues with current implementations of reverse-mode auto-
diff, avoidable in theory.

Both MNF and TRW involve steps where we first take a
product of a set of terms, and then normalize. We define a
“backnorm” operator, which is useful in taking derivatives
over such operations, by

backnormðg; cÞ ¼ c� ðg� g � cÞ:

This will be used in the algorithms here. More discussion on
this point can be found in Appendix C, available in the
online supplemental material.

7.1 Back Mean Field

The first backpropagating inference algorithm, back MNF, is
shown as Algorithm 2. The idea is as follows: Suppose we
start with uniform marginals, run N iterations of MNF, and
then—regardless of if MNF has converged or not—take
predicted marginals and plug them into one of the marginal-
based loss functions. Since each step in this process is
differentiable, this specifies the loss as a differentiable
function of model parameters. We want the exact gradient
of this function.

Algorithm 2. Back Mean Field

1) Initialize � uniformly.

2) Repeat N times for all j:

a) Push the marginals �j onto a stack.

b) �ðxjÞ / exp
�

�ðxjÞ þ
X

c:j2c

X

xcnj

�ðxcÞ
Y

i2cnj

�ðxiÞ
�

3) Compute L, � ðxjÞ ¼
dL

d�ðxjÞ
and � ðxcÞ ¼

dL
d�ðxcÞ

.

4) Initialize �
 
ðxiÞ  0; �

 
ðxcÞ  0.

5) Repeat N times for all j (in reverse order):

a) �j
  backnormð�j

 ; �jÞ

b) �
 
ðxjÞ  �

 
ðxjÞ þ � ðxjÞ

c) �
 
ðxcÞ  �

 
ðxcÞ þ � ðxjÞ

Y

i2cnj

�ðxiÞ 8c : j 2 c

d) � ðxiÞ  � ðxiÞ þ
P

xcni
� ðxjÞ�ðxcÞ

Y

k2cnfi;jg

�ðxkÞ

8c : j 2 c; 8i 2 cnj

e) Pull marginals �j from the stack.

f) �j
 ðxjÞ  0

Theorem. After execution of back MNF,

�
 
ðxiÞ ¼

dL

d�ðxiÞ
and �
 
ðxcÞ ¼

dL

d�ðxcÞ
:

A proof sketch is in Appendix C, available in the online
supplemental material. Roughly speaking, the proof takes
the form of a mechanical differentiation of each step of the
inference process.

Note that, as written, backMNF only produces univariate
marginals, and so cannot cope with loss functions making
use of clique marginals. However, with MNF, the clique
marginals are simply the product of univariate marginals:
�ðxcÞ ¼

Q

i2c �ðxiÞ. Hence, any loss defined on clique
marginals can equivalently be defined on univariate
marginals.

7.2 Back TRW

Next, we consider truncated fitting with TRW inference. As
above, we will assume that some fixed number N of
inference iterations have been run, and we want to define
and differentiate a loss defined on the current predicted
marginals. Algorithm 3 shows the method.

Algorithm 3. Back TRW.

1) Initialize m uniformly.

2) Repeat N times for all pairs ðc; iÞ, with i 2 c:

a) Push the messages mcðxiÞ onto a stack.

b) mcðxiÞ /
P

xcni
e

1
�c
�ðxcÞ

Y

j2cni

e�ðxjÞ
Q

d:j2d mdðxjÞ
�d

mcðxjÞ

3) �ðxcÞ / e
1
�c
�ðxcÞ

Y

i2c

e�ðxiÞ
Q

d:i2d mdðxiÞ
�d

mcðxiÞ
8c

4) �ðxiÞ / e�ðxiÞ
Y

d:i2d

mdðxiÞ
�d 8i

5) Compute L, � ðxiÞ ¼
dL

d�ðxiÞ
and � ðxcÞ ¼

dL
d�ðxcÞ

.

6) For all c,

a) � ðxcÞ  backnormð�c
 ; �cÞ

b) �
 
ðxcÞ  

þ 1
�c
� ðxcÞ

c) �
 
ðxiÞ  

þ P

xcni
� ðxcÞ 8i 2 c

d) md
 �ðxiÞ  

þ �d�Ic¼d
mdðxiÞ

P

xcni
� 8i 2 c;8d : i 2 d

7) For all i,

a) � ðxiÞ  backnormð�i
 ; �iÞ

b) �
 
ðxiÞ  

þ
� ðxiÞ

c) md
 �ðxiÞ  

þ
�d

� ðxiÞ
mdðxiÞ

8d : i 2 d

8) Repeat N times for all pairs ðc; iÞ (in reverse order)

a) sðxcÞ  e
1
�c
�ðxcÞ

Y

j2cni

e�ðxjÞ
Q

d:j2d mdðxjÞ
�d

mcðxjÞ

b) � ðxiÞ  backnormðmci
 �;mciÞ

c) �
 
ðxcÞ  

þ 1
�c
sðxcÞ

� ðxiÞ
mcðxiÞ

d) �
 
ðxjÞ 

þ P

xcnj
sðxcÞ

� ðxiÞ
mcðxiÞ

8j 2 cni
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e) md
 �ðxjÞ  

þ �d�Ic¼d
mdðxjÞ

P

xcnj
sðxcÞ

� ðxiÞ
mcðxiÞ

8j 2 cni; 8d : j 2 d

f) Pull messages mcðxiÞ from the stack.

g) mc
 �ðxiÞ  0

Theorem. After execution of back TRW,

�
 
ðxiÞ ¼

dL

d�ðxiÞ
and �
 
ðxcÞ ¼

dL

d�ðxcÞ
:

Again, a proof sketch is in Appendix C, available in the
online supplemental material.

If one uses pairwise factors only, uniform appearance
probabilities of � ¼ 1, removes all reference to the stack, and
uses a convergence threshold in place of a fixed number of
iterations, one obtains essentially Eaton and Ghahramani’s
[53, extended version, Fig. 5] back belief propagation. Here,
we refer to the general strategy of using full (nontruncated)
inference as “backpropagation,” either with LBP, TRW, or
MNF.

7.3 Truncated Likelihood and Truncated EM

Applying the truncated fitting strategies to any of the
marginal-based loss functions is simple. Applying it to the
likelihood or EM loss, however, is not so straightforward.
The reason is that these losses ((19) and (21)) are defined,
not in terms of predicted marginals, but in terms of
partition functions. Nevertheless, we wish to compare to
these losses in the experiments below. As we found
truncation to be critical for speed, we instead derive a
variant of truncated fitting.

The basic idea is to define a “truncated partition
function.” This is done by taking the predicted marginals,
obtained after a fixed number of iterations, and plugging
them into the entropy approximations used either for MNF
(12) or TRW (16). The approximate entropy ~H is then used
in defining a truncated partition function as

~Að����Þ ¼ ���� � ����ð����Þ � ~Hð����ð����ÞÞ:

As we will see below, with too few inference iterations,
using this approximation can cause the surrogate likelihood
to diverge. To see why, imagine an extreme case where zero
inference iterations are used. This results in the loss
Lð����;xÞ ¼ ���� � ðfðxÞ � ����0Þ þ ~Hð����0Þ, where ����0 are the initial
marginals. As long as the mean of fðxÞ over the dataset is
not equal to ����0, arbitrary loss can be achieved. With hidden
variables, Að����; zÞ is defined similarly, but with the variables
z “clamped” to the observed values. (Those variables will
play no role in determining ����ð����Þ).

8 EXPERIMENTS

These experiments consider three different datasets with
varying complexity. In all cases, we try to keep the features
used relatively simple. This means some sacrifice in
performance, relative to using sophisticated features tuned
more carefully to the different problem domains. However,
given that our goal here is to gauge the relative performance
of the different algorithms, we use simple features for the
sake of experimental transparency.

We compare marginal-based learning methods to the
surrogate likelihood/EM, the pseudolikelihood, and piece-
wise likelihood. These comparisons were chosen because,
first, they are the most popular in the literature (Section 4).
Second, the surrogate likelihood also requires marginal
inference, meaning an “apples to apples” comparison
using the same inference method. Third, these methods
can all cope with hidden variables, which appear in our
third dataset.

In each experiment, an “independent” model, trained
using univariate features only with logistic loss was used to
initialize others. The smoothed classification loss, because
of more severe issues with local minima, was initialized
using surrogate likelihood/EM.

8.1 Setup

All experiments here will be on vision problems, using a
pairwise, four-connected grid. Learning uses the L-BFGS
optimization algorithm. The values � are linearly para-
meterized in terms of unary and edge features. Formally,
we will fit two matrices, F and G, which determine all
unary and edge features, respectively. These can be
expressed most elegantly by introducing a bit more
notation. Let ����i denote the set of parameter values �ðxiÞ
for all values xi. If uðy; iÞ denotes the vector of unary
features for variable i given input image y, then

����i ¼ Fuðy; iÞ:

Similarly, let ����ij denote the set of parameter values �ðxi; xjÞ
for all xi; xj. If vðy; i; jÞ is the vector of edge features for pair
ði; jÞ, then

����ij ¼ Gvðy; i; jÞ:

Once dL
d���� has been calculated (for whichever loss and

method), we can easily recover the gradients with respect to
F and G by

dL

dF
¼
X

i

dL

d����i
uðy; iÞT ;

dL

dG
¼
X

ij

dL

d����ij
vðy; i; jÞT :

8.2 Binary Denoising Data

In a first experiment, we create a binary denoising problem
using the Berkeley segmentation dataset. Here, we took 132
200� 300 images from the Berkeley segmentation dataset,
binarized them according to if each pixel is above the image
mean. The noisy input values are then generated as
yi ¼ xið1� t

n
i Þ þ ð1� xiÞt

n
i , where xi is the true binary label

and ti 2 ½0; 1� is random. Here, n 2 ð1;1Þ is the noise level,
where lower values correspond to more noise. Thirty-two
images were used for training and 100 for testing. This is
something of a toy problem, but the ability to systematically
vary the noise level is illustrative.

As unary features uðy; iÞ, we use only two features: a
constant of 1 and the noisy input value at that pixel.

For edge features vðy; i; jÞ, we also use two features: one
indicating that ði; jÞ is a horizontal edge and one indicating
that ði; jÞ is a vertical edge. The effect is that vertical and
horizontal edges have independent parameters.

For learning, we use full back TRW and back MNF
(without message storing or truncation) for marginal-based
loss functions, and the surrogate likelihood with the
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gradient computed in the direct form (20). In all cases, a
threshold on inference of 10�4 is used.

Error rates are shown in Table 1, while predicted
marginals for an example test image are shown in Fig. 4.
We compare against an independent model, which can be
seen as truncated fitting with zero iterations or, equiva-
lently, logistic regression at the pixel level. We see that for
low noise levels, all methods perform well, while for high
noise levels, the marginal-based losses outperform the
surrogate likelihood and pseudolikelihood by a consider-
able margin. Our interpretation of this is that model
misspecification is more pronounced with high noise, and
other losses are less robust to this.

8.3 Horses

Second, we use the Weizman horse dataset, consisting of

328 images of horses at various resolutions. We use 200 for

training and 128 for testing. The set of possible labels xi is

again binary—either the pixel is part of a horse or not.
For unary features uðy; iÞ, we begin by computing the

RGB intensities of each pixel, along with the normalized

vertical and horizontal positions. We expand these five

initial features into a larger set using sinusoidal expansion

[54]. Specifically, denote the five original features by s.

Then, we include the features sinðc � sÞ and cosðc � sÞ for

all binary vectors c of the appropriate length. This results

in an expanded set of 64 features. To these we append a

36-component histogram of gradients [55], for a total of

100 features.
For edge features between i and j, we use a set of

21 “base” features: A constant of one, the l2 norm of the

difference of the RGB values at i and j, discretized as above

10 thresholds, and the maximum response of a Sobel edge

filter at i or j, again discretized using 10 thresholds. To

generate the final feature vector vðy; i; jÞ, this is increased

into a set of 42 features. If ði; jÞ is a horizontal edge, the first

half of these will contain the base feature, and the other half

will be zero. If ði; jÞ is a vertical edge, the opposite situation

occurs. This essentially allows for different parameteriza-

tion of vertical and horizontal edges.
In a first experiment, we train models with truncated

fitting with various numbers of iterations. The pseudolike-

lihood and piecewise likelihood use a convergence thresh-

old of 10�5 for testing. Several trends are visible in Table 2.

First, with less than 20 iterations, the truncated surrogate

likelihood diverges and produces errors around 0.4.

Second, TRW consistently outperforms MNF. Finally,

marginal-based loss functions outperform the others, both

in terms of training and test errors. Fig. 5 shows predicted

marginals for an example test image. On this dataset, the

pseudolikelihood, piecewise likelihood, and surrogate like-

lihood based on MNF are outperformed by an independent

model where each label is predicted by input features

independent of all others.
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TABLE 1
Binary Denoising Error Rates for Different Noise Levels n

All methods use TRW inference with backpropagation-based learning
with a threshold of 10�4.

Fig. 4. Predicted marginals for an example binary denoising test image
with different noise levels n.

TABLE 2
Training and Test Errors on the Horses Dataset,

Using Either TRW on MNF Inference

With too few iterations, the surrogate likelihood diverges.



8.4 Stanford Backgrounds Data

Our final experiments consider the Stanford backgrounds
dataset. This consists of 715 images of resolution approxi-
mately 240� 320. Most pixels are labeled as one of eight
classes, with some unlabeled.

The unary features uðy; iÞ we use here are identical to
those for the horses dataset. In preliminary experiments, we
tried training models with various resolutions. We found
that reducing resolution to 20 percent of the original after
computing features, then upsampling the predicted margin-
als yielded significantly better results than using the
original resolution. Hence, this is done for all the following
experiments. Edge features are identical to those for the
horses dataset, except only based on the difference of RGB
intensities, meaning 22 total edge features vðy; i; jÞ.

In a first experiment, we compare the performance of
truncated fitting, perturbation, and backpropagation, using
100 images from this dataset for speed. We train with
varying thresholds for perturbation and backpropagation,
while for truncated learning we use various numbers of
iterations. All models are trained with TRW to fit the
univariate logistic loss. If a bad search direction is
encountered, L-BFGS is reinitialized. Results are shown in

Fig. 7. We see that with loose thresholds, perturbation and

backpropagation experience learning failure at suboptimal

solutions. Truncated fitting is far more successful; using

more iterations is slower to fit, but leads to better

performance at convergence.
In a second experiment, we train on the entire dataset,

with errors estimated using fivefold cross validation. Here,
an incremental procedure was used, where first a subset of
32 images was trained on, with 1,000 learning iterations.
The number of images was repeatedly doubled, with the
number of learning iterations halved. In practice, this
reduced training time substantially. Results are shown in
Table 3 and Fig. 6. These results use a ridge regularization
penalty of 	 on all parameters. (This is relative to the
empirical risk, as measured per pixel.) For EM and
marginal-based loss functions, we set this as 	 ¼ 10�3. We
found in preliminary experiments that using a smaller
regularization constant caused truncated EM to diverge
even with 10 iterations. The pseudolikelihood and piece-
wise benefit from less regularization, and so, we use 	 ¼
10�4 there. Again, the marginal-based loss functions out-
perform others. In particular, they also perform quite well
even with five iterations, where truncated EM diverges.

9 CONCLUSIONS

Training parameters of graphical models in a high

treewidth setting involves several challenges. In this paper,
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Fig. 6. Example marginals from the backgrounds dataset using
20 iterations for truncated fitting.

Fig. 7. Comparison of different learning methods on the backgrounds
dataset with 100 images. All use an eight-core 2.26 GHz PC.

Fig. 5. Predicted marginals for a test image from the horses dataset.
Truncated learning uses 40 iterations.

TABLE 3
Test Errors on the Backgrounds Dataset Using TRW Inference

With too few iterations, surrogate EM diverges, leading to very high
error rates.



we focus on three: model misspecification, the necessity of
approximate inference, and computational complexity.

The main technical contribution of this paper is several
methods for training based on the marginals predicted by a
given approximate inference algorithm. These methods
take into account model misspecification and inference
approximations. To combat computational complexity, we
introduce “truncated” learning, where the inference algo-
rithm only needs to be run for a fixed number of iterations.
Truncation can also be applied, somewhat heuristically, to
the surrogate likelihood.

Among previous methods, we experimentally find the
surrogate likelihood to outperform the pseudolikelihood or
piecewise learning. By more closely reflecting the test
criterion of Hamming loss, marginal-based loss functions
perform still better, particularly on harder problems
(though the surrogate likelihood generally displays smaller
train/test gaps). Additionally, marginal-based loss func-
tions are more amenable to truncation, as the surrogate
likelihood diverges with too few iterations.
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