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Chapter 1: Introduction

Easy-first is a general search-based structured prediction framework that has been successfully

applied to a variety of natural language processing (NLP) tasks including POS tagging [36],

dependency parsing [15] and coreference resolution [39]. In this framework, the output is con-

structed incrementally by making the easiest (most confident) decision at each decision step to

gather more evidence for making hard decisions later. A decision might be selecting an edge to

be added between a particular pair of nodes for dependency parsing or selecting two clusters to

be merged for co-reference resolution. Consider the following example from the EECB corpus

for the problem of joint entity and event coreference resolution across documents [24].

(a) Hugh Jackman plays a furry comic-book hero.

(b) The Australian actor is playing a super hero.

The coreference resolution decision for the two verb mentions “plays” and “is playing” is

easy, because they share the same lemma “play”. In contrast, the coreference decision for the

two noun mentions “Hugh Jackman” and “The Australian actor” is hard based on the lexical,

syntactic, semantic and discourse constraints or features [19, 28]. In the Easy-first framework,

the easiest decision is made early. Once we establish the fact that the two verbs are coreferent,

we have stronger evidence suggesting that the two noun mentions are coreferent because they

serve the same semantic role to the same verb cluster.

The Easy-first approach is a greedy search process that selects the easiest decision (i.e., a

decision with the highest score according to a learned policy) at each decision-making step.

Because it is applied greedily, the learned policy plays a critical role in the effectiveness of this

approach. The focus of this thesis is to study principled ways of learning policies to ensure the

success of the Easy-first framework. In particular, we propose a novel online learning algorithm

that learns a linear policy for the Easy-first approach. The contributions of this work are as

follows:

• We formulate greedy policy learning as optimizing a non-convex objective consisting of

two parts. The first part employs hinge loss to ensure that the learned policy ranks at least

one good action higher than all the bad actions. The second part regularizes the weight

vector to avoid overly-aggressive updates and over-fitting.
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• We develop an efficient Concave-Convex Procedure (CCCP) procedure to optimize the

proposed non-convex objective function, which can be easily expressed as the difference

of two convex functions.

• We evaluate our approach in two NLP domains: within-document entity coreference res-

olution and cross-document joint entity and event coreference resolution. Our results

demonstrate that the proposed approach performs better than the baseline training ap-

proaches for the Easy-first framework and is less prone to overfitting.

The thesis is organized as follows.

• The related work is reviewed in Chapter 2. We provide related work for three topics,

including the Easy-first framework, within-document entity coreference resolution, and

cross-document joint entity and event coreference resolution.

• We present our proposed learning algorithm in Chapter 3. Before introducing the proposed

model, we define the notation used throughout the thesis, and we also describe a baseline

learning algorithm for the Easy-first approach.

• The experimental results and discussions are presented in Chapter 4. First, we introduce

the metrics for evaluating the performance of co-reference resolution systems. Then we

describe the experiment setup and results for two coreference resolution problems. Finally,

we present our analysis and discussion on the results we got.

• We conclude the thesis in Chapter 5.
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Chapter 2: Related Work

This thesis mainly focuses on applying the Easy-first framework in two NLP domains: within-

document entity coreference resolution and joint entity and event coreference resolution across

documents. We describe the related work for each topic below.

2.1 The Easy-first Framework

Many sequence labeling algorithms employ recurrent classifiers that take advantage of the pre-

vious labels to decide the next label [11, 8]. To overcome the deficiency of a fixed labeling order

(e.g., left-to-right), some researchers have employed Reinforcement Learning (RL) to learn the

ordering [27]. Such approaches have a flavor similar to the Easy-first framework in that the

ordering of the decisions are determined based on some learned functions.

The Easy-first approach was informally introduced by Shen et al. [36] as a bidirectional

labeling scheme for sequence labeling problems. More recently, Goldberg and Elhadad [15]

formally introduced the Easy-first framework and applied it to dependency parsing. At the same

time, Raghunathan et al. [31] introduced a multi-sieve model for co-reference resolution. The

multi-pass sieve system for coreference resolution applies a set of hand-designed rules ranked

according to their precision (high to low). It can be considered as an instance of the Easy-first

framework, where easy decisions are made first via high-precision rules (e.g., the exact string

match rule) to aggregate information for making later decisions with low-precision rules (e.g.,

the pronoun resolution rule). The order of decisions was determined manually for the system.

Lee et al. [24] and Stoyanov and Eisner [39] subsequently applied the same idea to corefer-

ence resolution, but aimed to learn the order of decisions instead of setting the order manually

based on prior knowledge. The basic idea is to construct the (structured) output incrementally by

making the easiest (most confident) decision at each step so that it constrains the remaining deci-

sions. A learned policy is employed to select the “easiest” decision. Different learning strategies

have been proposed in the literature. In particular, Lee et al. [24] learns the greedy policy using

a linear regression model trained in an off-line batch fashion. In contrast, Goldberg [15] and

Stoyanov [39] train linear scoring functions using the online structured perceptron where, for
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each mistake, one or more perceptron updates are performed using the features of the current

best-scoring good decision and best-scoring bad decision.

Easy-first is equivalent to the LaSO framework [9, 41] instantiated with greedy search, and

it differs only in the way the policy is updated. Specifically, when a mistake happens, LaSO

performs a single perceptron update between the averaged features of all good decisions and the

best-scoring bad decision [41]. The training methodology employed by the Easy-first approach

can be considered as an online version of the DAgger algorithm [35] for imitation learning

with one difference – DAgger assumes the availability of a single optimal decision at each state

(deterministic oracle), whereas Easy-first allows multiple optimal decisions at each state (non-

deterministic oracle) and the training approach breaks ties based on the current policy scores. In

spite of their success, existing approaches lack strong theoretical guarantees, and their conver-

gence results rely on strong assumptions [41].

All the above approaches either employ manual rules or a heuristically-motivated training

procedure to select the easiest decision at each step. Our work provides a principled approach to

learn the decision-making policy. The key distinction between the existing approaches [15, 39]

and ours is that instead of using a heuristic weight-update rule, we formally define an objec-

tive that captures the underlying goal of the Easy-first framework and derive the corresponding

update rule by optimizing that objective.

2.2 Within-document Entity Coreference Resolution

The task of entity co-reference resolution is to group together text expressions, mostly noun

phrases (NPs), which refer to the same real world object. Focusing on NPs is a way to restrict the

challenging problem of coreference resolution [24]. Take an excerpt as an example below. There

are three NPs, including “Turkmenistan”, “the energy-rich central Asian nation” and “its”, all of

which refer to the same entity. Hence, this task tries to cluster the three expressions together.

“Turkmenistan voted Sunday in a parliamentary election meant to show that

the energy-rich central Asian nation was shedding its autocratic past, but Western

observers said nothing had changed.”

Coreference resolution research has been an important and active area in the field of Natural

Language Processing since the 1960s [28]. Researchers firstly employed linguistic properties to
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deal with the coreference resolution problem. The most notable theories at that time were the

Focusing [16, 37] and Centering Algorithms [17, 18]. As large corpora became available and

machine learning methods became more mature, there has been a lot of research aimed at resolv-

ing the problem using machine learning techniques. The reason is that machine learning methods

can generalize well to unseen data. The basic machine learning approach to co-reference res-

olution consists of two steps: the classification step and the clustering step. The first step is to

determine whether the current active mention should be linked with one of previous antecedents.

The second step is to coordinate the classification decisions made during the first step to fix

cases where the decisions do not satisfy the transitivity property, which should be enforced for

co-reference relation [28]. There are two important types of machine learning-based corefer-

ence models, namely, the mention-pair model [38] and the entity-mention model [7]. For every

single classification decision, the difference between the two models is whether the active men-

tion is linked with one of the previous mentions or linked to one of partial clusters based on the

similarity between them.

Both models fall in the realm of supervised learning. There is still a lot of ongoing research

in this direction [26, 3, 32]. The first work in coreference resolution based on the idea of search is

Luo’s work [26]. Luo trained a maximum entropy model by finding a path with the highest prob-

ability for the gold co-reference output. Bengtson and Roth [3] investigated the importance of

different features for the task of co-reference resolution based on the mention-pair model. In ad-

dition, Cluster Ranking Models [32] create a competition between all candidate antecedents for

the active mention and choose the best one. In contrast to the main-stream supervised methods

for co-reference resolution, Poon and Domingos [29] proposed a jointly un-supervised corefer-

ence resolution model based on Markov Logic.

In the CoNLL 2011 shared task, the fact that Stanford Multi-Sieve System [23] performed the

best in several sub-tasks drew a lot of attention, because the system is purely based on linguistic

rules. Those rules are modularized as “Sieves” and are ranked by the precision. Each document is

scanned from the beginning of the document to the end of the document by those sieves. During

this process, the mentions are clustered together based on the rules defined in the active sieve

and the output of the previously-applied sieves, if any. There are two impacts to the coreference

resolution research brought by this paper. The first is that it led to an increase in the amount

of research exploring the “Sieve” concept. The assumption is that different mention types need

different coreference models [10]. The second impact is that the tendency to combine the rule-

based and machine learning methods. For example, in the CoNLL 2012 shared task, there are
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several high ranking systems that apply Stanford’s multi-sieve system to process the corpus first

in order to get an initial clustering result, and then employ the machine learning methods to tune

the parameters of their models in order to improve the performance. For example, Chen and Ng

[4] adopted a hybrid approach to tackle the multi-lingual coreference resolution problem. The

method combined the strengths of rule-based methods and learning-based methods.

As we mentioned earlier, Stanford’s multi-Sieve System [23] determines the order of de-

cisions manually. Recently, Stoyanov and Eisner [39] learned a greedy heuristic function to

determine the order of decisions based on the Easy-first framework [15].

2.3 Joint Entity and Event Coreference Resolution across Documents

The problem of joint entity and event coreference resolution across documents resolves the event

and entity mentions into their corresponding clusters simultaneously. Compared with entity co-

reference resolution, which is relatively easy to achieve by exploiting the syntactic and semantic

properties, this problem is much harder. For event mention, verb phrase is the common referent.

Take the EECB corpus [24] as an example. Here is one excerpt from the corpus:

People said Reid’s representative Jack Ketsoyan confirmed the actress’s stay at the

Promises.

According to the EECB annotation [24], the two verb phrase “said” and “confirmed” are

event mentions. Besides verb phrases, noun phrases can also be used to represent events. Here,

the word “stay” is a noun phrase and is also used to denote an event mention. In this way, this

problem needs to take care of both event mention types.

Event Co-reference resolution and Entity Co-reference resolution can benefit from each other

by taking advantage of the semantic relationship between them. In the example above, the en-

tity mention, “Reid’s representative Jack Ketsoyan”, is the subject of the event mention, “con-

firmed”. If two event mentions have the same subject, then there is a high chance that the two

event mentions should be resolved together. This also applies to the entity mentions. Recently,

there is some co-reference resolution work based on this idea. For entity co-reference resolu-

tion, Haghighi and Klein [19] used the governor of the head of noun phrases as a feature in a

mention-pair model, while Rahman and Ng [32] also incorporate the semantic roles that the en-

tity mentions serve in the semantic relationship with the verb. For event co-reference resolution,

Chen and Ji [5] proposed a spectral graph clustering model to address the event co-reference
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resolution problem by assuming the gold entity clusters. This allows the graph clustering model

take advantage of the entity information involved in the semantic relationships. In addition, Be-

jan and Harabagiu [2] introduced a non-parametric Bayesian model to address the open-domain

event co-reference task. This work also assumed that the gold entity clusters are available. The

work mentioned above just deals with one aspect of Entity and Event co-reference resolution,

instead of solving both jointly. There has been little work in the direction of solving entity and

event co-reference resolution jointly [21, 20]. Most recently, Lee et al. [24] proposed an iterative

joint model on Entity and Event co-reference resolution across documents. The joint model is

linked based on the semantic role labeling features. When two clusters (can be event or entity)

are merged together, all the mention features are regenerated to reflect the current clusters. Lee

et al. [24] trained a linear regression model in an off-line batch fashion and employed the learned

greedy policy to guide the search to construct the final co-reference resolution result.
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Chapter 3: Proposed Greedy Policy Learning Algorithm

In this chapter, we propose a greedy policy learning algorithm in the Easy-first framework by

formulating the learning problem within Easy-first as an optimization objective and applying

a Concave-Convex Procedure (CCCP) to optimize the proposed objective. Before we propose

our approach, we give an overall view of Easy-first framework and describe our policy learning

baseline.

3.1 Easy-first Framework and Baseline

This section first formally introduces the Easy-first framework and presents a generic online

training procedure. We then describe a popular online learning algorithm for Easy-first, which

serves as our baseline.

3.1.1 Easy-first: inference and training

Given structured inputs x ∈ X and outputs y ∈ Y , we assume a task-specific non-negative loss

function L. The loss function L(x, y′, y) : X ×Y ×Y 7→ R+ associates a loss with labeling an

input xwith y′ when its true output is y. There are two key elements in the Easy-first framework:

1) the search space Sp, whose states correspond to partial structured outputs, and 2) an action

scoring function f , which is used to construct the complete structured output.

The search space, Sp is a 2-tuple 〈I, A〉, where I is the initial state function, and A(s) is a

function that gives the set of allowed actions from a given state. Given the actions A(s) from

a specific state s, we consider any action a ∈ A(s) that results in a state s′ with L(s′) < L(s)

as a good action; otherwise, it is a bad action. Within the Easy-first framework, it is typical to

encounter states that have more than one good action. We denote the set of all good actions in

state s as G(s) and the set of all bad actions as B(s) (G(s) ∪B(s) = A(s)).

The second element, the action scoring function f , evaluates all actions in A(s) and guides

the search to incrementally produce the structured output. Given a structured input x ∈ X and

scoring function f , the Easy-first inference procedure is illustrated in Algorithm 1. The search
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Algorithm 1 Easy-first Inference
1: input : Structured Input x, action scoring function f
2: s← I(x) // get initial state of x
3: TERMINATE← False
4: while not TERMINATE do
5: ap ← argmaxa∈A(s) f(a)
6: s← Apply ap on s
7: if Terminal(s) or ap = HALT then
8: TERMINATE← True
9: end if

10: end while
11: output : s

greedily traverses the search space Sp. In any state s, the scoring function f is applied to evaluate

the quality of each action a ∈ A(s). The action with the highest score is executed. This process

is repeated until a terminal state is reached (for problems with a natural notion of terminal states,

e.g., dependency parsing) or a HALT action is chosen (for problems like coreference resolution

where we need to learn when to stop) and the predicted output is returned. In this work, we

consider linear action-scoring functions f(a) = w · φ(a), where w is the weight vector and

φ(·) is a predefined feature function. Note that the linear function can have great flexibility

in terms of the features that we could consider for characterizing actions. For instance, for

coreference resolution an action (i.e., a merge between two clusters) can be described by a set

of local features characterizing the pair of clusters to be merged, or by features describing the

global characteristics of the state (partial solution) obtained by the merge action.

The success of the Easy-first framework hinges upon the ability to choose a good action in

each decision step. Hence, the learning goal within the Easy-first framework is to learn a weight

vector w such that the highest scoring action in each step is a good action. Toward this goal, a

general online training procedure is described in Algorithm 2. In any given state s, we assume

that there exists an oracle O that can identify G(s) (line 7), the set of all good actions given the

current state and the expected output. If the current highest scoring action ap is a good action,

there is no need to update. Otherwise, the weight is updated (lines 9-12). A ChooseAction

procedure is then called to select the next action, and we transit to the next search state. This is

repeated until the termination condition is met (line 15). Algorithm 2 presents the procedure for

one training iteration. This is typically repeated for multiple iterations, and the updated weights
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Algorithm 2 Online training for Easy-first (single iteration)
1: input : Structured input and output pairs (xi, yi)ni=1, parameter-vector w
2: // online training for each pair (xi, yi)
3: for input xi ∈ X , with output yi ∈ Y do
4: s← I(xi)
5: TERMINATE← False
6: while not TERMINATE do
7: G(s)← O(s)
8: B(s)← A(s)−G(s)
9: ap ← argmaxa∈A(s)w · φ(a)

10: if ap ∈ B(s) then
11: UPDATE(w,G(s), B(s))
12: end if
13: ac ← ChooseAction(A(s))
14: s← Apply ac on s
15: if Terminal(s) or ac = HALT then
16: TERMINATE = True
17: end if
18: end while
19: end for
20: output : w

are collected along the way and averaged at the end (which reduces overfitting and improves

performance).

There are two elements that need to be specified in this basic training procedure. First, how

to perform the update (line 11), which is the main focus of this thesis. Second, how to choose

the next action, which determines the training trajectories (line 13). Two types of approaches

have been pursued in the literature for this purpose: on-trajectory training, which always chooses

an action in G(s) (e.g., the highest-scoring action in G(s)), and off-trajectory training, which

always chooses the highest-scoring action based on the current scoring function even when it is

a bad action. In this work, we consider both types of training trajectories.

3.1.2 A baseline update strategy

Now we introduce a popular update strategy that has been widely employed in prior Easy-first

work [15, 39]. This strategy aims to update the weights so that one of the good actions will score
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the highest. To achieve this, it uses a simple heuristic by focusing on the highest scoring good

action, referred to as g∗, and the highest scoring bad action, referred to as b∗, and adjusting the

weights to increase f(g∗) and decrease f(b∗). For this reason, we refer to this method as Best

Good Best Bad (BGBB). The specific update rule for BGBB is given by Equation 3.1.

w ← w − η · (φ(b∗)− φ(g∗)), (3.1)

where η is the learning rate. This update is typically done repeatedly for a fixed number of

iterations or until a good action is scored the highest. In each iteration, g∗ and b∗ are re-evaluated.

While this heuristic update has been widely applied [15, 39], it has a number of issues. Although

it updates the weight in a direction that promotes a good action and demotes a bad action, there

is no guarantee that the final goal (ranking a good action above all bad actions) can actually

be achieved. Very frequently, even after a large number of iterations, the updated weight still

chooses a bad action. In some cases there may not exist a weight vector that ranks a good action

higher than all bad actions. In such cases, the effect of the heuristic update rule is unclear,

because it lacks an explicit optimization objective.

3.2 Best Good Violated Bad

Our goal is to learn a linear scoring function f such that in any given state s a good action is

scored higher than all bad action. This goal can be captured by the following set of constraints:

max
a∈G(s)

f(a) > f(b) ∀b ∈ B(s) (3.2)

That is, the score of the highest scoring good action needs to exceed the score of any bad

action. If we identify a weight vector w that enables f to satisfy these constraints for a given s,

then Easy-first would choose a correct action in state s. Because it is not always possible to find

a w that satisfies all the constraints, we introduce the following average hinge loss function to

capture them as soft constraints.

Lh(w) =
1

|B(s)|
∑
b∈B(s)

[1− max
a∈G(s)

w · φ(a) + w · φ(b)]+ (3.3)

where [·]+ = max(0, ·), B(s) and G(s) denote the set of bad and good actions in state s, and

φ(·) returns the feature vector representing the input action.
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Additionally, the weights should be only updated as much as necessary to satisfy these con-

straints. This is inspired by passive-aggressive Perceptron training [6] and helps avoid overly

aggressive updates that can lead to over-fitting. Combining the two parts, our objective can be

described as follows (w0 represents the current weight vector prior to update):

argmin
w

λ‖w − w0‖2 +
1

|B(s)|
∑
b∈B(s)

[1− max
a∈G(s)

w · φ(a) + w · φ(b)]+ (3.4)

where λ trades-off the two aspects of the objective.

While the hinge loss is a convex function, the negative max inside the hinge loss makes

the objective non-convex. Fortunately it is straightforward to show that the objective can be

expressed as a difference of convex functions, making it possible to apply a Concave-Convex

Procedure (CCCP) [42] to find a local optimal solution. We describe our CCCP algorithm in

Algorithm 3.

CCCP works in iterations. In each iteration, we convexify the objective by replacingmaxa∈G(s)w·
φ(a) with w · φ(g∗), where g∗ is the current best good action:

argmin
w

λ‖w − w0‖2 +
1

|B(s)|
∑
b∈B(s)

[1− w · φ(g∗) + w · φ(b)]+ (3.5)

This convex objective is then optimized via gradient descent (line 8). The optimal weight

vector is then used to identify the g∗ in order to convexify the objective for the next iteration.

This repeats until convergence (lines 10-12) or for a fixed number of iterations (T ).

We omit the details of the gradient descent subroutine for solving Equation 3.5. However, it

is worth noting that each step of the gradient descent procedure corresponds nicely to a single

update step of the Best Good Best Bad approach (Equation 3.1). In particular, each gradient

descent step performs the following:

w ← w − η

[
λ(w − w0) +

1

|B(s)|
∑
a∈V

φ(a)− φ(g∗)

]
, (3.6)

where η is the learning rate and V is a subset ofB(s) that contains all the bad actions that scored

higher than g∗.

Comparing to Equation 3.1, we note two key differences. First, our update rule does not

solely focus on the best bad action. Instead, it tries to suppress all the bad actions that incur
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Algorithm 3 The CCCP procedure to solve Equation 3.4
1: input : current parameter-vectorw0, convergence threshold ε, λ, good actionsG, bad actions
B, max number of iterations T

2: output : w
3: w ← w0, i← 0, convergence← false
4: pObj ← −∞
5: while i ≤ T and !convergence do
6: i← i+ 1
7: g∗ ← argmaxa∈Gw · φ(a)
8: w ← solve Equation 3.5 via gradient descent
9: cObj ← evaluate the objective in Equation 3.4

10: if cObj − pObj ≤ ε then
11: convergence← true
12: end if
13: pObj ← cObj
14: end while

constraint violations. Hence, we refer to our update rule as Best Good Violated Bad (BGVB).

See Figure 3.1 for a visual demonstration of the difference between the two update rules. We

argue that by considering all violated bad actions at once, we avoid the jumpy behavior of BGBB

from one iteration to the next and increase learning stability.

The second key difference is that our update rule has the added flexibility for explicit control

of aggressiveness and overfitting in updates. By tuning parameter λ, we can achieve a trade-

off between aggressively satisfying the given constraints and conservatively staying close to the

current weight.
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Figure 3.1: A visual illustration of the difference between two update rules. The circles represent
actions ordered in increasing score. BGBB focuses on the best good and best bad actions where
BGVB considers the best good action and all the bad actions that scored higher than it.
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Chapter 4: Experimental Evaluation

We evaluate our approach on two NLP problem domains: within-document entity coreference

resolution and joint entity and event coreference resolution across documents. Instead of just

dealing with noun phrases, which is the main focus of entity co-reference resolution problem,

joint entity and event co-reference resolution problem also handles verbs. To avoid the noise

introduced by the mention extraction component, we conduct our evaluation using only the

manually-extracted “gold mentions” for both problem domains.

4.1 Evaluation Metrics

There are several popular evaluation metrics for coreference resolution and they evaluate dif-

ferent aspects of the problem. In our evaluation, we consider all evaluation metrics that are

employed in CoNLL Shared-task 2011: MUC, B3, CEAF, BLANC, and CoNLL F1. Below, we

briefly describe these metrics.

• MUC: It measures the minimal permutations that are required for the predicted (gold)

output to get the gold (predicted) output [40].

• B3: There are two varinats of the B3 metric: a) Entity-based, and b) Mention-based. The

CoNLL shared-task 2011 uses Mention-based B3 metric. Given a specific mention, it

measures the overlapping mentions between the gold output and the predicted output [1].

• CEAF: We employ entity-based CEAF metric, called CEAF-φ4. Given a bipartite graph

with one-to-one alignment between the gold output and the predicted output, it measures

the agreement between them [25].

• BLANC: This metric deals with singleton clusters in a principled manner by rewarding

the correct clusters according to the number of mentions in them [34]. It examines both

coreference and non-coreference links based on the Rand Index [33].

• CoNLL F1: This is a summary metric, which is defined as the average of MUC, B3, and

CEAF-φ4 scores [30].
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MUC B3 CEAF-φ4
Approach R P F1 R P F1 R P F1 CoNLL F1

On-trajectory BGVB 67.17 83.48 74.44 73.70 90.17 81.11 84.64 70.50 76.38 77.31
BGBB 70.33 78.51 74.19 75.65 84.49 79.82 80.37 71.88 75.41 76.47

Off-trajectory BGVB 67.76 83.17 74.68 74.38 89.26 81.14 84.44 71.12 76.73 77.52
BGBB 67.07 81.21 73.46 74.21 88.54 80.75 83.83 70.95 76.37 76.86

Table 4.1: Performance of our method (BGVB) and baseline (BGBB) on the ACE2004 corpus.

4.2 Entity coreference resolution within documents

We first consider the problem of entity coreference resolution within documents, which groups

noun phrase mentions into clusters corresponding to entities. Within-document entity corefer-

ence resolution has been widely studied, and there exist many successful systems, including the

Easy-first system [39].

Data. For this problem, we conduct experiments on two widely-used entity coreference resolu-

tion corpora.

• MUC-6: There are 255 documents in total with 13,801 gold mentions. We use the official

30 documents for testing. Of the remaining 225 documents, we select 195 documents

randomly for training, and use the remaining 30 documents as the validation set.

• ACE04: We employ the same training/testing partition as ACE2004-CULOTTA-TEST [7,

3]. There are 443 documents in total with 27,667 gold mentions. Among those documents,

268 documents are used for training, 68 documents for validating, and 107 documents for

testing.

Experimental setup. We implemented our learning algorithm on top of the Easy-first coref-

erence system [39]. We employ the same set of features as described by [39], which includes

cluster features capturing cluster-level global agreement and mention-pair features capturing lo-

cal configurations signifying coreferences. We also follow the same protocol for handling the

“HALT” action (which serves as the terminal state when selected) as [39].

Our experiments compare our update strategy (BGVB) with the Best Good Best Best (BGBB)

strategy of [39]. We use the same experimental setting as described by [39] except a few small

differences. To ensure fair comparison of the two update rules, we initialize both methods with

the zero weight vector. Another difference is that we employ five-fold cross-validation for pa-

rameter tuning for both methods. For BGBB, we tune the learning rate (η) and the number of



17

MUC B3 CEAF-φ4
Approach R P F1 R P F1 R P F1 CoNLL F1

On-trajectory BGVB 74.97 86.30 80.25 67.79 81.99 74.22 72.60 50.32 58.89 71.12
BGBB 78.45 83.63 80.48 76.31 68.79 72.35 65.19 58.35 60.64 71.16

Off-trajectory BGVB 75.03 88.57 81.22 69.78 84.73 76.53 74.16 50.14 59.25 72.33
BGBB 71.22 91.84 80.22 65.59 90.74 76.14 75.04 42.83 54.20 70.19

Table 4.2: Performance of our method (BGVB) and baseline (BGBB) on the MUC6 corpus.

MUC B3 CEAF-φ4 BLANC
Set. R P F1 R P F1 R P F1 R P F1 F1
Enti. 74.26 83.92 78.79 59.27 80.96 68.43 53.38 37.98 44.38 72.06 83.83 76.69 63.87
Even. 66.76 73.20 69.83 51.67 79.11 62.51 41.47 34.60 37.72 69.76 84.98 75.22 56.69
Both 72.09 87.10 78.89 57.06 84.32 68.06 61.4 36.32 45.64 71.54 86.29 77.02 64.20

Table 4.3: Cross-document joint entity and event coreference resolution (on-trajectory training)
on the EECB corpus using BGVB approach. Detailed information about the first column: Set.
(Setting), Enti. (Entity) and Even. (Event). The name of the last column is CoNLL F1. The
following tables follow the same convention.

repeated perceptron updates (k) for each mistake step. For BGVB, we tune the λ parameter

for Equation 3.4, the number of gradient descent steps (t), and the number of CCCP iterations

(T ). Note that for gradient descent, our method sets the learning rate to be one over the number

of iterations. Finally, [39] uses off-trajectory training. To remove the impact of the training

trajectories, our experiments include both off-trajectory and on-trajectory training.

Results. Tables 4.1 and 4.2 show the results on the ACE04 and MUC-6 corpora repsectively.

For metrics, we compute MUC [40], B3 [1], CEAF [25], and CoNLL F1 [30], all of which

have been employed in the CoNLL Shared-task 2011. For MUC, B3, and CEAF, we show the

precision, recall and F1 measure separately. Note that CoNLL F1 is simply the average F1 values

of the other three metrics. From the tables, we can see that our approach outperforms BGBB for

the ACE corpus for all three metrics with both on-trajectory and off-trajectory training. For the

MUC6 corpus, our method outperforms BGBB for off-trajectory training and performs similarly

for the on-trajectory setting.

4.3 Joint entity and event coreference resolution across documents

Cross-document joint entity and event coreference resolution is a challenging problem that in-

volves resolving the coreferences for entities (noun phrases) and events (verbs) across multiple
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MUC B3 CEAF-φ4 BLANC
Set. R P F1 R P F1 R P F1 R P F1 F1
Enti. 72.78 83.14 77.62 56.62 81.22 66.72 53.45 37.42 44.02 69.84 83.78 74.98 62.79
Even. 65.95 70.13 67.98 49.19 75.75 59.65 39.09 34.70 36.76 67.11 72.29 69.35 54.80
Both 70.81 86.04 77.69 54.46 83.74 65.99 60.57 35.79 44.99 69.24 85.59 74.96 62.89

Table 4.4: Cross-document joint entity and event coreference resolution (on-trajectory training)
on the EECB corpus using BGBB approach.

MUC B3 CEAF-φ4 BLANC
Set. R P F1 R P F1 R P F1 R P F1 F1
Enti. 74.83 84.45 79.35 58.45 82.07 68.27 55.26 39.47 46.05 70.93 84.94 76.16 64.56
Even. 65.55 71.08 68.20 50.13 77.99 61.03 39.28 33.60 36.22 68.46 74.68 71.12 55.15
Both 72.15 87.30 79.01 56.03 85.08 67.56 62.23 36.81 46.26 70.39 87.08 76.30 64.28

Table 4.5: Cross-document joint entity and event coreference resolution (off-trajectory training)
on the EECB corpus using BGVB approach.

documents simultaneously.

Data. We employ the benchmark EECB corpus [24] for our experiments. As an extension to the

ECB corpus created by [2], EECB contains 482 documents, which are clustered into 43 topics.

We use the same split for training, validation, and testing as [24]. That is, out of 43 topics, we use

12 topics for training, 3 topics for validation, and 28 topics for testing. The detailed information

about the EECB corpus is shown below:

Features. We employ the same set of features as [24] with two minor distinctions. First, in

addition to the merge actions, we introduce the HALT action to serve the role of a terminal state

for Easy-first search. Following the convention of [39], we represent the HALT action by a

feature vector of all zeros except for a halt feature that is set to 1. For all other actions, we set

the halt feature to zero. Note that the learned weight of this halt feature operates as a threshold

on action scores, for which [24] manually specified a fixed value of 0.5. In the inference stage,

if no merge action scores higher than this threshold, the search procedure terminates. Another

minor distinction is that we employed different semantic role labeling (SRL) software due to an

availability issue. The SRL software is trained on both NomBank and PropBank [22].

Baselines. We compare our approach against two baseline methods. The first is the current

state-of-the-art cross-document joint entity and event coreference system by [24]. The second is

the Best Good Best Bad (BGBB) update strategy, which can be viewed as an application of the

Easy-first coreference system [39] to the joint coreference problem.
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MUC B3 CEAF-φ4 BLANC
Set. R P F1 R P F1 R P F1 R P F1 F1
Enti. 71.18 83.99 77.06 53.14 83.79 65.03 56.19 36.49 44.24 67.32 87.50 73.67 62.11
Even. 64.44 77.42 70.34 45.75 82.42 58.84 47.90 33.42 39.37 64.89 87.22 71.21 56.18
Both 69.24 86.71 76.99 50.99 86.15 64.06 62.11 34.58 44.43 66.77 88.96 73.42 61.83

Table 4.6: Cross-document joint entity and event coreference resolution (off-trajectory training)
on the EECB corpus using BGBB approach.

MUC B3 CEAF-φ4 BLANC
Set. R P F1 R P F1 R P F1 R P F1 F1
Enti. 68.07 90.07 77.54 52.11 90.20 66.05 60.81 30.43 40.56 67.76 90.16 74.59 61.38
Even. 65.15 82.37 72.75 50.27 86.92 63.70 53.43 32.76 40.62 69.15 91.68 76.18 59.02
Both 67.23 91.72 77.59 51.57 91.51 65.97 66.37 30.48 41.77 68.10 91.94 75.26 61.78

Table 4.7: Cross-document joint entity and event coreference resolution (off-trajectory training)
on the EECB corpus using Stanford system.

Experimental setup. We implement our approach and the BGBB baseline on top of the Stanford

multi-pass sieve system [31]. All three methods employ the same set of features and apply the

same initial processing step to the noun-phrase mentions as described in [24]. We set up our

experiments to closely resemble the experiments in [24]. The parameters of BGVB (λ, CCCP

iterations T , and gradient descent iterations t) and BGBB (learning rate η and maximum updates

per ieration k) are tuned with five-fold cross-validation within the training set. For both BGVB

and BGBB, we tune the halt feature using the validation set to determine the stopping condition

for inference. For the method of [24], we use the implementation provided by the author and

follow the parameter setup suggested by the original paper.

Results. Our experiments consider both on-trajectory and off-trajectory training. [24] performs

offline training, where the training examples can be viewed as collected in an off-trajectory fash-

ion (not restricted to taking good actions during training). Thus it is omitted from comparison

for the on-trajectory setting. We present on-trajectory performance in Table 4.3 and 4.4, and

off-trajectory performance in Table 4.5, 4.6 and 4.7. We measure the performances using the

same set of metrics as for within-document entity coreference (MUC, B3, CEAF, CoNLL F1)

along with an additional metric BLANC [34], which has been also reported by [24].

We present the performance measures in three different settings: evaluating only entity clus-

ters, evaluating only event clusters, and evaluating both types of clusters. From Table 4.3 and 4.4,

we observe that with on-trajectory training our approach consistently outperforms BGBB for all
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Train Dev Test Total
# Topics 12 3 28 43
# Documents 112 39 331 482
# Entities 459 46 563 1068
# Entity Mentions 1723 259 3465 5447
# Events 300 30 444 774
# Event Mentions 751 140 1642 2553

Table 4.8: Corpus Statistics.

three settings under all performance measures. The results of our approach are almost 2 percent

CoNLL F1 higher than corresponding results of BGBB. It indicates that our approach behaves

better than BGBB by capturing the learning goal of Easy-first framework. For off-trajectory

training (Table 4.5, 4.6 and 4.7), our approach performs decisively better than BGBB as well as

the method by [24] on entity clusters. Compared with the joint co-reference system, the results

of our approach are also significantly better in the Entity and Both setting. Our approach does

not perform well on Event setting. The verdict on the event clusters is less clear, with different

measures favoring different methods. When jointly considering both entities and events, our

method outperforms the other two methods consistently across the measures due to the larger

number of entity mentions. It can be noted that different system focus on different aspect. One

system does better on entity setting, may not do better on event setting. So it is very important

to balance the trade-off between both aspects.

4.4 Summary of results

Our evaluation demonstrates that our BGVB approach consistently outperforms the baseline

methods for both problem domains and under two different training regimes (on-trajectory and

off-trajectory). The performance difference is more pronounced for the cross-document joint

coreference problem for which our method outperforms the current state-of-the-art by a con-

sistent 2-3 percentage points (for multiple performance measures). We did not observe any

significant or consistent difference between on-trajectory versus off-trajectory training. In the

following section, we take a closer look at the behavior of BGVB compared to BGBB to gain a

better understanding of why it performs better.
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4.5 Discussion

There are two key distinctions between BGVB and the BGBB update rule. First, BGBB consid-

ers only the best-scoring bad action in its update, whereas our method considers all bad actions

that are causing constraint violations (in Equation 3.2) in each update. Second, our method fol-

lows a passive-aggressive strategy to discourage overly-aggressive updates. Our hypothesis is

that these distinctions allow us to introduce more stability in learning and help avoid overfitting

to specific bad actions encountered during training.

Corpus Approach Total Steps Mistakes Recoveries Percentage

ACE04 BGVB 50195 16228 4255 0.262
BGBB 50195 11625 4075 0.351

MUC-6 BGVB 40975 16436 3579 0.218
BGBB 40975 14727 4156 0.282

Table 4.9: Training statistics on MUC-6 and ACE04 corpora

Approach Mean Variance STDEV

ACE04 BGVB 0.87 0.0047 0.069
BGBB 0.82 0.0064 0.080

MUC-6 BGVB 0.86 0.0055 0.074
BGBB 0.80 0.0152 0.123

Table 4.10: Global performance of the learned weights.

To shed some light on this hypothesis, we take a closer look at the effect of the updates dur-

ing training. Focusing on within-document coreference and on-trajectory training, we collected

some interesting statistics during five iterations of training for both methods, which are presented

in Table 4.9. The third column of the table records the total number of search steps. The fourth

column shows the number of mistakes (bad actions chosen during search) encountered in the

process of training, each incurring a round of updates. The next two columns show the number

of times that the update is successful (“recoveries”, where the highest-scoring action is good

after update) and its corresponding percentage.

We were surprised to note that our method (BGVB) is significantly less successful at cor-

recting mistakes. How could it be less effective in correcting the mistakes but more effective

overall? The explanation lies in the passive-aggressive element of our objective, which explic-

itly encourages small changes to the weights, sometimes at the expense of not satisfying all the

constraints. This explains why our method tends to fail more at correcting the mistakes, but does
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not provide an answer to why its overall performance tends to be better.

To answer this question, we further examine the quality of the weights obtained by both

methods in a global setting. That is, we recorded all the weights that are produced by the two

learning algorithms and evaluated how well each weight can guide the greedy search on the train-

ing set. To do this, we randomly generated some sample gold search trajectories (by randomly

choosing good action at each search step) on the training data, and at each search step evaluated

the learned weights to choose actions. If a weight chose a good action, it was considered a cor-

rect decision. For each method, we computed the percentage of correct decisions made by all of

the learned weights, averaged across five randomly-generated search trajectories. The mean and

variance are reported in Table 4.10. The results show that the weights learned by BGVB have

consistently better global performance and smaller variance. This suggests that by satisfying

more local constraints, BGBB is indeed suffering from overfitting, to which our method is less

prone.
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Chapter 5: Conclusions and Future Work

Learning problem is a challenge within the Easy-first framework due to its difficulty to formulate.

The existed methods are either rule-based or in a heuristic manner. We proposed a novel online

learning algorithm for the Easy-first framework. By formulating the learning problem as an

optimization objective, we capture the essence of the learning goal for the Easy-first framework:

select the best scoring action at each search state while avoiding overly-aggressive updates.

Experiments on two NLP domains, within-document coreference resolution and cross-document

joint entity and event coreference resolution, showed that our greedy learning method outper-

forms an existing Easy-first training method and the current state-of-the-art for both problem

domains in terms of all evaluation metrics, including MUC, B-Cubed, CEAF-φ4, BLANC and

CONLL F-score. As we know, different evaluation metrics evaluate different aspects of the co-

reference resolution tasks. Hence, it tends to show that our proposed approach learns a better

greedy policy than other approaches in the Easy-first framework.

We provide several interesting ideas to extend our work. As we know, Easy-first framework

works in a greedy search space. Sometimes greedy decisions are hard to make, so we can

consider searching in limited-discrepancy search (LDS) space [12] via HC-Search approach [13].

Sparse versions of LDS space [14] can be employed to improve the efficiency of the search

process. The second idea is to apply our method on the off-trajectory training regime. As we

know, we just can encounter those states appearing in the path from the initial state to the gold

state in the training phase. So the learned policy will have no clue to behave in front of an unseen

state during the testing phase. This way, it will lead our search into a huge different trajectory

which may degrade the performance of our approach. Unlike our current implementation of

off-trajectory, it may be more reasonable to use a more advanced mechanism to do this. For

every search step, we consider pairwise actions from each state. This way, there exist a large

number of candidates to consider for each step. Especially, the learning problem for a lot of

NLP applications is highly inseparable. Hence, the third idea is to take advantage of prune

method to prune a lot of actions while to maintain our method’s accuracy.
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