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Abstract— Manipulation of complex deformable semi-solids
such as food objects is an important skill for personal robots to
have. In this work, our goal is to model and learn the physical
properties of such objects. We design actions involving use of
tools such as forks and knives that obtain haptic data containing
information about the physical properties of the object. We then
design appropriate features and use supervised learning to map
these features to certain physical properties (hardness, plasticity,
elasticity, tensile strength, brittleness, adhesiveness). Additionally,
we present a method to compactly represent the robot’s beliefs
about the object’s properties using a generative model, which
we use to plan appropriate manipulation actions. We extensively
evaluate our approach on a dataset including haptic data from
12 categories of food (including categories not seen before by
the robot) obtained in 941 experiments. Our robot prepared a
salad during 60 sequential robotic experiments where it made
a mistake in only 4 instances.

I. INTRODUCTION

One important class of objects that a personal robot would

need to learn about is deformable semi-solid materials such

as food. It is important for the robot to model and estimate

their physical properties to be able to manipulate them.

Approaches based on vision (e.g., [1]) are limited because

even the same types of food objects (e.g., two different

bananas), which have similar visual properties, could have

vastly varying material properties, depending on the condi-

tions that they are treated at (e.g., temperature or humidity),

their age (e.g., raw or ripe), or how they were processed (e.g.,

cooked). In many cases, these small differences can change

the correct way to manipulate these objects. In this paper, we

focus on using haptic data from the robot’s internal sensors

to perceive and manipulate food objects.

Although physical properties of objects are important

for manipulation planning, mathematically modeling these

properties in an explicit manner is very challenging for

many object categories and requires a lot of design effort

[2]. A feasible alternative is to learn representations from

haptic data where the agent maps its sensory inputs from its

actuators to physical properties of objects.

In this work, we propose a learning algorithm (see Fig. 2)

that takes as input haptic sensory signals of a robot obtained

while performing actions on the food objects. We then

extract useful features from these haptic signals and map

them to physical properties of the objects through supervised

learning. Using this mapping, we then perform unsupervised

learning and clustering based on Diritchlet Processes (DP)

to represent the physical properties compactly. Through this

representation, we integrate multiple observations about an

object’s properties obtained at different times into a compact

Fig. 1: We use haptic sensors of a personal robot to learn a data-
driven representation of the physical properties of food objects. We
use learning techniques to create manipulation strategies involving
actions that use household tools in order to prepare meals.

belief and infer reliable strategies to manipulate it through

appropriate task-oriented actions.

We extensively test our approach on a large dataset of

haptic information gathered in 941 experiments from 12

different categories of food (see Fig. 3), including categories

that are quite similar (e.g., different types of bread) and

challenging to differentiate. We show that actions have

different information gathering abilities and it is possible

to extract information from manipulation experiences of

the robot. Our experiments show that the robot can obtain

relevant information about the food items (both from seen

and unseen object categories) in a safe way and is able to

determine the correct way to manipulate those objects to

reach simple goals. Finally, we use our learned models and

manipulation strategies on the robot to build a simple meal.

II. RELATED WORK

Robot Manipulation of Objects. While previous works

on robot manipulation have focused on rigid objects (e.g.,

[3], [4]), there has been some recent work on manipulating

articulated objects (e.g., [5], [6]) and foldable objects (e.g.,

towels [7]). Many of these works use tactile sensing for

manipulation (e.g., [8]) but none of them consider the

perception of internal properties of objects when they are

critical for manipulation.



Fig. 2: Overview of our system, showing the different components.

Several previous works showed that haptic data is useful

for predicting specific object properties, e.g., presence of

obstacles [9], human contact forces [10], hardness of objects

[11], and elasticity of objects [12]. Frank et al. [13] considers

motion planning with deformable objects that are possible to

explicitly model and simulate. However, perception of fine

differences in physical properties of very complex objects

through learning and task planning based on these properties

has not yet been explored extensively.

Some robotics work focused on food manipulation such

as [14], [15] that reason about how objects are changed by

actions through a rule-based ontology and build a knowledge

base from natural language. Bollini et al. [16] presented

a vision based cookie baking system that uses compliant

controllers similar to ours. Kormushev et al. [17] and Beetz

et al. [18] are focused on making pancakes by learning

new motor skills trough reinforcement learning and using

vision-guided task planning by utilizing natural language

instructions respectively. None of these works directly learn

object properties though exploratory actions and informative

features computed from haptic sensors.

In Chitta et al. [19], the deformative properties of objects

(e.g., empty bottles) are perceived through tactile information

obtained from grippers. They also show that the recognition

of non-visual properties of objects is challenging even for

humans through a comparative study and motivate the use

of general purpose features in a learning task similar to ours.

In Chu et al. [20], a robot learns the surface properties

of objects by touching them with special-purpose hardware.

However, we focus more on mechanically oriented proper-

ties directly relevant for manipulation purposes, which we

learn using motor efforts, forces, torques and end-effector

configuration in addition to fingertips sensors. We also use

household tools in our information gathering actions which

allows us to deal with object even when they are dangerous to

contact with robotic hardware (e.g., wet). Lastly, we focus on

learning internal physical properties of objects as compared

to surface properties in this previous work.

Learning Algorithms for Task Planning. Dirichlet pro-

cesses (DPs) have been applied to model different aspects of

Markov models, such as in an HMM [21], POMDPs [22] or

ILCRFs [23]. In other works, different probabilistic models

have been used to model different aspects in the RL/MDP

setting. For example, Gaussian processes for reinforcement

learning [24] and Bayesian reinforcement learning [25], [26].

There are several works that considered the problem

Fig. 3: Food categories: We consider manipulating 12 categories
of food: tomatoes, cucumbers, apples, bread, bananas, soft buns,
peeled bananas, bagels, cream cheese, tofu, lettuce and cheddar
cheese. Our haptic dataset has a total of 941 instances extracted
from these categories.

of compactly representing the states (or belief states) in

POMDPs [25], [27], [28] . Representation of information is

an important issue in computability of optimal task planning

and motivates our approach for integrating multiple obser-

vations as compact beliefs represented through a generative

model obtained from previous observations.

Visual identification of food. Several works consider food

quality classification using computer vision (e.g., [29], [30]).

Although these methods produce labels about food items

from vision, these labels alone are not very informative

from the standpoint of manipulation. Recent work done on

inferring mechanical properties from visual properties, such

as [31], are dependent on the object categories and limited to

objects with visual cues that would give a good estimation

of material properties. Other recent works [32], [33] label

objects and their attributes in 3D point-clouds, but not their

physical properties. Regardless, these works could be used as

complementary inputs to future extensions of our algorithm

combining haptic and visual perception.

III. PHYSICAL PROPERTIES OF FOOD

For a robot to manipulate complex deformable objects

such as food, it is necessary to begin with an estimate of the

objects’s physical properties because manipulation strategies

can change significantly with differences in physical prop-

erties for many complex tasks [34]. For example, the force

needed to insert a knife into a block of cheese would depend

on the hardness of the cheese. If the cheese is soft and sticky

enough, one may need to only insert the knife, then turn it on

the way out, for getting the cheese. On the other hand, if the

cheese is brittle and not sticky, then one needs to cut it first,

twist the knife to detach the piece, then pick up the piece

with a fork or fingers. With different types of food (Fig. 3),

strategies for accomplishing useful tasks change drastically.

While food scientists can measure physical properties

with special-purpose devices, a manipulation robot can only

estimate them using the sensory information obtained from

its joints and fingertips. For example, a puncture tester [35]

advances a small punch into the food in order to obtain a

force-distance curve that can be distinctive and diagnostic.



Fig. 4: Actions designed to gather information about the physical properties of objects. Arrows indicate the direction of the applied
forces in the first and second motions for the actions. For each motion, we indicate the most important physical properties that the action
is designed to extract. For example, in action (b), we desire to measure the tensile strength of an object as we apply an outward force (1)
after piercing an object. Similarly, while removing a knife (2) from the object in action (d) we desire to determine whether the object is
adhesive or not.

A robot poking a fork into a chunk of food can implicitly

obtain similar, albeit not as precise, information.

In our approach, we will describe the space of physical

properties along the following axis: hardness, plasticity,

elasticity, tensile strength, brittleness and adhesiveness. We

give each axis a score between 0 and 1, obtaining a six-

dimensional property space [0, 1]6, which we will call ‘phys-

ical properties’ of objects. Although these properties are not

completely independent of each other, they cover most of the

material properties relevant for our manipulation purposes. A

robot can obtain a (noisy) estimate of these properties from

its sensors by performing information-gathering actions, as

discussed in the next section.

IV. ACTION DESIGN FOR GATHERING HAPTIC DATA

In order to estimate the physical properties of food objects,

we designed robotic actions to extract useful physical infor-

mation from them in a human-inspired fashion. Our robotic

platform, the PR2, consists of two 7-DOF robotic arms

attached to a mobile base (see Fig. 1). We use controllers

[36] based on temporal force/torque feedback that work by

dynamically adjusting desired forces and currents at the

joints of the arm to reduce delays of reaching the goal

configurations in a trajectory. Since we focus on food items,

our actions utilize household tools that were designed to

manipulate them, such as forks and knives. Fig. 4 shows

our information-gathering actions.

Each of these actions is designed with a subset of the

physical properties in mind. For example, a vertical piercing

action with fork would obtain information about the hardness

of an object during the downward motion due to resistance

from harder objects. It would obtain information on the

plasticity of the object as it tries to remove the fork with

an upward motion because of the positive feedback from

more elastic objects. Similarly, lateral splitting motion with

two forks would have different force and torque response

from objects with different tensile strength and brittleness

as the gap is increased. As the motion is reversed, the robot

would have to spend less effort with objects that have smaller

plasticity. (See Fig. 4 for other examples.)

V. FEATURES FOR HAPTIC LEARNING

We use a variety of haptic sensory signals (Table I)

obtained during the execution of actions as input to our

TABLE I: Haptic Inputs and Feature Sets.

Description of Haptic Input # Inputs

Configuration (C) 7

C1. Position of end effectors 3

C2. Orientation of end effectors 4

Effort (E) 15

E1. Desired (based on delays from object) joint efforts of arms 7

E2. Actual applied joint efforts of arms 7

E3. Deviation in joint efforts ‖E1 − E2‖ 1

Dynamics (D) 29

D1. Forces applied at end effectors 3

D2. Torques applied at end effectors 3

D3. Fingertip pressures (raw & average) 23

system in Fig. 2. In this section, we explain how we extract

time-frequency histogram features from each haptic input’s

power spectrum and construct a feature vector for each object

instance-action pair, Φa
i , to use in our learning algorithms.

Our system uses three sets of haptic inputs to compute

features — configuration (C), effort (E) and dynamics (D).

Configuration features are computed from the configuration

of the end effectors in 3-D space and captures the deviation

of the end effector from the action trajectory due to object’s

properties. Effort features are determined from control-level

current signals which represent the power used by each joint

of the arms. While E1 represents the efforts (power) that are

desired by the controller based on the delay caused by the

object, E2 represents efforts that are actually applied to the

joints while trying to reach E1. E3 represents the magnitude

of the difference between E1 and E2. Dynamics features are

obtained from forces and torques applied to the object at the

end effector. This set also includes fingertip pressure changes

(both raw and average), which are transferred from tools as

the objects are manipulated. Table I summarizes the haptic

input descriptions, the space each is represented in, and the

number of inputs obtained per gripper (Vertical cut action

uses only one gripper and others use both).

We compute each of our features by determining the power

spectrum of the corresponding haptic input, which is in

the time domain1. Fig. 5 presents an example haptic input

(E3. Deviation in joint efforts) obtained while performing

the Lateral Split with Forks action and how its power

spectrum varies with different object categories that are being

1In order to determine the power spectrum we compute a Discrete Fourier
Transform (DFT) at 0− 16Hz range for each haptic input.



Fig. 5: Feature Extraction: On the left, the ‘Deviation in joint efforts’ (Table I entry E3) shown as Lateral Split with Forks action is
executed on different object categories (middle). This haptic input has a higher low-frequency content for bagel category (top) and has
a higher high-frequency content for tomato category (middle) compared to cream cheese category (bottom). On the right side, we show
our binning strategy where each bin collects the power content by integrating its respective interval.

manipulated.

Once we obtain the spectrum of a haptic input, we create

the corresponding features by computing a 5-bin histogram

integrated between different frequencies (uniform in log-

scale between 0− 16Hz). Additionally, we compute another

4-bin histogram where the bins accumulate the power content

until the frequency they represent (see right side of Figure 5).

Cumulative binning helps in capturing various nonlinear

functions of the original power content.

For the rest of this paper, we will represent this feature

vector as Φa
i ∈ IR9×h, where a is the action executed to

obtain haptic inputs from instance i and h is the number

of inputs used in learning which depends on the input sets

chosen (first column of Table I). For example, if we use all

the haptic inputs (C+E+D), then h = 2 · (7 + 15 + 29) and

Φ has 918 features (for actions that use both grippers). High

dimensionality of the feature space for some sets of inputs

motivates us to use learning algorithms that are able to cope

with such data. We discuss our approach for mapping the

computed features to physical properties of objects in the

next section.

VI. LEARNING

A. Dataset

For our supervised learning task, we used three human ex-

perts (including one of the authors) to label the properties of

the food categories involved in training (all categories from

Fig. 3 except tofu). Although it is a hard task for a human

to reliably estimate the absolute physical properties of food

categories (e.g., average elasticity modulus of cream cheese

in N/m2), ordering these food categories according to their

physical properties is relatively easier and disagreements on

the labelings are arguably far less common.

In order to label the food categories, human experts are

asked to order them for each pyhsical property independently.

In this ordering, they are allowed to have equivalence re-

lationships between two categories for individual physical

properties as well. Once the ordering is decided for a

property, it is projected to the [0, 1] interval linearly and

the labels for that property are determined. For example,

if the elasticity ordering is [Soft buns ≻ Cheddar cheese ≻
Cucumbers ≃ Bread], then the corresponding elasticity labels

would be yelas = [1, 0.5, 0, 0] for those categories. In reality,

the ordering includes all 12 categories mentioned.

During data collection, our robot performed information

gathering actions discussed in Section IV, on all 12 cat-

egories of food in 941 experiments (more than 350 food

objects). For many instances of objects, more than one

info-gathering action was executed on it and features from

different actions were obtained. Lastly, 80% of our dataset

was used for training and 20% was used for evaluating our

algorithms.

B. Learning Physical Properties

TABLE II: Normalized RMSE results (overall for all physical
properties) for learning y. Rows show the set of features used
in learning, and columns show the different information-gathering
actions presented in Section V and Figure 4 respectively.

Info-gathering

Action

Vert.

Piercing

Lat.

Splitting

Circ.

Bending

Vert. Cut

w/ Knife

Best

Action

C Only .17 .14 .15 .19 .14

E Only .14 .13 .13 .18 .13

D Only .11 .11 .07 .09 .07

C+E .11 .10 .09 .14 .09

C+D .09 .05 .06 .09 .05

E+D .09 .08 .09 .11 .08

C+E+D .06 .06 .09 .09 .06

Best Set C+E+D C+D C+D C+E+D

Given a feature vector Φa
i computed from haptic inputs

obtained while performing action a on an object i, our goal

is to estimate the labels of the object, yi = {y1i ...y6i },

where each yn ∈ [0, 1] represents one of the physical

properties. We take a large-margin approach to learning the

parameters of each action’s regression model Ha, using ν-

SVR algorithm implemented in the LibSVM library [37]

from training samples obtained during data collection.

In Table II, we present the test results for each action’s

regression model learned using linear kernel ν-SVR. We

also present the performance of different sets of features

described in Section V. Our metric is normalized RMS error

corresponding to mean error rate aggregated for all proper-

ties. In Fig. 6, we present the estimation results projected



Fig. 6: Category-wise estimates projected to the space of physical
properties, aggregated for all four actions using the best set of
features of each action (See Table II). Diamonds show the estimates
for the test set samples, triangles show ground truth label of a
category. We show only a subset of categories in our dataset for
better visualization. (Best viewed in color.)

onto the physical property space for different categories of

food objects (only a subset of categories shown). Although

the full property space is six dimensional, we show hardness-

elasticity and tensile strength-brittleness subspaces only, due

to space concerns.

C. Discussion on Results of Estimating Physical Properties

Our results in Table II show that for all actions, dynamics

features are more informative than configuration and effort

features. Effort features are control level features that rep-

resent raw actuator power used. From these results, we can

conclude that using robot configuration or raw actuator in-

formation directly to learn the physical properties of objects

is challenging compared to learning from dynamics (forces,

etc.) at the point of contact with the objects. Nonetheless,

for some actions, using all the features together results in

the best model.

We see in Fig. 6 that, although different object properties

are predicted well for all actions, some of the actions were

not able to differentiate well the elasticity of two very similar

categories (Bread: red- Soft buns: purple). One action that did

particulary good in estimating plasticity of these categories

(and others) was Circular Bend action, which was designed

to measure elasticity specifically. Since we have determined

in this section that certain sets of features are more useful

for certain actions in terms of predictive ability, we use the

best set from Table II for each action in order to discover

useful haptic categories in the next section.

D. Discovering Haptic Categories through Dirichlet Process

In this section, we present a method to learn the structure

of the distribution of food categories in the physical property

space. Our motivation for this task is two-fold: First, we

wish to identify the regions of the property space that are

occupied by different categories of food objects and exploit

the similarities between these regions for planning task-

oriented manipulation actions to accomplish useful goals.

Second, we wish to compactly represent beliefs about the

object properties. A belief integrates multiple observations

in the property space obtained from performing different

information gathering actions. However, the complete belief

space over continuous variables, as in our case, is infinite

dimensional. This requires us to constrain the set of possible

Fig. 7: Haptic categories learned (bottom) from estimated prop-
erties of training samples (top) through DP for the Lateral Split
action. Best viewed in color.

beliefs to reflect the overall structure in the property space

(see [27]) due to computational limitations.

In our terminology, the unit of structure is called a

haptic category. A haptic category may be representative

of a specific object category (e.g., cucumber) that can be

easily differentiated from other categories by an information

gathering action. It can also represent a number of object

categories that the action perceives as similar. In our learning

approach, we wish to represent each food object as being

generated from a mixture of haptic categories.

In order to learn these categories, we do unsupervised

learning on estimated properties, y, of the samples from

our training set. Since the number of haptic categories

underlying the real structure is unknown, and potentially

infinite, we use Diritchlet Processes [22], [23]. Discovering

new haptic categories from the observations in the property

space follows three steps:

• Perform an action a, obtain ith feature vector Φa
i , and

estimate the property labels yi (called an observation)

using the regression model Ha obtained through super-

vised learning. (Section VI-B).

• Assign yi to an old haptic category or start a new one

based on a Dirichlet Process (DP).

• Update the parameters of each haptic category ∀z :
µz,Σz ∈ Z after the new assignment.

We describe the assignment step more formally below. Let

zai be the assignment of the ith sample to haptic category z
of action a. Now the assignment of this sample to existing

category in Z (or a new category) for action a is as follows:

zai = z|z−i =

{

n−i

z

N−1+α
·P(yi; ξz) z already ∈ Z

α
N−1+α

otherwise
(1)

where superscript −i denotes everything except the ith

instance, n−i
z equals the number of data points assigned to

category z excluding ith for action a, and α is a Dirichlet

concentration parameter. We use Gaussians for the distribu-

tions P (yi; ξz) = N (yi;µz,Σz). Similarly, we consider the

structure obtained as an infinite Gaussian Mixture Model and

represent our beliefs as a linear mixture of these categories.

Fig. 7 shows an example set of haptic categories obtained

for the Lateral Split action.



Fig. 8: Belief update as more observations are obtained from
information gathering actions that are being performed on a tofu
object during robotic experiments (Section VII-E). Only two of the
subspaces are shown. Best viewed in color.

E. Belief Representation and Update

We represent a belief over an object’s properties as

a linear combination of haptic categories, Z, obtained

from the Diritchlet Process for all actions: b(y) =
∑

z∈Z wz · N (y;µz,Σz) , where the weight vector w, rep-

resents the mixture and {µz,Σz} represents the parameters

of haptic category z. We integrate multiple observations for

a given object by updating the belief weights using a new

observation y+ in property space:

w+
z = (λwz)

m

(m+1) ·
[

√

|Σz|
λm

e(
√

[y+−µz ]Σ
−1
z [y+−µz ]T )

]

(2)

where m is the number observations used for determining

the previous belief b, λ is the decay parameter for previous

observations (chosen to be 0.9) and w+ is the new mix-

ture weight vector after the update which we normalize to

maintain 1Tw+ = 1.

We show the belief update in Fig. 8 as actions Vertical

Pierce and Vertical Cut are performed on a tofu object

consecutively. The initial belief (column 1) has a uniform

weight for each class obtained in DP. This corresponds to

a prior probability obtained from previously seen examples.

Therefore, the belief update starts with this prior and not the

naive uniform distribution over the whole property space.

As observations are obtained in 2nd column and 3rd column

in order, the belief changes towards an object with very low

hardness, high brittleness and high plasticity which is correct

for tofu. Once the robot reaches the belief in column 3, it

can use this information for choosing the correct way to

manipulate this object. For example, it can move the object

with spatulas instead of its grippers, since an object with high

plasticity and brittleness may be deformed when grasped or

damage the grippers.

In the example above, the tofu category is not seen during

the training stage and therefore Z cannot include a haptic

category directly representing the tofu category. However,

because there are similar categories of food objects seen

during training such as cream cheese and peeled banana, it

is possible to obtain a good representation even for tofu as a

combination of haptic categories representing the properties

of these other food categories.

Fig. 9: Task-oriented actions used by our robot, involving use of
grippers, a knife, spatulas and forks, in different fashions. Eight
(out of ten) are shown, due to space constraints.

VII. EXPERIMENTS AND RESULTS

A. Experimental Setup

We test our perception and belief integration approach on

the task of preparing a simple meal. We have four subgoals

that we wish to accomplish: Cut food object, split object into

two pieces, flip-turn object, pick up and move object. All of

these subgoals require the robot to first perceive the physical

properties of object and then use appropriate tools to perform

task-oriented actions to reach the subgoals.

We design 10 additional task-oriented actions (see

Fig. 9)—designed to help reach specific subgoals in different

ways. For the subgoals of cutting and splitting, we created

three actions that use different tools (such as using a fork or

a gripper to stabilize the object while cutting) and different

strategies of execution such as cutting with a downward

motion versus cutting with a saw-like motion. For the other

subgoals, flipping and moving, we created two actions each

that either use spatulas or a gripper to accomplish the task.

B. Manipulation Planning

In order to archive manipulation goals such as cutting

a food object, we wish to create strategies that balance

the exploration of object properties and the exploitation of

actions that can accomplish useful tasks. In this work, we

use a reward based method, similar to the Reinforcement

Learning setting (e.g., [17]), that integrates our approach

for belief representation introduced in the previous section.

For a given goal and a belief about the object, we wish to

determine the action that will produce the highest expected

immediate reward. Although it is possible to plan ahead with

larger or infinite horizons (see POMDPs [22], [25]), it is

beyond the scope of this work.

In order to determine the expected immediate reward

for an action-belief pair, we construct a reward function

defined over the property space for each action based on

the knowledge of our human experts. Although it is possible

to determine the reward functions through training, such as

Inverse Reinforcement Learning [38], this requires human

demonstration on the task we wish to accomplish. Instead, in

this work, for a given action, the reward for a given point in

the property space is determined from a distance-weighted

interpolation of rewards of neighbouring object categories

(determined by the experts).2 Then we generate Monte Carlo

2We leave out the details due to space concerns. Please refer to additional
material on our website for examples of reward functions.



Fig. 10: Performance of our reward based approach in time.
For a given subgoal, each column represents the percentage of
info-gathering actions and the best task-oriented action chosen in
different steps of the manipulation for the objects in our test set.

samples from the belief distribution and choose the action

with the highest total reward for the samples in the next step

of manipulation to greedily maximize total expected reward.

When defining the reward functions, we have to ensure

that the rewards for information gathering actions are con-

structed such that, when the robot is not very sure of the

properties of the object, it prefers to gather more information

before performing risky, task-oriented actions. In this work,

we manually tuned the reward functions for our manipulation

task for a reasonable level of exploration and exploitation.

C. Baseline Algorithms for Comparison

We consider two other methods as baselines:

SVR-NN Algorithm: In this approach, the algorithm esti-

mates the material properties of an object by performing

a random information gathering action. Based on the es-

timation, it determines the nearest object category in the

space of properties. Then the task-oriented action with the

best expected reward for that object category is chosen to

reach the subgoal. Therefore, if the object properties are

predicted well, it always chooses the best action. However,

if the distance between the nearest category label and the

estimate in the property space is greater than half the mean

distance between category labels, then a new information

gathering action is performed in the next step of manipulation

to replace the previous estimate.

Random Strategy: Given a subgoal, this algorithm chooses

either an information gathering action or one of the actions

that are designed to reach that subgoal. It disregards actions

designed to reach other subgoals.

In the next section, we evaluate the performance of our

reward based approach on our test set and make a comparison

against the baseline methods.

D. Manipulation Results

Fig. 10 shows the performance of our reward based

algorithm for the objects in our test set in different time

steps of manipulation. In the absence of knowledge about

the properties, our algorithm first performs an info-gathering

action (randomly chosen). As it makes an estimate about the

properties of the object and reaches a decisive belief in later

steps, the algorithm performs a task-oriented action to reach

the subgoal. In this graph, we see that a belief represented

by a mixture of haptic categories is able to integrate multiple

Fig. 11: Our approach vs. baseline algorithms. This graph
compares the performance of our manipulation approach with some
baseline algorithms. The algorithms are allowed to perform three
steps of manipulation (similar to Figure 10) and distribution of
chosen actions are presented for all the objects in our test set.

observations to make reliable decisions as more information

is gathered in time.

We compare the performance of our reward based manip-

ulation approach against the baseline algorithms in Fig. 11

where the algorithms are allowed to perform the first three

steps of manipulation according to their strategy. While

using the Random Strategy results in a failure 64% of

the time, using the SVR-NN algorithm reduces failure rate

to 14%. SVR-NN works very well when we predict the

physical properties of the object very precisely. However,

in some cases, the uncertainty associated with the prediction

is significant and the observation in the property space is

closer to a wrong object category. These cases lead to wrong

manipulation decisions in this algorithm.

Our reward based approach significantly reduces the fail-

ures to 5%. Furthermore, the number of times that the

algorithm has already performed the best action and reached

a subgoal by the third step of execution is almost doubled

compared to SVR-NN algorithm. This means that for most

of the objects, one or two information gathering actions

was enough to determine the best task oriented action to

reach the subgoal. We associate this large improvement with

the integration of new observations about an object with

previous knowledge by maintaining a belief that is structured

through haptic categories that are learned. In comparison,

SVR-NN algorithm does not have a way to integrate multiple

observations to balance exploration and exploitation since it

greedily decides on the task-oriented action for the closest

category without considering the structure of observations in

the property space.

TABLE III: Overall success rate of our robot as it prepares a salad
by performing different subgoals in a total of 60 trials. While using
a random strategy would result in the best choice (success) 37% of
the time, our algorithm chooses the best action for the objects in
93% of all the trials.

Subgoal Flipping Moving Splitting Cutting All

Trials 9 7 15 29 60

Success 8 6 15 27 56

Failure 1 1 0 2 4

E. Robotic Experiments and Results

We used our learning algorithms and our reward based

manipulation approach to test the final performance of exe-

cuting different subgoals in sequence to prepare a salad with



Fig. 12: Results showing PR2 making a salad. (Left) Unprepared food objects, (Middle) PR2 performing manipulation actions after
learning about objects, and (Right) prepared salad.

PR2 (subgoals were given to the robot). In order to test the

generalization of our algorithm to new object categories, we

also included a new category (tofu) not seen during training.

Our algorithms performed well in most trials, failing only

4 times out of 60 trials. Table III shows the number of

times each subgoal had to be executed and the overall

success rate for each of them. Fig. 12 shows a few snapshots

as the salad is prepared. Explanatory videos of different

task-oriented actions given in Fig. 9 and the robot using

our algorithms while preparing the salad is available at:

http://pr.cs.cornell.edu/hapticmanipulation/

VIII. CONCLUSIONS

In this work, we have presented a learning algorithm for

manipulating food objects with complex physical proper-

ties. Our robot models the properties through haptic inputs,

computes the features, learns haptic categories and executes

correct manipulation actions to reach useful goals. Using

the learned belief representation and manipulation strategies,

our robot attained an overall success rate of 93% in robotic

experiments.
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