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Abstract

Hashing techniques have been intensively investigated

in the design of highly efficient search engines for large-

scale computer vision applications. Compared with prior

approximate nearest neighbor search approaches like tree-

based indexing, hashing-based search schemes have promi-

nent advantages in terms of both storage and computational

efficiencies. Moreover, the procedure of devising hash func-

tions can be easily incorporated into sophisticated machine

learning tools, leading to data-dependent and task-specific

compact hash codes. Therefore, a number of learning

paradigms, ranging from unsupervised to supervised, have

been applied to compose appropriate hash functions. How-

ever, most of the existing hash function learning methods

either treat hash function design as a classification problem

or generate binary codes to satisfy pairwise supervision,

and have not yet directly optimized the search accuracy. In

this paper, we propose to leverage listwise supervision into

a principled hash function learning framework. In particu-

lar, the ranking information is represented by a set of rank

triplets that can be used to assess the quality of ranking.

Simple linear projection-based hash functions are solved

efficiently through maximizing the ranking quality over the

training data. We carry out experiments on large image

datasets with size up to one million and compare with the

state-of-the-art hashing techniques. The extensive results

corroborate that our learned hash codes via listwise super-

vision can provide superior search accuracy without incur-

ring heavy computational overhead.

1. Introduction

Due to the rapidly growing scale and dimensionality of

gigantic data, such as images and videos, retrieving rele-

vant samples from large-scale data collections has become

an inevitable need in many practical applications. Instead of

exhaustively searching the most similar samples to a query,

approximate nearest neighbor (ANN) search methods such

as hashing-based techniques have been studied extensively,

particularly in the domain of similar image search [10, 21].

Briefly speaking, the objective of hashing is to map an

original D-dimensional data space R
D to a binary Ham-

ming space B
K , where each data point is represented by a

binary hash code (i.e., a K-bit hash key) and the entire data

set is mapped to a table with hash keys as entries, namely a

hash table. Most of the early hashing techniques includ-

ing locality sensitive hashing [5] and MinHash are data-

independent random approaches, which do not perform well

in applications like image retrieval and search [21].

Recently, semi-supervsied/supervised learning algo-

rithms have been employed to design more effective hash

functions and many new hashing methods have been pro-

posed [6, 9, 12, 14, 17, 18, 21, 22]. These learning to hash

methods are either pointwise or pairwise, which—in other

words—leverage instance-level labels or pairwise relations

between instances into the learning procedure. Their hash-

ing objectives are to preserve the pointwise or pairwise la-

bel information in the learned Hamming space. Although

promising performance has been shown from these meth-

ods, we argue that their objectives are sub-optimal in search

tasks since ranking information was not fully utilized.

In this paper, we propose a novel framework for learning

hash functions that preserve ground-truth orders of ranking

lists. Our learning procedure takes into account the rank-

ing orders, not just instance-level or pairwise label infor-

mation that was widely used in the prior works. The pro-

posed framework—namely ranking-based supervised hash-

ing (RSH)—has three key steps, as demonstrated by the

conceptual diagram in Figure 1. First, the given ground-
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Figure 1. The conceptual diagram of the proposed Ranking-based Supervised Hashing method. The left component demonstrates the

procedure of deriving ground-truth ranking list r using the semantic relevance or feature similarity/distance, and then converting it to a

triplet matrix S(q) for a given query q. The right component describes the estimation of a relaxed ranking triplet matrix S̃(q) from the

binary hash codes. The central component shows the objective of minimizing the inconsistency between the two ranking triplet matrices.

truth ranking lists for individual queries are converted to a

triplet representation where each triplet S(q;xi,xj) indi-

cates the order of each instance pair (xi,xj) given a certain

query q. Second, given the hash code H(q) for a query q

and H(xi), H(xj) for an instance pair xi,xj , we apply in-

ner products to compute the similarities among hash codes

and then derive the rank triplet S̃ (H(q);H(xi), H(xj)) in

the Hamming space. The final step is to minimize the incon-

sistency between the ground-truth rank triplets and the ones

derived from the corresponding hash codes, which implic-

itly preserves the ground-truth ranking orders in the Ham-

ming space. After relaxation of the non-differentiable loss

function, we show that the optimal solution can be effi-

ciently solved using the Augmented Lagrange Multipliers

(ALM) method with a convergence guarantee. Empirical

studies are performed over three datasets, and results clearly

show that the proposed RSH method can generate higher-

quality search results.

The remainder of this paper is organized as follows. Sec-

tion 2 gives a brief overview of related works in hash func-

tion design. Section 3 describes the conversion from rank-

ing lists to the triplet representation, and then defines a loss

function measuring the inconsistency between the ground-

truth ranking list and the ranking list derived in the Ham-

ming space. Section 4 presents the formulation as well as

our solution for RSH. The experiments are reported in Sec-

tion 5 followed by conclusions in Section 6.

2. Related Works

Tremendous efforts have been paid to design more ef-

fective hashing techniques in the past years. This section

gives a brief introduction of existing hashing techniques.

Specifically, we focus on two categories of methods, which

are more related to this paper: label-dependent hashing and

ranking order statistics based hashing.

2.1. Label-Dependent Hashing

Realizing that semantic relevance or similarity among

data can not be fully defined by a single distance met-

ric, several researchers explored supervision information to

design task-specific hash functions. As briefly mentioned

earlier, there are two types of semi-supervised or super-

vised hashing methods. The first category can be named as

pointwise approaches since each hash function is essentially

treated as a binary classifier and the provided label infor-

mation is exploited to guide the hash function design. For

instance, boosted similarity sensitive coding (BSSC) [18] is

one of the earliest efforts to incorporate label information,

which attempts to learn a weighted Hamming embedding

for a specific search task.

The second type can be categorized as pairwise ap-

proaches since the learning algorithms usually take the pair-

wise supervision information. For instance, in [21], the au-

thors proposed a semi-supervise hashing (SSH) technique,

which aims to maximize the empirical fitness over the la-

beled sample pairs, while also maximize the information

gain from each hash bit to avoid overfitting. Thereby, SSH

tends to derive hashing functions with the highest accuracy

over training data and a balanced partitioning over the en-

tire dataset [21]. Besides SSH, many other recent meth-

ods also belong to this category, such as binary reconstruc-

tive embedding [9], minimal loss hashing [14], complemen-

tary hashing [26], and distance metric learning based hash-

ing [10].

In summary, the existing supervised and semi-supervised

hashing methods often use the pairwise label information

to pursue the optimal hash functions. The general objec-

tive is to encode similar point pairs to the same hash bucket

while maximizing the difference of hash codes of dissim-

ilar point pairs. One prominent advantage of such pair-

wise approaches is that the hashing formulation is relatively

straightforward, and therefore many existing theories and

algorithms can be easily migrated to this domain. However,

these approaches do not directly optimize on ranking lists,

which is critical to assess the search quality in practical ap-

plications.

2.2. Order Preserving Hashing

Compared with the pairwise approaches, there are very

few works using ranking order information. The concomi-
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tant min-hashing (CMH) method was proposed as a natural

extension of the conventional MinHash family [4]. CMH

exploits the theory of concomitant order statistics to de-

velop locality sensitive hash functions, which can improve

the performance under the Cosine similarity measure. More

recently, winner-takes-all hashing (WTAH) explores partial

order statistics and encodes relative orders of feature di-

mensions to develop randomized data-dependent hash func-

tions [27]. WTAH produces a sparse embedding and the re-

sulting Hamming distance closely correlates with the rank-

ing similarity measure. However, both CMH and WTAH

belong to the randomized hashing family since they use ei-

ther random projections or random permutations. In other

words, they are not really supervised methods explicitly

using ranking information. Regarding the importance of

preserving ranking orders, a tree- based method [16] was

proposed. More recently, Norouzi et al. developed a ham-

ming metric learning framework to minimize the piecewise-

smooth upper bound on a triplet ranking loss [15].

3. Listwise Supervision using Triplets

In this section, we first define notations that will be used

throughout this paper. Then we propose a triplet representa-

tion to formulate our objective of preserving ranking orders.

3.1. Listwise Supervision

Assume the dataset X = {xn}
N
n=1 has N points and

each point is in a D-dimensional real space, i.e., xn ∈ R
D.

In addition, we have a query set Q = {qm}Mm=1. For any

specific query point qm, we can derive a ranking list over

X , which can be written as a vector as

r(qm,X ) = (rm1 , · · · , rmn , · · · , rmN ), (1)

where each element rmn falls into the integer range [1, N ]
and no two elements share the same value. If rmi < rmj
(i, j = 1, · · · , N ), it indicates sample xi has higher rank

than xj , which means xi is more relevant or similar to

qm than xj . If given a similarity function sim(·), we

can easily derive the ranking list (rm1 , · · · , rmn ) associated

with a query sample qm, where the order is estimated as

rmi < rmj if sim(xi,qm) > sim(xj ,qm). Similarly, if

sim(xi,qm) < sim(xj ,qm), we can derive rmi > rmj .

Though there could be multiple database points with the

same similar measure to the query point, in this paper, we

ignore the equal case k(xi,qm) = k(xi,qm) and assume

each database point has an exact ranking order. The ground-

truth ranking list in Eq. (1) can be easily derived if a sim-

ilarity measure between datapoints is predefined. How-

ever, if given the semantic label information, it is also fairly

straightforward to convert semantic labels to ranking lists

through counting the commonly shared labels between the

query point and the database points.

In our formulation for learning hash functions, we will

leverage the above supervision information in the form of a

ranking list to design ranking-preserving binary hash codes.

3.2. Conversion from a Ranking List to Triplets

Compared to those pairwise based hash learning ap-

proaches, using the listwise supervision has a clear advan-

tage since optimizing the ranking list can directly improve

the quality of nearest neighbor search. However, the main

challenge is how to effectively leverage such ranking in-

formation into the learning framework. In the previous re-

search of learning to rank [11], the framework using the

ranked list to train a ranking function, namely listwise ap-

proaches, has been well studied. Typically, the objective is

to minimize an expected loss function, which intrinsically

measure the difference between the ground-truth ranking

and the ranking derived from the rank function [25]. One of

the fundamental difference in learning hash function lies in

that the hash function only generates binary codes, instead

of explicit ranking scores.

Here we present an efficient way to translate the ground-

truth ranking list into a set of rank triplets, which can be

easily fed into the hash function learning paradigm. Recall

we have the ground-truth ranking list for a query qm rep-

resented as a vector (rm1 , · · · , rmn , · · · , rmN ). Therefore, we

use a rank triplet S(qm;xi,xj) ∈ R to represent the list-

wise supervision and the value of S(qm;xi,xj) is defined

as

S(qm;xi,xj) =

⎧

⎨

⎩

1 : rqi < rqj
−1 : rqi > rqj
0 : rqi = rqj .

(2)

It is straightforward to see the triplet S(qm;xi,xj) asso-

ciates with the rank order for sample xi,xj given a query

point qm. Hence, the ranking list r(qm,X ) can be con-

verted to a set of triplets, which can be represented in a

matrix form as S(qm) ∈ R
N×N , namely a triplet matrix,

where each element satisfies

S(qm)(i, j) = S(qm;xi,xj), i, j = 1, · · · , N.

Since each triplet matrix S(qm) has one-to-one correspon-

dence to the ranking list (rm1 , · · · , rmn , · · · , rmN ). with re-

spect to a query point qm, Hence for a set of query points

Q = {qm}Mm=1, we can derive a triplet tensor, i.e., a

set of triplet matrices S = {S(qm)} ∈ R
M×N×N . In

particular, the element of the triplet tensor is defined as

Smij = S(qm)(i, j) = S(qm;xi,xj).

3.3. Loss Function by Triplets Representation

Like most of the listwise approaches, a loss function is

defined to measure the difference between two ranking lists.

Given a query point qm and the data X , assume a function
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f(·) : X → R can be used to generate a permutation, i.e. a

ranking list, over X as:

r̃(qm,X ) = f(qm,X ) (3)

= (f(qm,x1), · · · , f(qm,xn), · · · , f(qm,xN ))

Let P (x, r) be the unknown joint distribution of x ∈ X and

r ∈ R and V (f(x), r) is a loss function. Then the total loss

for the function f(·) can be computed as

L(f,X ,Y) =

∫

Y

∫

X×R

V (f(x), r)dP (x, r) (4)

Since the ranking problem can be treated as a special case

of classification or regression, the placement of each sam-

ple is the target for prediction [19]. The above loss function

essentially measures average precision in a cost-insensitive

manner, where the loss is equally computed for all wrongly

ranked samples without considering the positions in the

ranking list. This formulation of loss function has been

studied in the literature of learning to rank [11]. Note that

the ranking function f(.) typically first assigns a prediction

score to each sample, and then perform sorting process over

such scores to derive the final permutation. However, due

to the natural of sorting procedure, minimizing such a loss

function is intractable [25].

To tackle this challenging issue, here we propose to use

the triplets to assess the quality of a ranking list without

sorting the samples. First define g(·) as a scoring function,

which measures the similarity between two samples, e.g.,

g(xi,qm). If a sample xi is ranked ahead of xj , indicated

by a triplet as S(qm)(i, j) = 1, it is expected that the sim-

ilarity function satisfies g(xi,qm) > g(xj ,qm), otherwise

g(xi,qm) < g(xj ,qm). Hence, we can have the follow-

ing loss function measuring the quality of the ranking list

derived from the scoring function g(·)

L(g,X ,Y) = −
∑

m,i,j

S̃(qm)(i, j)S(qm)(i, j) (5)

where S̃(qm)(i, j) is a ranking triplet computed

from the similarity scores g(xi,qm), g(xj ,qm) and

S(qm)(i, j) is the ground-truth. Note that if the triplets

S̃(qm)(i, j), S(qm)(i, j) agree with each other, they con-

tribute negative loss, and contribute positive loss otherwise.

Intuitively, minimizing the above loss function will lead to

maximum consistency between ground-truth triplets and

the triplets derived from g(·). Recall the definition of the

ranking triplet in Eq.( 2), we can easily calculate the triplet

value using the similarity measure as

S̃(qm)(i, j) = sgn (g(xj ,qm)− g(xi,qm)) . (6)

However, directly using the above triplet measure will make

the loss function non-differentiable and hard to optimize.

A typical way is to relax S̃ and use the signed magnitude

instead of the sign function as [21]

S̃(qm)(i, j) ≈ g(xj ,qm)− g(xi,qm). (7)

Then the new loss function becomes

L(g,X ,Y)=−
∑

m,i,j

[g(xj ,qm)−g(xi,qm)]S(qm)(i, j). (8)

Intuitively, minimizing the above new loss function will not

only maintain the triplet relationships, i.e., the ranking or-

der between each pair of samples, but also impose a large

margin constraint.

4. Ranking-Based Supervised Hashing

This section first introduces the form of hash function

that is used in our approach. Then a critical step of con-

verting binary hash codes to rank triplet is described. Fi-

nally the loss function using listwise supervision is defined,

followed by an efficient solution using the augmented La-

grange multipliers (ALM) method. For simplicity, in this

paper we use linear form in the proposed hash functions.

However, our approach can be easily extended to learn non-

linear hash functions.

4.1. Linear Hash Functions

For a data point x ∈ R
D, a hash function h(·) is used

to generate a binary code h : R �→ {−1, 1}.1 Lin-

ear hash functions, such as the well-known locality sen-

sitive hashing [5], are computationally very efficient for

large scale applications. Many recent learning based hash-

ing techniques such as the semi-supervised hashing ap-

proach [21] applied this type of linear formulation. Assume

the data samples are already zero-centered and the mean

partition is used. Then we follow the general idea of lin-

ear functions to define our hash functions in the form as

hk(x) = sgn
(

a⊤k x
)

, where the coefficient ak ∈ R
D is a

linear vector projecting the sample x to a one-dimensional

space. Let H = [h1, · · · , hk, · · · , hK ] be a sequence of

hash functions. Then we can compute a K-bit binary code

H(x) ∈ B
K for x as

H(x) = [h1(x), · · · ,hk(x), · · · ,hK(x)]⊤ = sgn(A⊤x)

where A = [a1, · · · ,ak, · · · ,aK ] ∈ R
D×K is the coef-

ficient matrix and ak is the coefficient vector of the hash

function hk(·).

4.2. Deriving Rank Triplet from Hamming Embed-
ding

Given a query qm and the dataset X = {x1, · · · ,xn},

the corresponding hash codes can be computed as H(qm)

1Here we generate hash bits as {−1, 1}, which are straightforward to

convert to {0, 1} valued hash codes.
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and H(X ) = [H(x1), · · · , H(xN )]. Then the Hamming

distance can be used to rank the samples {xn} ∈ X as-

sociated the query sample qm, resulting in a ranking list

rH (H(qm), H(X )). To represent such ranking list by the

rank triplets, we first define the following similarity mea-

sure gH (H(qm), H(xi)) between hash codes using the

normalized inner product, i.e., cosine similarity as

gH (H(qm), H(xi)) =
H(qm)⊤H(xi)

‖H(qm)‖ · ‖H(xi)‖

=
1

K
H(qm)⊤H(xi) =

1

K

∑

k

hk(qm) · hk(xi)

Following the computation from similarity measure to

approximated ranking triplet in Eq.( 7), we can map the

Hamming embedding based similarity measure to

S̃(qm)(i, j) ≈ gH (H(qm), H(xi))− gH (H(qm), H(xj))

=
1

K
H(qm)⊤ [H(xi)−H(xj)] . (9)

It is easy to see that Hamming distance based ranking in the

ascending order is equivalent to the ranking generated from

the cosine similarity of hash codes in the descending order.

Therefore, the corresponding ranking triplets S̃(qm)(i, j)
are the same.

4.3. Final Objective and Optimization Method

Given the loss function definition in Eq.(8) and the de-

rived ranking triplets in Eq.(9), now we neglect the constant
1
K

and rewrite the loss function as below

LH = −
∑

m

∑

i,j

H(qm)⊤ [H(xi)−H(xj)]Smij

where the tensor element Smij = S(qm)(i, j) is defined

earlier. Note that the above loss function is still non-

differentiable due to the embedded sign function. As sug-

gested in [21], we drop off the sign function and use the

signed magnitude in the loss function as

LH = −
∑

m

∑

i,j q
⊤
mAA⊤ [xi − xj ]Smij

= −
∑

m q⊤
mAA⊤pm = − tr(AA⊤B)

where pm =
∑

i,j [xi − xj ]Smij , B =
∑

m pmq⊤
m and

the symbol • represents Frobenius inner product. Note that

B is computed using the training data {qm}, {xi} and the

ground truth triplet tensor S. Although B is time consum-

ing to calculate, it can be obtained off-line and remains as

a constant during the optimization procedure. Maximizing

the above objective function will provide an optimal solu-

tion of A which tends to preserve the given ranking orders.

Note that the above objective function has a similar ex-

pression as the objective for similarity function learning [1],

Algorithm 1 Using augmented Lagrange multipliers

(ALM) method to minimize Eq.( 11)

Input: constant matrix B, initial A, the coefficient ρ >
0, and the iteration count τ = 1
while not converged do

Aτ+1 = argminF (A,Λτ )
Λτ+1 = Λτ + ρ

(

A⊤
τ+1Aτ+1 − I

)

Update the iteration count: τ = τ + 1
end while

which uses a non-smooth cost to include a margin-based

ranking loss. Compared to Norouzi’s objective of minimiz-

ing a hinge loss based cost [15], we formulate a smooth

quadratic loss after a proper relaxation. Finally, we explic-

itly make the learned hash codes hold least redundant in-

formation by enforcing the orthogonality constraints. Fol-

lowing the work in [24, 21], we relax such hard constraints

on hash codes and instead make the projection directions

orthogonal, leading to the following:

A∗ = argmin
A

LH = argmin
A

− tr(AA⊤B) (10)

s.t. A⊤A = I.

A general method for solving the above constrained op-

timization problem is introduced as the augmented La-

grangian multiplier method (ALM). Such method has ro-

bust convergence performance and is well studied in the lit-

erature [2]. The augmented Lagrangian (AL) function is

defined as

F (A,Λ) = − tr(AA⊤B) + tr(Λ(A⊤A− I))

+
ρ

2
‖A⊤A− I‖2F , (11)

where Λ ∈ R
K×K is the Lagrange multiplier matrix.

The ALM method is a primal-dual algorithm, as shown

in the algorithm chart. Each iteration is composed of two

steps. The first step updates the primal variableA for a fixed

Lagrangian multiplier Λτ , by minimizing the AL function

in Eq.(11). The second step updates the Lagrangian multi-

plier (the dual variable) along the gradient ascent direction

∇ΛF (A,Λ). The primal step is solved using a simple gra-

dient descent method, where the derivation of the gradient

∇AF (A,Λ) is provided in the Appendix. The gradient de-

scent method only requires first-order gradient information,

which makes it very suitable for large scale problems. In

comparison, Newton-type algorithms may have faster local

convergence rate, however they also require much heavier

computation in each iteration.

4.4. Complexity Analysis

The computational cost for learning the ranking-based

supervised hash function consists of two parts, the offline
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Figure 2. Performance evaluation on CIFAR dataset using differ-

ent number of hash bits. a) NDCG of the Hamming ranking; b)

ACG within Hamming radius 3.

and online part. The offline calculation is mainly for de-

riving the constant matrix B. Recall the definition of pm

and B described earlier, the complexity for computing the

vector pm is O(DN2) and for calculating S is O(MD2).
Although it is time-consuming to obtain, the computation

can be easily parallelized across different query samples.

The online training for deriving the optimal hash functions

is fairly fast. Notice that the AL function (11) is a noncon-

vex quadratic polynomial function in the entries of A. Due

to its structure, the gradient descent method converges to a

local minimum starting from an initial point that is close

enough to the optimal solution, which is often observed

as a consistent and fast convergence behavior in practice.

Each iteration of the gradient descent method involves ma-

trix multiplications (see the Appendix). Their complexity

can be counted: BA requires O(KD2) flops, AΛ requires

O(K2D) flops, and constructing ∂g(A)/∂A also requires

O(K2D) flops (the main part of the computation is taken

by A⊤A). Thus, the complexity of each iteration of the

gradient descent method is O(KD2 + K2D). Similarly,

the dual update step has arithmetic complexity O(K2D).
Hence, this algorithm is fairly scalable since its time com-

plexity only relies on the feature dimensionality D and the

number of bits K.

5. Experiments

We now apply the RSH technique to three image bench-

mark datasets i.e., CIFAR, NUSWIDE, and One-Million

tiny images, which have been popularly adopted in the eval-

uation of hashing methods [6, 13, 21]. Extensive compar-

ative studies with state-of-the-art hashing methods are also

provided below.

5.1. Datasets

The CIFAR data contains a total of 60, 000 32×32 color

images with clean manual labels [8]. In particular, two lev-

els of semantic class labels, i.e., super class and fine class,

are assigned to the images. It has 20 superclass, each of

which can be further split into 5 specific classes. It is in-

tuitive to see that two images sharing a common fine class
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Figure 3. Performance evaluation on NUSWIDE dataset using dif-

ferent number of hash bits. a) NDCG of the Hamming ranking; b)

ACG within Hamming radius 3.

labels are more related than those sharing just a common

superclass label, while the latter is apparently closer than

those sharing no common class labels. Accordingly, we can

derive ground-truth weak ranking lists with three relevance

levels. The original intensity values are used as image pre-

sentations, resulting in a 3072-d feature vector.

The NUSWIDE dataset is a set of Flickr images [3].

It has around 270K images manually annotated with 81
classes. Since each image in the NUSWIDE dataset is as-

sociated with multiple semantic classes, the semantic rele-

vance can be easily derived based on the number of shared

class labels. Compared to CIFAR dataset, NUSWIDE has

much more relevance levels in the ranking lists. For fea-

ture representation, similar as [21], ℓ2 normalized 1024-d

sparse-coded bag-of-words descriptors are used.

The third dataset contains One-Million tiny images [20],

each of which is represented by a 384-d GIST descrip-

tor. This dataset has no semantic labels. Therefore we

define the ground-truth relevance using the ℓ2 distance of

image features. For any query image, an image is recog-

nized as strongly relevant if its distance to the query image

is within the 2nd percentile of the whole set of distances.

If the distance is beyond the 2nd percentile but within the

5th percentile, it is treated as weakly relevant. Otherwise,

it is treated as an irrelevant image. Finally we can obtain

ground-truth ranking lists with three relevance levels.

5.2. Experimental Setup

We compare the proposed RSH methods with four repre-

sentative techniques, including spectral hashing (SH) [24],

semi-supervised hashing (SSH) [21], and two order

statistics based methods, i.e., concomitant min hashing

(CMH) [4] and winner-takes-all hashing (WTAH) [27].

Since SH is a data-dependent method and does not use

any label information, we use the standard settings in our

experiments. For SSH, we randomly sample 1000 data

points and use their ground-truth labels to generate pair-

wise similarity matrix as part of the training data. Sim-

ilarly, for RSH, we randomly sample 100 query samples

and 1000 data points to compute the ground-truth ranking

lists, which finally give us a triplet tensor S with the size
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Figure 4. Performance evaluation on One-Million tiny image

dataset using different number of hash bits. a) NDCG of the Ham-

ming ranking; b) ACG within Hamming radius 3.

100× 1000× 1000. Although the supervision information

used in RSH is much richer than SSH, the required labeled

training samples for RSH (100 training queries plus 1000
database points) are only slightly more than that used in

SSH. For both CMH and WTAH, we use the best settings

reported in the literatures [4][27]. Finally, in the test stage,

we use 1000 random samples as queries and evaluate the

quality of the returned samples.

5.3. Evaluation Metrics

Following the evaluation method suggested in [23], we

measure the search quality of a single hash table using both

hamming ranking and hash lookup. For hamming ranking,

the database points are ranked based on the Hamming dis-

tance to the query point. We use normalized discounted

cumulative gain (NDCG) to evaluate the ranking quality in

Hamming space for each individual query [7], which is a

very popular measure in the IR community. Discounted cu-

mulative gain (DCG) uses a graded relevance scale to mea-

sure the effectiveness of a search algorithm:

DCGp = rel1 +

p
∑

i=2

reli
log2 i

. (12)

Here p indicates the truncated position in a ranking list and

the value of reli indicates the relevance level for the re-

turned ith sample. It is easy to see that the graded relevance

value of each returned sample is reduced logarithmically

proportional to its position. Accordingly, if the ideal rank-

ing gives the DCG value as IDCG, NDCG is calculated

as NDCGp =
DCGp

IDCGp

. For those samples falling in the

same Hamming distance to query points, the expectation of

NDCG is computed.

On the other hand, hash lookup returns the samples

within a certain Hamming radius r (set as r ≤ 3 in the ex-

periments). Since hash lookup does not provide ranking for

returned points with equal Hamming distance to the queries,

we use average cumulative gain (ACG) to measure the qual-

ity of these returned samples [7], which is calculated as

ACGr =
1

|Nr|

∑

x∈Nr

relx. (13)
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Figure 5. Code generation time of different methods on the CIFAR

and NUSWIDE datasets.

Here Nr denotes the returned data points within a Hamming

radius r and relx is the relevance level of a returned data

point x. Here the scale value of |Nr| is the total number of

returned data points. Hence, ACG essentially measures the

average precision weighted by the relevance level of each

returned sample. In summary, both metrics emphasize the

quality of ranking, which is practically important.

5.4. Results

The performances using various numbers of hash bits are

presented in Figures 2, 3, 4, for the CIFAR, NUSWIDE

and One-Million datasets, respectively. Clearly, RSH out-

performs the compared methods in most of the tested cases.

Particularly, for the evaluations by NDCG over the the

Hamming ranking in Figures 2(a), 3(a), 4(a), RSH achieves

significant performance gains over all the other methods.

This clearly demonstrates that RSH tends to preserve the

ranking order in the learned Hamming space. For per-

formance comparison of hash lookup performance, SSH

achieves a similar high performance, and even outperforms

RSH in a few tested cases on the CIFAR dataset and the

One-Million dataset. Note that CIFAR dataset and the

One-Million dataset only have three relevance levels which

encode very weak ranking orders. When using longer bits,

the Hamming embedding becomes increasingly sparse and

many queries have empty returns (treated as zero cumula-

tive gain), which prevents a single hash table to achieve

higher performance. The partial order statistics based meth-

ods, i.e., WTAH and CMH, do not perform well over these

challenging high-dimensional datasets.

The time cost for training the hash functions can be

ranked as : RSH > SSH > SH > WTAH ≃ CMH. It

requires around several hundreds to a thousand seconds to

train RSH function with 8-bit to 32-bit, about 2-5 times of

that of SSH, which is actually not slow considering the com-

plexity of training. In contrast to the offline training, the

online code generation time is more critical for real-world

search applications. Figure 5 shows the time cost for gener-

ating hash codes using different approaches on CIFAR and

NUSWIDE. RSH and SSH are the most efficient in terms

of code generation since they only need linear projection

and binarization. SH requires a little more time due to the
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sinusoidal binarization process. WTAH and CMH take the

longest time to compute the hash codes since both of them

need a sorting process over the feature space. Especially,

WTAH is fairly slow in generating long hash codes.

6. Conclusions

In this paper, we have introduced a learning to hash

framework through leveraging listwise supervision to train

efficient hash functions. Our approach holds the following

novel aspects. First, realizing the difficulty of directly opti-

mizing over discrete ranking orders, we introduced a triplet

representation for listwise supervision and proved that this

representation is equivalent to rank orders. Then, we pro-

posed to match Hamming ranking to the given ranking in

the semantic space through minimizing the inconsistency

between two triplet representations. Finally, to solve the

above objective, we proposed an efficient solution by using

the augmented Lagrangian multiplier method.

We performed extensive experiments on three large im-

age datasets and compared with the state-of-the-art hashing

techniques. Experimental results demonstrated that the pro-

posed ranking-based supervised hashing method yields su-

perior performance. In addition, since the proposed method

uses linear functions, its online code generation time is ex-

tremely fast, especially when compared with those order

statistics based methods. Important future works include

the extension to nonlinear cases by applying kernels and the

design of multiple ranking-based supervised hash tables to

further boost image search quality.
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