
Learning Hash Functions for Cross-View Similarity Search

Shaishav Kumar
Microsoft Research India

Bangalore, India
v-shaisk@microsoft.com

Raghavendra Udupa
Microsoft Research India

Bangalore, India
raghavu@microsoft.com

Abstract
Many applications in Multilingual and Multi-
modal Information Access involve searching large
databases of high dimensional data objects with
multiple (conditionally independent) views. In this
work we consider the problem of learning hash
functions for similarity search across the views
for such applications. We propose a principled
method for learning a hash function for each view
given a set of multiview training data objects. The
hash functions map similar objects to similar codes
across the views thus enabling cross-view sim-
ilarity search. We present results from an ex-
tensive empirical study of the proposed approach
which demonstrate its effectiveness on Japanese
language People Search and Multilingual People
Search problems.

1 Introduction
In many applications in Multilingual and Multimodal Infor-
mation Access, the database comprises of data objects with
multiple (conditionally independent) views and there is a
need for similarity search across the views. Consider, for in-
stance, the Japanese language People Search problem where
the names in the people directory are represented in one or
more scripts1, namely Kanji, Katakana, Hiragana, and Ro-
maji. Here, the representation of a name in a specific script
can be regarded as a view and thus each record in the peo-
ple directory contains multiple views of the same name along
with other information. In Japan, users can query the people
directory in any of the four scripts and expect results in all
of them. This is an example of a real world Multilingual In-
formation Access problem that involves cross-view similarity
search on large databases of multiview data objects2.

1http://en.wikipedia.org/wiki/Japanese script
2What makes the problem challenging is the fact that there is

no one-to-one mapping between Kanji characters and the Kana and
Latin characters. While Kana characters are small in number and
are phonetic, there are over 10, 000 Kanji characters and many of
them have multiple sounds associated with them. The correct sound
of a Kanji character in a name depends upon the neighboring Kanji
characters in the name [Suzuki et al., 2009].

A more general People Search problem is the Multilin-
gual People Search problem where there are not only multiple
scripts involved but also mutliple languages. In this problem,
name records can be in one or more languages and the query
can be in any of these languages [Udupa and Khapra, 2010].
The representation of a name in a specific language can be
seen as a view. Users of Multilingual People Search applica-
tions expect results in any of the languages in their profile.

As a second example of a real-world problem where cross-
view similarity search plays a prominent role, consider the
problem of content-based multimedia retrieval where the
database consists of text documents and images and the query
can be either of these [Larsen et al., 2003]. The image and its
associated text are the two views of the same semantic object
and users expect similar images and texts as results for their
queries.

In both of the problems discussed above, and also in many
other problems, the database consists of a large number of
high dimensional data objects with multiple views. Individ-
ual data objects in the database as well as the query might
have one or more of the views unspecified. Further, similar-
ity search across views is absolutely necessary for satisfying
the information need of the user.

A possible line of attack for cross-view similarity search
is to first “translate” each of the views of a multiview data
object to one of the views and then employ single-view simi-
larity search techniques. For example, we could first translate
a name in Kanji to Hiragana and then use the translated name
in Hiragana similarity search. However, such an approach
suffers from at least two major flaws as discussed previously
in [Udupa and Khapra, 2010; Platt et al., 2010]. Firstly,
translation of one view to another is application specific, ap-
proximate, and lossy. As a consequence, the effectiveness of
cross-view similarity search goes down substantially because
of translation [Udupa and Khapra, 2010]. Secondly, transla-
tion is in general very slow making it impractical in many real
world applications [Platt et al., 2010].

In this work, we take a hashing-based approach for solv-
ing the cross-view similarity search problem. We represent
each view of a multiview data object as a compact binary
codeword. To support cross-view similarity search, we need
the codewords of a data object to be similar if not identi-
cal. Further, codewords of similar data objects should also
be similar. Assuming that we can somehow map data objects



to binary codewords, cross-view similarity search can be re-
duced to the much simpler problem of retrieving all data ob-
jects with codewords within a small Hamming distance of the
codeword(s) for the query. The latter problem can be solved
very efficiently and even databases with millions of data ob-
jects can be searched in a fraction of a second on commodity
processors [Weiss et al., 2008].

The main challenge in hashing-based approach to cross-
view similarity search is to learn a hash function for each
view of multiview data objects from training data consisting
of multiview data objects. The hash functions should have the
following properties:

1. They should map the different views of a multi-
view data object to similar codewords and similar
data objects to similar codewords so that given the
codeword for any of the views of a data object as
the query, we can retrieve similar data objects us-
ing the codeword.

2. They should be defined everywhere so that they
may be applied on not only training data objects
but also to those which are not present in the train-
ing set.

3. They should produce compact codewords for each
of the views of the data objects so that similarity
search using the codewords is fast and scalable.

4. They should be computationally efficient and par-
allelizable so that they may be used in real-world
cross-view similarity search applications with strict
latency constraints.

5. Learning them from training data should be com-
putationally efficient.

We give a principled solution for the problem of learning
hash functions for cross-view similarity search. Our approach
produces hash functions that have all the properties discussed
earlier. To the best of our knowledge, ours is the first attempt
towards this end.

We formulate the problem of learning hash functions as a
constrained minimization problem over the training data ob-
jects. The key idea is to find hash functions that minimize the
weighted average Hamming distance of the codewords for the
training objects over all the views (Property 1). We seek hash
functions of explict form: the hash function for each view
consists of a set of d > 0 1-bit hash functions of the form
sgn (〈a, x〉) 3. As the hash functions are linear proejctions
followed by binarization, they are defined everywhere (Prop-
erty 2). The computational complexity of evaluating a hash
function is linear in the dimensions of the corresponding view
and hence very efficient in practice (Property 4). Further, lin-
ear projections can be easily parallelized. The resulting mini-
mization problem is tractable and can be solved as a general-
ized eigenvalue problem (Property 5).

We show the effectiveness of our approach on two cross-
view similarity search problems:

• Japanese Language People Search

• Multilingual People Search

3sgn(u) = 1 if u > 0 and −1 otherwise for all u ∈ R.

The rest of the paper is organized as follows. In Section 2,
we formulate the problem of learning hash functions as an op-
timization problem. As the resulting problem is NP-hard, we
propose a novel relaxation in Section 2.1 which transforms
the problem into a tractable problem. We discuss how to solve
the optimization problem in Section 2.2 and the resulting hash
functions in Section 2.3. In Section 3, we discuss a couple of
interesting special cases of the general cross-view similarity
search problem and the connections to some well-known di-
mensionality reduction techniques. In Section 4, we present
the results from our experiments.

2 Learning Hash Functions
Let O = {oi}ni=1 be a set of multi-view data objects and x

(k)
i

be the kth view of the object oi, where x
(k)
i ∈ Rdk . Let W

be the similarity matrix for O with Wij being the similarity
between oi and oj . Given O and W as input4, we want to
learn a hash function f (k) : x(k) 7→ {−1, 1}d for the kth
view, 1 ≤ k ≤ K. For the sake of notational simplicity,
we denote f (k)

(
x(k)

)
by y(k) in the remainder of this paper.

Further, let d (y, y′) denote the Hamming distance between
the codewords y and y′5.

As our goal is to enable cross-view similarity search
through hashing, we want the hash functions to map similar
objects to similar codewords over all the views. More specif-
ically, if oi and oj are two similar data objects, we would like
each of the hash functions f (k) to map oi and oj to similar
codewords. Now, the Hamming distance between the code-
words of oi and oj summed over all the views is

dij =

K∑
k=1

d
(
y

(k)
i , y

(k)
j

)
+

K∑
k=1

K∑
k′>k

d

(
y

(k)
i , y

(k′)
j

)
(1)

We seek hash functions that minimize the similarity
weighted Hamming distance between the codewords of the
training data objects. Further, along the lines of single-view
hashing, we impose a couple of constraints: first, we want
each bit to have an equal chance of being 1 or−1; second, we
require the bits to be uncorrelated. Thus, we arrive at the fol-
lowing problem which is a generalization of the well-known
single-view hashing technique, Spectral Hashing [Weiss et
al., 2008], to multiview data objects:

minimize : d̄ =

n∑
i=1

n∑
j=1

Wijdij (2)

subject to : Y (k)e = 0, for k = 1, . . . ,K (3)

1

Kn

K∑
k=1

Y (k)Y (k)T = Id, (4)

Y
(k)
ij ∈ {−1, 1} , for k = 1, . . . ,K (5)

where e is a n× 1 vector of all 1s and Id is an identity matrix
of size d× d.

4When W is not available, we assume that W = In.
5Note that d (y, y′) = 1

4
‖y − y′‖2.



From Equations 1 and 2, it follows easily that

d̄ =

K∑
k=1

Tr
(
Y (k)L′Y (k)T

)
− 2

K∑
k=1

K∑
k′>k

Tr

(
Y (k)WY (k′)

T
)

(6)
where L′ = 2L + (K − 1)D, D is a diagonal matrix such
that Dii =

∑n
j=1 Wij and L = D − W is the Laplacian.

Note that d̄ is a convex function of Y .

2.1 Linear Relaxation
The optimization problem described in the previous section
is NP hard as it reduces trivially to the optimization problem
of Spectral Hashing when K = 1 and the latter is known to
be NP hard [Weiss et al., 2008]. Unlike Spectral Partitioning
which solves a relaxed problem by removing the constraint
that Yij ∈ {1,−1} and extends the solution to out-of-sample
datapoints by assuming that the data objects have been sam-
pled from a multidimensional uniform distribution, we take a
different approach. We assume that y(k)

i is a low-dimensional
linear embedding of x(k)

i but make no assumption on the dis-
tribution of the data objects:

y
(k)
i = A(k)Tx

(k)
i (7)

where A(k) = [a
(k)
1 , . . . , a

(k)
d ] ∈ Rdk×d is a rank d matrix

(d < dk).
The above relaxation transforms the NP hard optimization

problem of Equation 2 into the following tractable problem
that can be solved as a generalized eigenvalue problem as we
will see in Section 2.2:

minimize : d̄ (8)

subject to : A(k)X(k)e = 0, for k = 1, . . . ,K (9)

1

Kn

K∑
k=1

A(k)TX(k)X(k)TA(k) = Id(10)

where

d̄ =

K∑
k=1

Tr
(
A

(k)T
X

(k)
L

′
X

(k)T
A

(k)
)

−2

K∑
k=1

K∑
k′>k

Tr

(
A

(k)T
X

(k)
WX(k′)TA(k′)

)
.

Note that d̄ is convex in A(k), k = 1, . . . ,K.
The constraint in Equation 9 simply means that the data

objects should have zero mean in each of the views. This can
be easily ensured by centering the data objects.

2.2 Solution
In the previous section, we transformed the problem of learn-
ing hash functions into a parameter estimation problem. To
estimate the parameters A(k), we set each of the partial
derivatives of d̄ − Tr

(
A(k)TX(k)X(k)TA(k)Λ

)
to 0 where

Λ is a d × d diagonal matrix. This results in the following
generalized eigenvalue problem which can be solved in poly-
nomial time [Golub and Van Loan, 1996]:

X
(k)

L
′
X

(k)T
A

(k) −
K∑

k′ 6=k

X
(k)

WX(k′)TA(k′) = X
(k)

X
(k)T

A
(k)

Λ (11)

2.3 Hash Functions
The eigenvectors obtained by solving the generalized eigen-
value problem of Equation 11 are the linear projections used
in our hash functions. The individual bits of the codeword
are obtained by first projecting the view on to the different
eigenvectors and then binarizing the projected value:

f (k)
(
x(k)
)
=

(
sgn

(〈
a
(k)
1 , x(k)

〉)
, . . . , sgn

(〈
a
(k)
d , x(k)

〉)T

(12)

3 Interesting Special Cases
We now look at two interesting special cases of the cross-view
similarity search problem: K = 1 and W = In×n.

3.1 K = 1

This is the special case where the data objects have only one
view. Cross-view similarity search reduces to single-view
similarity search in this case. When K = 1, we have L′ = 2L
and therefore,

X(1)LX(1)TA(1) = X(1)X(1)TA(1)Λ. (13)

The generalized eigenvalue problem in Equation 13 is sim-
ilar in structure to Locality Preserving Indexing [Cai et al.,
2007]. However, the latter is primarily interested in finding
a low-dimensional embedding and not in learning hash func-
tions.

3.2 W = In×n

This is the special case where the training data consists of
multiview data objects but the affinity matrix is not available.

When W = In×n we have D = In×n and L = 0. There-
fore L′ = (K − 1) In×n. Substituting this in Equation 11,
we get:

K∑
k′ 6=k

X(k)X(k′)
T
A(k′) = X(k)X(k)TA(k)Λ′ (14)

where Λ′ = (K − 1) Id×d − Λ.
Further, when K = 2, we get:

X(1)X(2)TA(2) = X(1)X(1)TA(1)Λ′ (15)

X(2)X(1)TA(1) = X(2)X(2)TA(2)Λ′ (16)

This is exactly the generalized eigenvalue formulation of
Canonical Correlation Analysis, a well-known method of cor-
relating linear relationships between two multidimensional
variables[Hardoon et al., 2004]. Therefore, the hash func-
tions for this special case are given by the CCA embedding
of the training data. We note that [Udupa and Khapra, 2010]
also use a CCA-based approach for the Multilingual People
Search problem. However, instead of employing hash func-
tions resulting from the CCA embedding, they use a geomet-
ric search technique.



4 Experimental Study
We now describe our experiments for evaluating the effective-
ness of the hashing-based cross-view similarity search tech-
nique developed in Section 2. We report results for two prob-
lems: Japanese Language People Search and Multilingual
People Search. To compare our results with published results,
we follow the experimental regimen described in [Udupa and
Khapra, 2010; Udupa and Kumar, 2010].

4.1 Experimental Setup
Both Japanese People Search and Multilingual People Search
involve two stages: an offline indexing stage and an online
querying stage. In the indexing stage, given a name directory,
we break each name into its constituent tokens and form the
set of distinct name tokens in the directory. These tokens
are then used to create an inverted index, mapping tokens to
the names they are part of. We then produce the codeword
for each of these tokens by applying the hash functions of
Section 2.3.

The index generated in the first stage is used in the query-
ing stage. Given a query name, we break it into constituent
tokens and generate the codewords for each of the tokens by
applying appropriate hash functions. Using the codeword of
each of the tokens, we retrieve all tokens in the index that
are within a particular Hamming radius6 of this codeword.
We score the retrieved tokens and retain only the top 250 to-
kens based on their similarity scores. The score is computed
using the Euclidean distance in the low dimensional embed-
ding (Equation 7). The tokens that remain are approximate
matches of the corresponding query token. Using the inverted
index, we then retrieve all names that have any of these to-
kens. Finally, we score the names using the graph matching
algorithm of [Udupa and Khapra, 2010].

4.2 Japanese Language People Search
In the Japanese Language People Search problem, the
database consists of name records of people in any of the
three scripts used in Japanese text as well as the Latin script
and users query the database for finding people relevant to
their information need. The name queries can be in any of
the four scripts (Hiragana, Katakana, Kanji or Latin). Mis-
spellings and Kanji characters make the problem very chal-
lenging as each Kanji character has multiple pronunciations.
Further, phonetic variants are also observed in queries which
along with misspellings necessitate similarity search.

As there is an almost one-to-one mapping between
Katakana and Hiragana, we treat Kana as one of the views
and Kanji as the other view. As the number of Kanji charac-
ters is high, we romanize the Kanji characters using a simple
Romanization scheme. Thus, all Kanji names in the directory
are romanized before indexing and the Kanji query is also
romanized before querying.

Training
For learning hash functions for the Japanese Language Peo-
ple Search problem, we used 20, 000 single token parallel

6In our experiments, the Hamming radius was 4 and codewords
were each 32 bits long.

Japanese names in Kanji and Kana. The tokens were trans-
formed into feature vectors by using the same feature extrac-
tion scheme as used by [Udupa and Khapra, 2010]. Character
bigrams were the features and the presence of a character bi-
gram in a name token activates the corresponding feature in
the feature vector for that token. Because of the Romaniza-
tion step, the dimension of the Kanji feature vector was 563
which is manageably small compared to the number of Kanji
bigrams (> 10, 000 × 10, 000). The dimension of the Kana
view was 3107. After the name tokens were transformed into
feature vectors, we learned the hash functions for the two
views using the apparatus described in Section 2.2. We used
MATLAB to solve the generalized eigenvalue problem and
selected the top 32 eigenvectors. This gave us a 32-bit hash
function for each of the views.

Test Set
To test our approach, we need a name directory and a test set.
In our experiments, we used a name directory consisting of
56, 300 Japanese names which were written in both Kana and
Kanji. We selected a random subset of these names and asked
native Japaneses speakers to generate common phonetic vari-
ants and misspellings of the names in the subset. The re-
sulting test set consisted of 332 Kanji queries and 69 Kana
queries.

Baseline
We implemented a baseline system using Double Metaphone,
a well-known phonetic search algorithm for names [Philips,
2000]. As Double Metaphone can handle only strings in the
Latin alphabet, we first romanized the Kana and Kanji names
and then generated the Double Metaphone index. The base-
line system is similar to the hash-based system except that
the candidate tokens are retrieved using Double Metaphone
codewords instead of hash codewords and scored using edit
distance.

Results
For each of the name in the test set, we checked the position at
which the correct result was retrieved by our system and the
baseline. A perfect system would always retrieve the correct
name at position 1 for every query in the test set. Therefore,
the precision of the retrieval system at position 1 (P@1) is an
indicator of how well the system is doing. The closer P@1
of a system is to 1, the closer it is to perfection. Therefore,
a high P@1 score is desirable. Oftentimes, the precision of
the retrieval system at position n > 1 (P@n) is also a good
indicator of the system’s performance as in some applications
more than one results can be shown to the user. So we report
P@3 along with P@1.

Table 1 compares P@1 of the hashing-based system with
the Double Metaphone baseline. We note that the P@1 of
the hashing-based system is 87.50% higher than that of the
baseline system. The improvement in P@1 can be attributed
to the ability of the learnt hash functions to retrieve all can-
didate tokens that are similar to the given query token. From
Table 1, we observe that P@3 of the hashing-based system is
72.03% more than that of the baseline system. Further, P@3
of the baseline is still substantially smaller than P@1 of the
hashing-based system.



Table 1: Comparative Performance in Japanese Language
People Search

P@1 P@3
HASH 0.765 0.855
DM 0.408 0.497

4.3 Multilingual People Search
In the Multilingual People Search problem, the database con-
sists of name records of people in one or more languages and
users query the database in any of these languages. Unlike
Japanese Language People Search which was essentially a 2-
view problem, in Multilingual People Search the number of
views can be greater than 2. Therefore, we consider two sce-
narios. In the first scenario, K = 2 and this allows us to com-
pare our approach with that of [Udupa and Khapra, 2010]. In
the second scenario, K > 3 and more than two languages are
involved.

Training
We learnt the hash functions using parallel names extracted
from Wikipedia. In the K = 2 scenario, we use the same
training data as used by [Udupa and Khapra, 2010] to do a
fair comparison of our system with theirs. In the K = 3
scenario, we used a 3-way parallel subset of the training data
used by [Udupa and Khapra, 2010]. This subset had 8, 209
3-way parallel single token names. In the K = 4 scenario,
we used 7, 908 4-way parallel single token names.

Test Sets
We used the same test sets as used by [Udupa and Khapra,
2010]. The name directory was created using Wikipedia and
had about 500, 000 names. In all the experiments, English
was the language of the name directory and the queries were
in Hebrew, Kannada, Tamil and Hindi. Table 2 gives the sizes
of the training and test sets.

Baseline
The baseline against which we compared our system was
the system described in [Udupa and Khapra, 2010]. They
use Canonical Correlation Analysis to find a common feature
space for the two views of the data and employ an approxi-
mate nearest neighbor algorithm for similarity search. We use
Tie-Aware Mean Reciprocal Ratio (MRR) as the measure of
retrieval performance as this is what was reported by [Udupa
and Khapra, 2010] in their work.

Results
Table 2 summarizes the results for the K = 2 scenario. We
see that the hashing-based system gives substantially better
results than tree-based geometric search, with an MRR im-
provement of 9.1% on an average.

Table 2: Summary of K = 2 Experiments
Training
Set Size

Test Set
Size

MRR
HASH

MRR
GEOM

ENG-HIN 15541 1027 0.725 0.686
ENG-RUS 11527 1124 0.629 0.563
ENG-HEB 16317 998 0.794 0.723

Table 3 summarizes the results for the K > 2 scenario.
The consistently good MRR of the systems show that our ap-
proach scales well for the K > 2 scenario. Note that in the
K = 4 experiments, the results are comparable for the differ-
ent directions of search.

In all the scenarios, the hashing-based system took about
200 milliseconds on an average to retrieve the results for a
query. Note that our system ran on a single thread on a server
and multithreading can improve the speed significantly.

Table 3: Summary of K > 2 Experiments
Training Data ENG-HIN ENG-KAN ENG-TAM
ENG-HIN 0.725 - -
ENG-KAN - 0.712 -
ENG-TAM - - 0.71
ENG-HIN-KAN 0.716 0.722 -
ENG-HIN-KAN-TAM 0.69 0.678 0.708

5 Related Work
Similarity Search in large databases of high-dimensional data
objects is a key task in many applications [Gupta and Jain,
1997; Datta et al., 2008; Manning et al., 2008; Croft et al.,
2009]. Unfortunately, even the theoretically best data struc-
tures for indexing multi-dimensional data are, on an average,
as bad as a brute force exhaustive search of the database for
high-dimensional data objects such as texts and images [Arya
et al., 1998]. Therefore, approximate similarity search algo-
rithms that give a good tradeoff between retrieval accuracy
and the computational complexity of search are desirable.

A very important class of approximate similarity search
algorithms in both Computational Geometry and Machine
Learning is hashing where data objects are represented us-
ing binary codewords [Charikar, 2002; Shakhnarovich et al.,
2008; Salakhutdinov and Hinton, 2009]. Given a query data
object, similar data objects are retrieved from the database
simply by retrieving all data objects with codewords within
a small Hamming distance of the codeword for the query.
When the codewords are compact, similarity search using
hashing is computationally efficient [Weiss et al., 2008].

The problem of learning hash functions for single-view
data objects has been well studied. Locality Sensitive Hash-
ing (LSH) is a theoretically grounded data-oblivious ap-
proach for using random projections to define the hash func-
tions for data objects with a single view [Charikar, 2002;
Andoni and Indyk, 2006]. Although LSH guarantees that
asymptotically the Hamming distance between the codewords
approaches the Euclidean distance between the data objects,
it is known to produce long codewords making it practically
inefficient. Recently data-aware approaches that employ Ma-
chine Learning techniques to learn hash functions have been
proposed and shown to be a lot more effective than LSH on
both synthetic and real data. Semantic Hashing employs Re-
stricted Boltzmann Machine to produce more compact codes
than LSH [Salakhutdinov and Hinton, 2009]. Spectral Hash-
ing formalizes the requirements for a good code and relates
them to the problem of balanced graph partitioning which is



known to be NP hard [Weiss et al., 2008]. To give a practi-
cal algorithm for hashing, Spectral Hashing assumes that the
data are sampled from a multidimensional uniform distribu-
tion and solves a relaxed partitioning problem.

Whereas similarity search is well studied for data objects
with a single view, not much research has been done on the
subject of cross-view similarity search of multi-view data ob-
jects. In some applications, it is still possible to use some of
these techniques provided there exists an application-specific
method of transforming one view of a data object to an-
other view (for instance by machine translating a document
in Spanish to Russian). However, a principled approach for
learning to hash multiview data objects that does not involve
an application-specific intermediate stage is very much desir-
able.

Multilingual name search is an important problem with ap-
plications in Web Search and Enterprise Search. [Udupa and
Khapra, 2010] proposed a solution for the problem for the two
view scenario. They sought to find a common feature space
for names in two languages and used Canonical Correlation
Analysis for learning one such subspace. They employed a
tree-based approximate nearest neighbor algorithm for simi-
larity search in the common feature space.

Spelling correction of names using hash functions was
studied by [Udupa and Kumar, 2010]. They proposed two dif-
ferent methods for learning hash functions and the two meth-
ods differ in the data they use for learning the hash functions
- the first method uses a set of names in a given language/
script whereas the second uses a set of bilingual names.

6 Conclusions
We gave a principled solution to the problem of learning
hash functions for multiview data objects. We formulated
the learning problem as a NP hard minimization problem and
transformed it into a tractable eigenvalue problem by means
a novel relaxation. We showed that some special cases of
the general problem are related to dimensionality reduction
techniques such as Locality Sensitive Indexing and Canon-
ical Correlation Analysis. Finally, we showed that the pro-
posed hashing method gives very good retrieval performance
compared to baselines in two Multilingual Information Ac-
cess problems.

References
[Andoni and Indyk, 2006] Alexandr Andoni and Piotr Indyk.

Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In FOCS, pages 459–468,
2006.

[Arya et al., 1998] Sunil Arya, David M. Mount, Nathan S.
Netanyahu, Ruth Silverman, and Angela Y. Wu. An opti-
mal algorithm for approximate nearest neighbor searching
fixed dimensions. J. ACM, 45(6):891–923, 1998.

[Cai et al., 2007] Deng Cai, Xiaofei He, Wei Vivian Zhang,
and Jiawei Han. Regularized locality preserving indexing
via spectral regression. In CIKM, pages 741–750, 2007.

[Charikar, 2002] Moses Charikar. Similarity estimation
techniques from rounding algorithms. In STOC, pages
380–388, 2002.

[Croft et al., 2009] Bruce Croft, Donald Metzler, and Trevor
Strohman. Search Engines: Information Retrieval in Prac-
tice. Addison-Wesley Publishing Company, 2009.

[Datta et al., 2008] Ritendra Datta, Dhiraj Joshi, Jia Li, and
James Z. Wang. Image retrieval: Ideas, influences, and
trends of the new age. ACM Comput. Surv., 40(2):1–60,
2008.

[Golub and Van Loan, 1996] Gene H. Golub and Charles F.
Van Loan. Matrix Computations. Johns Hopkins Univer-
sity Press, Baltimore, MD, 3rd edition, 1996.

[Gupta and Jain, 1997] Amarnath Gupta and Ramesh Jain.
Visual information retrieval. Commun. ACM, 40(5):70–
79, 1997.

[Hardoon et al., 2004] David R. Hardoon, Sándor Szedmák,
and John Shawe-Taylor. Canonical correlation analysis:
An overview with application to learning methods. Neural
Computation, 16(12):2639–2664, 2004.

[Larsen et al., 2003] J. Larsen, L. K. Hansen, T. Kolenda,
and F. Å. Nielsen. Independent component analysis in
multimedia modeling. In Fourth International Symposium
on Independent Component Analysis and Blind Source
Separation, pages 687–696, 2003.

[Manning et al., 2008] Christopher D. Manning, Prabhakar
Raghavan, and Hinrich Schtze. Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

[Philips, 2000] L. Philips. The double metaphone search al-
gorithm. C/C++ Users Journal, 2000.

[Platt et al., 2010] John Platt, Kristina Toutanova, and Wen-
Tau Yih. Translingual document representations from dis-
criminative projections. In EMNLP, 2010.

[Salakhutdinov and Hinton, 2009] Ruslan Salakhutdinov
and Geoffrey E. Hinton. Semantic hashing. Int. J. Approx.
Reasoning, 50(7):969–978, 2009.

[Shakhnarovich et al., 2008] Gregory Shakhnarovich,
Trevor Darrell, and Piotr Indyk. Nearest-neighbor meth-
ods in learning and vision. IEEE Transactions on Neural
Networks, 19(2):377–377, 2008.

[Suzuki et al., 2009] Hisami Suzuki, Xiao Li, and Jianfeng
Gao. Discovery of term variation in japanese web search
queries. In ACL, 2009.

[Udupa and Khapra, 2010] Raghavendra Udupa and Mitesh
Khapra. Improving the multilingual user experience of
wikipedia using cross-language name search. In NAACL-
HLT, 2010.

[Udupa and Kumar, 2010] Raghavendra Udupa and
Shaishav Kumar. Hashing-based approaches to spelling
correction of personal names. In EMNLP, 2010.

[Weiss et al., 2008] Yair Weiss, Antonio B. Torralba, and
Robert Fergus. Spectral hashing. In NIPS, pages 1753–
1760, 2008.


