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Abstract: Robotic motion planning problems are typically solved by constructing
a search tree of valid maneuvers from a start to a goal configuration. Limited on-
board computation and real-time planning constraints impose a limit on how large
this search tree can grow. Heuristics play a crucial role in such situations by guid-
ing the search towards potentially good directions and consequently minimizing
search effort. Moreover, it must infer such directions in an efficient manner using
only the information uncovered by the search up until that time. However, state of
the art methods do not address the problem of computing a heuristic that explicitly
minimizes search effort. In this paper, we do so by training a heuristic policy that
maps the partial information from the search to decide which node of the search
tree to expand. Unfortunately, naively training such policies leads to slow conver-
gence and poor local minima. We present SAIL, an efficient algorithm that trains
heuristic policies by imitating clairvoyant oracles - oracles that have full informa-
tion about the world and demonstrate decisions that minimize search effort. We
leverage the fact that such oracles can be efficiently computed using dynamic pro-
gramming and derive performance guarantees for the learnt heuristic. We validate
the approach on a spectrum of environments which show that SAIL consistently
outperforms state of the art algorithms. Our approach paves the way forward for
learning heuristics that demonstrate an anytime nature - finding feasible solutions
quickly and incrementally refining it over time. Open-source code and details can
be found here: ❤tt♣s✿✴✴❣♦♦✳❣❧✴❨❳❦◗❆❈

1 Introduction

Search based motion planning offers a comprehensive framework for reasoning about a vast number
of motion planning algorithms [1]. In this framework, an algorithm grows a search tree of feasible
robot motions from a start configuration towards a goal [2]. This is done in an incremental fashion
by first selecting a leaf node of the tree, expanding this node by computing outgoing edges, checking
each edge for validity and finally updating the tree with potentially new leaf nodes. It is useful to
visualize this search process as a wavefront of expanded nodes that grows from the start outwards
till it finds the goal as illustrated in Fig. 1.

This paper addresses a class of robotic motion planning problems where edge evaluation dominates
the search effort, such as for robots with complex geometries like robot arms [3] or for robots with
limited onboard computation like UAVs [4]. In order to ensure real-time performance, algorithms
must prioritize minimizing the search effort, i.e. keeping the volume of the search wavefront as
small as possible while it grows towards the goal. This is typically achieved by heuristics, which
guide the search towards promising areas by selecting which nodes to expand. As shown in Fig. 1,
this acts as a force stretching the search wavefront towards the goal.

A good heuristic must balance the bi-objective criteria of finding a good solution and minimizing the
search effort. The bulk of the prior work has focussed on the former objective of guaranteeing that
the search returns a near-optimal solution [2]. These approaches define a heuristic function as a dis-
tance metric that estimates the cost-to-go value of a node [5]. However, estimation of this distance
metric is difficult as it’s a complex function of robot geometry, dynamics and obstacle configuration.
Commonly used heuristics such as the euclidean distance do not adapt to different robot configura-
tions or different environments. On the other hand, by trying to compute a more accurate distance
the heuristic should not end up doing more computation than the original search. While state of the
art methods propose different relaxation-based [6, 7] and learning-based approaches [8] to estimate
the distance metric they run into a much more fundamental limitation - a small estimation error can
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Figure 1: A learnt heuristic policy adapts to different obstacle configurations to minimize search effort. All
schematics show the evolution of a search algorithm as the expansion of a search wavefront (expanded(white),
invalid(black), unexpanded(grey)) from start (green) to goal (blue). A commonly used inflated euclidean heuris-
tic cannot adapt to different environments, e.g it gets stuck in bugtraps. On the other hand, the learnt policy
is able to infer the presence of a bug trap when trained on such a distribution and switch to greedy behaviour
when trained on other distributions.

lead to a large search wavefront. Minimizing the estimation error does not necessarily minimize
search effort.

Instead, we focus on the latter objective of designing heuristics that explicitly reduce search effort in
the interest of real-time performance. Our key insight is that heuristics should adapt during search
- as the search progresses, they should actively infer the structure of the valid configuration space,
and focus the search on potentially good areas. Moreover, we want to learn this behaviour from data
- changing the data distribution should change the heuristic automatically. Consider the example
shown in Fig. 1. When a heuristic is trained on a world with ‘bug traps’, it learns to recognize when
the search is trapped and circumvent it. On the other hand, when it is trained on a world with narrow
gaps, it learns a greedy behaviour that drives the search to the goal.

To learn such behaviours, we propose a novel framework for training a data-driven heuristic policy
that explicitly minimizes search effort. We formulate this as a sequential decision making problem
where at a given iteration the heuristic policy uses only the information extracted from the wavefront
to decide which node to expand, which in turn influences how the wavefront grows in the next
iteration. We note that the training process for such partial information based policies is slow to
converge and susceptible to local minima. We make a useful observation that if the heuristic has
full information (which we call clairvoyant planner), it can use dynamic programming (Dijkstra) to
efficiently compute the optimal decisions for any given wavefront. We leverage this property to train
heuristics that imitate the clairvoyant planner during train time adopting the framework proposed by
Choudhury et al. [9]. We make the following contributions:

1. We propose a novel framework to learn heuristic functions under the paradigm of sequential
decision making under uncertainty.

2. We develop SAIL, an efficient algorithm for training heuristic functions by imitating clair-
voyant oracles.

3. We demonstrate that we are able to learn heuristic policies with widely varying character-
istics simply by training on different data distributions.

We note that a major limitation of this approach is that it ignores solution quality and we discuss
several ways to alleviate this in Section 6.
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Algorithm 1: Search〈vs, vg, Succ, Eval, φ, Select〉

1 O ← vs, C ← ∅, I ← ∅;
2 while vg /∈ O do
3 v ← Select(O) ; ⊲ ❙❡❧❡❝t ❛ ✈❡rt❡① t♦ ❡①♣❛♥❞
4 (Vsucc, Einv)← Expand(v, Succ, Eval, φ) ; ⊲ ■♥✈♦❦❡ Succ(v) ❛♥❞ Eval(e, φ)
5 O ← O ∪ Vsucc, C ← C ∪ v, I ← I ∪ Einv ; ⊲ ❯♣❞❛t❡ ❛❧❧ ❧✐sts

6 return Path (vs, vg);

2 Preliminaries

2.1 Search Based Planning Framework

We consider the problem of search on a graph, G = (V,E), where vertices V represent robot
configurations and edges E represent potentially valid movements of the robot between these con-
figurations. Given a pair of start and goal vertices, (vs, vg) ∈ V , the objective is to compute a path
ξ ⊆ E - a connected sequence of valid edges. The implicit graph G can be compactly represented by
(vs, vg) and a successor function Succ(v) which returns a list of outgoing edges and child vertices
for a vertex v ∈ V . Hence a graph G is constructed during search by repeatedly expanding vertices
using Succ(v). Let φ ∈ M be a representation of the world that is used to ascertain the validity
of an edge. An edge e ∈ E is checked for validity by invoking an evaluation function Eval(e, φ)
which is an expensive operation and may require complex geometric intersection operations [10].

In this work, we focus on the feasible path problem. Alg. 1 defines a general search based planning
algorithm Search which takes as input the tuple 〈vs, vg, Succ, Eval, φ, Select〉 and returns a valid
path ξ. To ensure systematic search, the algorithm maintains the following lists - an open listO ⊂ V
of candidate vertices to be expanded and a closed list C ⊂ V of vertices which have already been
expanded. It also retains an additional invalid list I ⊂ V of edges found to be in collision. These
3 lists together represent the complete information available to the algorithm at any given point of
time. At a given iteration, the algorithm uses this information to select a vertex v ∈ O to expand by
invoking Select(O). It then expands v by invoking Succ(v) and checking validity of edges using
Eval(e, φ) to get a set of valid successor vertices Vsucc as well as invalid edges Einv. The lists are
then updated and the process repeated till the goal vertex vg is uncovered.

2.2 Search as Sequential Decision Making under Uncertainty

We wish to learn an effective selection strategy Select from data. We formalize this as a problem of
sequentially making decisions (selecting vertices) under uncertainty (about the underlying world).
We define a corresponding Markov Decision Process (MDP) 1 on the space of lists. At timestep t,
let st ∈ S be the state of the search that is a concatenation of all lists, i.e st = {O, C, I}. The action
at ∈ A is the vertex v ∈ O that is selected by the search. On executing at, the new state st+1 is
determined by the underlying world φ. The world φ is a hidden variable, sampled from a prior P (φ)
which in turn induces a state transition distribution P (st+1|st, at). The one-step cost c (st, at) is
defined to be 1 for every (st, at) until the goal is added to the open list. Let π(st) be a policy that
maps state st to an action at. The policy represents the vertex selection strategy that we wish to
learn. We term this policy as the heuristic guiding the search in a best-first fashion towards the goal.
An episode continues till either vg is selected or time horizon T is reached.

Given a prior distribution over worlds P (φ) and a distribution over start and goal vertices P (vs, vg),
we can evaluate the performance of a policy as

J (π) = E φ∼P (φ),
(vs,vg)∼P (vs,vg)

[

T
∑

t=1

Est∼dt
π
[c (st, π(st))]

]

(1)

where dtπ = P (st|π, φ, vs, vg) is the distribution over states induced by running π on the problem
(φ, vs, vg) for t steps [11]. Our objective is to learn a policy

π∗ = argmin
π∈Π

J (π) (2)

1Actually a POMDP which is an MDP over beliefs, referred here as an MDP over states for clarity.
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3 Approach

3.1 Overview

An exact solution to the problem in (2) is intractable given the large state space (|S| = |V |) and
complex transition function P (st+1|st, at). An alternative is to employ model-free Q-learning [12].
These methods try to minimize the cost-to-go Qπ

t (st, at), i.e, the cumulative cost after executing at
from st and subsequently executing policy π till the end of the episode. In general, such methods
are not very sample efficient, slow to converge and additionally require training strategies such as
experience replay and target networks[13].

However, we leverage a key insight for search based planning problems - if only we had full knowl-
edge of the world φ, we could efficiently compute the optimal action from any state using dynamic
programming. While we do not know the world at test time, we know it at train time - we can learn a
policy to imitate this action. Hence we present the Search as Imitation Learning (SAIL) algorithm,
a simple data-driven imitation learning approach for learning a heuristic best-first search policy.

3.2 Imitation Learning with Clairvoyant Oracles

Imitation of reference policies (or oracle policies) is a useful approach in scenarios where there
exist good reference policies for the original problem, however these policies cannot be executed
online (e.g due to computational complexity) hence requiring imitation via an offline training phase.
Ross and Bagnell [11] use this idea to approach reinforcement learning problems for which there
exists good yet expensive model-based oracle policies that cannot be executed at run-time but can
be imitated by model-free policies. Hence they show a novel reduction of reinforcement learning to
iterative supervised learning where the labels are the cost-to-go of the oracle 2 . Choudhury et al. [9]
extend this idea to approach POMDP problems (specifically MDPs with a hidden variable) where
exists good clairvoyant oracles - oracles that could solve the underlying MDP if only they could
observe it fully. While such oracles cannot be executed at test time due to an information barrier -
they can be imitated in a similar manner.

We adopt the framework of Choudhury et al. [9] as we too have an MDP whose transition function
depends on a hidden world φ. We note that we can define an analogous clairvoyant oracle planner
that employs a backward Dijkstra’s algorithm, which given a world φ and a goal vertex vg plans for

the optimal path from every v ∈ V using dynamic programming 3.

Definition 1 (Clairvoyant Oracle Planner). Given full access to world φ and a goal vg , the oracle

planner encodes the cost-to-go from any vertex v ∈ V as the function QCOR (v, φ) which implicitly
defines an oracle policy, πOR(s, φ) = argmin

v∈O

QCOR (v, φ).

The clairvoyant oracle planner provides a look-up table QCOR (v, φ) for the optimal cost-to-go from
any vertex irrespective of the current state of the search. We define imitation of such an oracle as the
following cost sensitive classification:

π̂ (s) = argmin
π∈Π

E φ∼P (φ)
t∼U(1...T )

s∼dt
π

[

QCOR (π (s) , φ) − argmin
v∈O

QCOR (v, φ)

]

(3)

Intuitively, the term inside the expectation in Eq. 3 scores the learner’s mis-classifications (incorrect
vertex expansions) by how much additional future cost the oracle would incur if it chose the same
action instead following its own policy. Given a world φ ∼ P (φ), if a policy π is executed upto a
uniformly sampled timestep t, this scoring metric implicitly induces a ranking among all the states
in the resulting open-list.

In order to learn the above policy, we use a reduction of cost-sensitive classification to argmin
regression. Our aim is to learn a parameterized function Qθ̂ (st, at) that takes the current state and

action as input and approximates QCOR (v, φ), where at is Expand(v, Succ, Eval, φ). Using the

2A search state has several potentially good options. DAGGER [14], which uses a 0-1 loss, tries to solve a
much harder learning problem of distinguishing amongst good options while AGGREVATE [11] focuses only
on differentiating between good and bad options.

3For scaling to higher-dimensional planning, Random Geometric Graphs [15] can be used.
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Algorithm 2: SAIL (P (φ), P (vs, vg) , β0, k, T )

1 Initialize D ← ∅, π̂1 to any policy in Π
2 for i = 1, . . . , N do
3 Initialize sub-dataset Di ← ∅
4 Collect mk datapoints as follows:
5 for j = 1, . . . ,m do
6 Sample φ ∼ P (φ);
7 Sample (vs, vg) ∼ P (vs, vg);

8 Invoke clairvoyant oracle planner to compute QCOR (v, φ) ∀v ∈ V ;
9 Sample uniformly k timesteps {t1, t2, . . . , tk} where each ti ∈ {1, . . . , T};

10 Rollout search with πmix = βiπOR + (1 − βi)π̂i; ⊲ ❆❧❣✳✶ ✇✐t❤ Select ❛s πmix

11 At each t ∈ {t1, t2, . . . , tk} pick a random action at to get corresponding (v, st);

12 Query oracle for QCOR (v, φ) ; ⊲ ▲♦♦❦✲✉♣ ♦♣t✐♠❛❧ ❝♦st✲t♦✲❣♦

13 Di ← Di ∪
〈

v, st, Q
COR (v, φ)

〉

; ⊲ ❈♦❧❧❡❝t ❞❛t❛ ❢♦r ❊q✳✺

14 Continue roll-out with πmix till end of episode.;

15 Append to c.s classification data D ← D ∪Di;

16 Train θ̂i+1 on D to get π̂i+1;

17 return Best π̂ on validation;

learnt parameters θ̂ ∈ Θ, the planner follows a greedy policy given by,

π̂(st) = argmin
at∈A

Qθ̂ (st, at) (4)

where θ̂ is learnt using the following procedure

θ̂ = argmin
θ∈Θ

E φ∼P (φ)
t∼U(1...T )

s∼dt
π

[

(

Qθ (st, at) − QCOR (v, φ)
)2
]

(5)

It is important to note that data for the learning the policy (Eq. 3 and Eq. 5) needs to be collected
on the true distribution of states, dtπ induced by executing policy π on world φ. A key distinction
between our framework and that of Choudhury et al. [9] is that we directly get the cost-to-go value
for all states by dynamic programming - we do not need to repeatedly invoke the oracle. We exploit
this fact by extracting multiple labels from an episode even though the oracle is invoked only once.

3.3 SAIL Algorithm

Alg. 2, describes the SAIL framework which iteratively trains a sequence of policies
(π̂1, π̂2, . . . , π̂N ). For the optimization procedure described in Eq. 5, we collect a dataset D as
follows - At every iteration i, the agent executed m different searches (Alg. 1). For every search, a
different world φ and the pair (vs, vg) is sampled from a database. The agent then rolls-out a search
with a mixture policy πmix which blends the learner’s current policy, π̂i and the oracle’s policy, πOR

using blending parameter βi. During the search execution, at every timestep in a set of k uniformly
sampled timesteps, we select a random action from the set of feasible actions and collect a datapoint
< v, st, Q

COR(v, φ) >. The policy πmix is rolled out till the end of the episode and all the collected
data is aggregated with dataset D. The optimization in Eq. 5 can then be performed using either
online or mini-batch learning on D to get the next policy π̂i+1.

θ̂i+1 = argmin
θ∈Θ

E(st,at,Q
COR)∼D

[

(

Qθ (st, at) − QCOR (v, φ)
)2
]

(6)

At the end of N iterations, the algorithm returns the best performing policy on a set of held-out
validation environment or alternatively, a mixture of (π̂1, π̂2, . . . , π̂N ). Note that while the oracle is
invoked once per φ, we obtain k datapoints - this is critical for speeding up training.

We can obtain performance guarantees on the learnt policy directly applying analysis from [9]

Theorem 1. The performance of the returned policy from Alg. 2 is, with probability at least 1− δ

J(π̂) ≤J(π̃OR) + 2
√

|A|T

√

εclass + εreg +O
(

√

log ((1/δ)/Nm)
)

+O

(

QCOR
maxT log T

αN

)
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Dataset Sample Worlds SAIL SL CEM QL hEUC hMAN A* MHA*

Alternating Gaps 0.039 0.432 0.042 1.000 1.000 1.000 1.000 1.000

Single Bugtrap 0.158 0.214 0.057 1.000 0.184 0.192 1.000 0.286

Shifting Gaps 0.104 0.464 1.000 1.000 0.506 0.589 1.000 0.804

Forest 0.036 0.043 0.048 0.121 0.041 0.043 1.000 0.075

Bugtrap+Forest 0.147 0.384 0.182 1.000 0.410 0.337 1.000 0.467

Gaps+Forest 0.221 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Mazes 0.103 0.238 0.479 0.399 0.185 0.171 1.000 0.279

Multiple Bugtraps 0.479 0.480 1.000 0.835 0.648 0.617 1.000 0.876

Figure 2: Normalized cost of baselines on different environments (best in bold). The cost corresponds to
average expansions on a test set of planning problems normalized between [200, 5000] (max possible: 40000).
Planning parameters are - map size: 200 × 200,Ttrain = 1100, Ttest = 20000. Data sizes are: train(200),
test(100), validation(70). SAIL parameters are - k : 50, β0 = 0.7. SAIL, CEM and QL are run for N : 15
iterations. SL uses m : 600.

We note that even though the time complexity of Select is O (|Ot|) at timestep t, SAIL can have
better overall complexity if it can achieve a squared reduction in number of expansions compared to
uninformed search (refer to supplementary for discussion 4).

4 Experiments

4.1 Implementation Details

We evaluate SAIL on a variety of 2D navigation tasks where the robot has to plan from bottom-
left to top-right on an 8-connected grid. The grid is embedded on a binary map of obstacles. The
function Qθ is represented by a feed-forward neural network with two fully connected hidden layers
containing [100, 50] units and ReLu activation. The model takes as input a 17 dimensional feature
vector f ∈ F for the pair (v, s) which contains values like closest invalid state in I, distance to start
and goal, depth in the tree etc. Refer to supplementary for details 4.

4.2 Baseline Approaches For Heuristic Search

Motion Planning Baselines: We compare against greedy best-first search with 2 commonly used
heuristics - the euclidean distance (hEUC) and the manhattan distance (hMAN). We also use A* algo-
rithm as a baseline with hEUC heuristic. Additionally, we compare against the MHA* algorithm [16]
which has been proven to be an effective way of combining multiple, often un-related, heuristics pro-
viding bounds on solution quality [17]. We use a simplified version which expands three different
heuristics in a round-robin fashion - [hEUC, hMAN, dOBS ], where dOBS is the euclidean distance to
closest, known obstacle cell in I.

Machine Learning Baselines: We consider two learning baselines (a) Supervised Learning (SL)
with data from roll-outs with πOR and (b) Reinforcement Learning using evolutionary strategies
(CEM) and Q-Learning (QL) with function approximation. Refer to supplementary for details 4 .

4.3 Analysis of Results

Fig. 2 shows the normalized evaluation cost of all algorithms on various datasets. Snapshots of plan-
ning with different heuristics are shown in Fig. 3 and Fig. 4(a). Convergence of different learning
algorithms are shown in Fig. 4(b). We present a set of observations.

O 1. SAIL has a consistently competitive performance across all datasets.

Fig. 2 shows that SAIL learns a better search policy than any other baseline across all but one
environments. It maintains performance from homogenous to heterogenous environments.

O 2. SAIL has faster convergence than all learning baselines.

Fig. 4(b) shows that on the ‘Forest’ dataset, SAIL converges by 6th iteration, while CEM takes 12
and QL does not converge. SAIL also converges quickly (by the 8th iteration) across datasets.

4 Source code for planning pipeline, an OpenAI Gym [18] environment and datasets along with supple-
mentary material can be accessed via our project page at this link ❤tt♣s✿✴✴❣♦♦✳❣❧✴❨❳❦◗❆❈
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Figure 4: (a) SAIL learns to adapt to different environment distributions by directing search to areas where it
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(b) On the ‘Forest’ dataset, SAIL converges faster that CEM and QL to a good policy. SAIL also converges
consistently to a good policy across environments ‘Gaps’, ‘Gaps+Forest’, ‘Maze.’

O 3. SAIL adapts the behavior of the search in response to a change in world distribution P (φ).
Fig. 4(a) shows an intuitive example of how simply changing the distribution of where gaps occur
along a wall affects the way SAIL chooses to progress the search.

O 4. SAIL is able to detect and escape local minima.

A classic case in motion planning is the bugtrap (Fig. 1) which traps a greedy search in a local
minimum. Fig. 3(a) and Fig. 3(f) shows that when trained on such distributions, SAIL is able to
detect these artifacts and smartly escape them by exploring in different directions.
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O 5. SAIL is able to exploit the relative configuration of obstacles and environment structure.

In a maze world with rectilinear hallways (Fig. 3(e)), SAIL learns to quickly find a wall and then
concentrate the search along the axes. In Fig. 3(d), SAIL focuses only on regions where there is a
high probability of a gap and skids along obstacles otherwise.

5 Related Work

Learning heuristics falls under machine learning for general purpose planning [19]. Yoon et al.
[20] [21] propose using regression to learn residuals over FF-Heuristic [22]. Xu et al. [23] [24, 25]
improve upon this in a beam-search framework. Arfaee et al. [26] iteratively improve heuristics.
ús Virseda et al. [27] learn combination of heuristic to estimate cost-to-go. Kendall rank coefficient
is used to learn open list ranking [28, 29]. Thayer et al. [30] learn heuristics online during search.
Paden et al. [8] learn admissible heuristics as S.O.S problems. However, these methods do not
address minimization of search effort and also ignore the non i.i.d nature of the problem.

Relevant work in imitation learning examines the non i.i.d supervised learning problem of imitating
oracles under one’s own state distribution. Ross et al. [14], Ross and Bagnell [11] use dataset
aggregation to reduce such problems to no-regret iterative supervised learning. Choudhury et al.
[9, 31] apply such methods to learn information gathering policies. Recent deep reinforcement
learning approaches also employ supervised learning by imitating oracles as they offer better sample
efficiency and safety than model free policy search [32, 33, 34] or Q learning [13, 35]. Zhang et al.
[36] extend guided policy search [37] for imitating MPC. Kahn et al. [38] further adapt the MPC
expert to generate training sample for states likely to be visited. Tamar et al. [39] consider a cost-
shaping approach for short horizon MPC by offline imitation of long horizon MPC which is closest
to our work. Tamar et al. [40] develop a neural network architecture with an explicit planning
component embedded in it. Gupta et al. [41] develop a holistic mapping and planner framework
trained using feedback from optimal plans on a graph.

6 Discussion and Future Work

We now discuss some insights and directions for future work.

Q 1. When do we expect this framework of imitating clairvoyant oracles to work?

The analysis adopted from [9] states that the performance of the learnt policy using SAIL is near-
optimal with respect to a hallucinating oracle - an oracle that hallucinates different worlds condi-
tioned on the current open list and expands the best node. The hallucinating oracle is similar in
nature to a QMDP algorithm [42], an effective approximate solution to POMDPs, which takes the
best action on the current posterior. However, while QMDP is model based (requires an explicit
posterior), SAIL is model free. QMDP has been shown to be very successful where explicit infor-
mation gathering behaviour is not required [43, 44] - the belief collapses irrespective of the action.
This is very apt in the problem we address - as the set of actions are constrained to candidate nodes
in the open list, no single action is very informative. It suffices to expand the best node under the
current belief and continue to update the belief as the open list evolves. We note that this is not true
for all learning in planning paradigms. For example, when learning to collision check [45], a policy
that actively reduces uncertainty about the world is effective.

Q 2. How can we incorporate solution cost in addition to search effort in this framework?

While our framework ignore the cost of a solution, we note that finding feasible solutions quickly
is the core motivation of a number of high dimensional planning problems which have historically
resorted to sampling based approaches [46]. Hence, one can apply our framework to such problems
to produce potentially faster solutions. We also note that when planning on locally connected lattices
for geometric planning problems, minimizing the number of expansions generally leads to near-
optimal solutions (unit cost for each valid edge). However, if we really cared about near optimal
solutions, the framework of Multi-heuristic A* (MHA*) [16] can be easily adopted. In such a
framework, any heuristic function [47] can be used in tandem with an anchored search which uses
an inflated admissible heuristic. Hence we can simply replace our Search function with MHA*.
The bi-objective criteria of solution cost and search effort is best reasoned about in the paradigm of
anytime planning. In this paradigm, an algorithm traces out the pareto-frontier [48] - finds a feasible
solution quickly and iteratively improves it. In this paradigm, SAIL trains a heuristic that displays
a behaviour we would expect in the first iteration. A direction of future work would be to learn
anytime heuristics that minimize search effort initially to and solution cost eventually.
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