
Learning Heuristic Selection using a Time Delay
Neural Network for Open Vehicle Routing

Raras Tyasnurita1, Ender Özcan2, and Robert John3

1,2,3 ASAP Research Group, School of Computer Science, University of Nottingham, United Kingdom
1 Department of Information Systems, Sepuluh Nopember Institute of Technology (ITS), Surabaya, Indonesia 60111

Email: {rxt,exo,rij}@cs.nott.ac.uk

Abstract—A selection hyper-heuristic is a search method that
controls a prefixed set of low-level heuristics for solving a
given computationally difficult problem. This study investigates
a learning-via demonstrations approach generating a selection
hyper-heuristic for Open Vehicle Routing Problem (OVRP). As a
chosen ‘expert’ hyper-heuristic is run on a small set of training
problem instances, data is collected to learn from the expert
regarding how to decide which low-level heuristic to select and
apply to the solution in hand during the search process. In
this study, a Time Delay Neural Network (TDNN) is used to
extract hidden patterns within the collected data in the form of
a classifier , i.e an ‘apprentice’ hyper-heuristic, which is then used
to solve the ‘unseen’ problem instances. Firstly, the parameters
of TDNN are tuned using Taguchi orthogonal array as a design
of experiments method. Then the influence of extending and
enriching the information collected from the expert and fed into
TDNN is explored on the behaviour of the generated apprentice
hyper-heuristic. The empirical results show that the use of
distance between solutions as an additional information collected
from the expert generates an apprentice which outperforms the
expert algorithm on a benchmark of OVRP instances.

I. INTRODUCTION

Many real-world optimisation problems carry high dimen-
sionality and are resource-intensive [1]. Moreover, an exhaus-
tive search for an optimal solution while solving such problems
is not highly preferable due to the immense search space
size making the search process computationally expensive.
In some cases, even a ‘high quality’ near optimal solution
could not be found. On the other side, heuristics are often
preferred as alternative search methods considering that they
are ‘reasonably’ fast providing a ‘reasonably’ good solution
to a given problem.

Hyper-heuristics aim to automate the design of heuristic
search in problem solving by controlling/selecting heuristics
and applying them to the solution in hand for iterative im-
provement or generating and testing new heuristics built from
available components [2]. The former type of methods are
referred to as selection hyper-heuristics, while the latter one
as generation hyper-heuristics. This paper studies a Time
Delay Neural Network (TDNN) as a generation hyper-heuristic
which automatically builds a selection hyper-heuristic using a
data science technique based on apprenticeship learning for
solving an open vehicle routing problem (OVRP), a variant of
well known vehicle routing problem.

Instead of manually constructing a hyper-heuristic algorithm
from scratch, automated generation of hyper-heuristics based

on apprenticeship learning seeks ways of putting relevant
algorithmic components together through examples. In ma-
jority of the previous studies, Genetic Programming (GP)
is naturally used for automated generation of heuristics [3]
applied to a range of problems including boolean satisfiability,
online bin packing, load balancing in networking, routing
and more. An example of learning generation hyper-heuristic
can be found in Burke et al. (2010) [4], which applied
genetic programming for automatically build reusable (2-D)
strip packing heuristics. On the other hand, the use of GP or
any other method for generation of selection hyper-heuristics
or such components is a growing area of research. Sabar et al.
(2015) [5] proposed a gene expression programming algorithm
to automatically generate heuristics, validated on a benchmark,
referred to as the Hyper-heuristic Flexible framework (HyFlex)
[6], of six combinatorial optimization problem domains. In a
previous study, Grammatical Evolution (GE) is used to evolve
and generate the components of a Variable Neighbourhood
Search (VNS) for Vehicle Routing Problem (VRP) [7]. VNS
as a ‘generated’ hyper-heuristic switches between different
neighbourhoods, each representing a low-level heuristic during
the search process. The data science approaches based on
apprenticeship learning for automatically creating a search
procedure can also generalise well learning from the expert’s
behaviour even with a shorter training time as compared to the
evolutionary computation techniques. Asta et al. [8] tested a
k-means clustering algorithm used for generation of policies to
solve an online bin packing problem. Moreover, Asta et al. [9]
applied a decision tree based approach using C4.5 classifier to
generate an effective selection hyper-heuristic for VRP.

This paper explores a generation hyper-heuristic automati-
cally building a selection hyper-heuristic using a data science
technique, namely a machine learning algorithm TDNN. An
apprentice algorithm learns observing an expert algorithm.
Hence, we make a record of heuristic selection choices of an
expert algorithm for apprentice to learn with additional infor-
mation alongside the change in the cost for the solution before
and after the invocation of a selected heuristic for OVRP for
a number of steps. The inclusion of more information in the
learning process may help to improve the performance of the
generated hyper-heuristic. Moreover, previous studies show
that the local optima and their distances to the global optima in
the solution space can be correlated [10]. Hence, in this study
we explore an additional learning environment which provides

978-1-5090-4601-0/17/$31.00 c©2017 IEEE

the apprentice an additional information which is the distance
between solutions alongside the cost difference (fitness).

TDNN is one of several technologies in machine learn-
ing [11]. A previous study observed that neural networks
(Multi-layer Perceptron) generated classifiers forming a well-
performing generation hyper-heuristic for VRP in the HyFlex
framework [12]. TDNN investigates the behaviour from an ex-
pert selection hyper-heuristic through training how to perform
heuristic selection using a set of sample instances. It generates
a classifier based on a dataset which record actions from one
expert algorithm at each stage of the search process. The
classifier imitates the behaviour of the expert operating as a
‘new’ hyper-heuristic for solving unseen instances. This study
focuses on learning how to perform heuristic selection, while
the move acceptance is simply accepting all moves. This is
the reason why we have choosen MCF-AM (Modified Choice
Function - All Moves) [13] as an expert hyper-heuristic. In
addition, MCF-AM is the second best algorithm for VRP
instances in the Cross-Domain Heuristic Search Challenge
(CHeSC). MCF-AM hyper-heuristic choose the best low-level
heuristic at each iteration and accept all moves. The low-level
heuristic selection is based on a score generated from three
factors: the recent effectiveness of the applied heuristic, the
recent effectiveness of heuristics pairs in a consecutive time,
and the amount of time since the heuristic was applied.

Moreover, we use Taguchi method to ensure that the TDNN
design quality is taken into consideration by defining an
optimum setting of TDNN parameters in order to improve the
learning performance [14]. The Taguchi method for Design
of Experiment (DoE) is an effective technique to analyse the
relationships between several parameters within the smallest
number of possible experiments [14].

This paper is structured as follows. Section II introduces
open vehicle routing problem, time delay neural network,
Taguchi method for design of experiments, and learning from
search landscape successively. Section III describes the pro-
posed approach and experimental design. Section IV sum-
marises the empirical results. Finally, section V presents the
conclusions of this study.

II. BACKGROUND

A. Open Vehicle Routing Problem (OVRP)

There is a trend among researchers recently to include
real-life assumptions towards Vehicle Routing Problem (VRP)
which generate several variants of VRP, including Open-VRP
(OVRP). OVRP in real life occurs in home delivery service
such as packages or newspapers, school bus routing, coal
mines routing, and hazardous materials shipment [15]. The
main feature of this problem, which distinguishes it from the
classic VRP, is that the vehicles are not required to return
to the depot. This problem is faced by companies which
contract their product distribution to external couriers. The
reason is because the companies do not own vehicle fleet
which adequates to satisfy customer’s demand. Another case
is that the companies have a large number of deliveries or
customer’s demand varies significantly over time. In this case,

TABLE I
OVRP INSTANCES

Instance No.Customers No.Vehicles Vehicle Capacity
C1 50 5 160
C2 75 10 140
C3 100 8 200
C4 150 12 200
C5 199 16 200
C6 50 5 160
C7 75 10 140
C8 100 8 200
C9 150 12 200
C10 199 16 200
C11 120 7 200
C12 100 10 200
C13 120 7 200
C14 100 10 200

even though the companies have their own vehicle fleet, they
prefer combining with hired vehicles and perform open rather
than closed routes so that maintenance costs do not occur.

The objective of OVRP is the minimisation of the total
travelling cost, which is assumed that the operating cost of an
extra vehicle will always outweigh the reduction in distance
[16]. Consequently, the primary objective is minimising the
number of vehicle v with least distance d.

obj = c× v + d (1)

c is set to 1000 to show the level of importance of vehicle
number which is much more higher than the distance.

The problem consists of finding the set of routes that
satisfy the following three criteria: 1) each route originates
at the depot and terminates at one of the customers; 2) partial
delivery is not allowed; 3) the vehicle capacity constraint is
not violated. Further details on the OVRP datasets benchmark
can be seen in Table I [17].

B. Time Delay Neural Network

In a previous study, an Multi-layer Perceptron (MLP) was
applied as a learning algorithm which successfully captures
the expert behaviours and even improve the performance by
utilising fitness only information [12]. Considering the type of
data, which is previous fitness values, as a sequential or time-
series, and having more information fed into the learning, we
choose a Time Delay Neural Network (TDNN) as our learning
algorithm. TDNN has a topology which is owned by a neural
network in general with three layers: input, output, and the
hidden layer which handles input manipulation through filters.
TDNN is a part of a general class of dynamic networks, in
which the dynamics appear only at the input layer (a static
multi-layer feedforward network with a tapped delay line at
the input) [18].

TDNN feature is the ability to express a relation between
inputs in time. In order to represent data at different points
in time, a set of delays (time lags) are added to the input.
The delays are an attempt to add a temporal dimension or a
memory structure to the network which make TDNN is also
called as an MLP with sliding window. Machine learning has

a capability to select the best window length for the learning
task [19]. By doing this, TDNN capable to hold past samples
of the input signal.

C. Taguchi Method for the Design of Experiments

A Time Delay Neural Network (TDNN) has several hyper-
parameters for model selection which include micro and macro
level of the networks [14]. The micro-structural parameters
involve the type of activation function, learning rule (learning
rate, momentum, learning duration), and the selection of
input representation format (number of features, number of
cases). The macro-structural parameters include the selection
of a suitable number of layers and neurons. Choosing the
optimum parameters will help to achieve a fast convergence
training speed and meet the accuracy level. The latest Taguchi
applications to optimise neural network parameters are listed
in a study by Sukthomnya and Tannock (2005) [20]. The
number of neurons in a hidden layer was a parameter chosen
by most of researchers while the other parameters are more
varied. Moreover, Packianather et al. (2000) [21] reported that
the parameters which were found to be most important were
the number of neurons and learning rate.

In order to create an optimum TDNN structure, there are
three types of design of experiments (DoE) which can be used:
one-factor-at-a-time, full factorial, and fractional factorial [21].
One-factor-at-a-time is treated as a sequence of trial and error
which does not systematically target a near optimal solution
and full factorial is too time consuming. Therefore, fractional
factorial is preferred whose one of DoE matrix is developed
by Dr. Genichi Taguchi, referred to as Orthogonal Arrays
(OAs) [22]. This matrix reduce the number of experiments but
still obtain reasonably rich information [23]. A recent study
indicates the success of Taguchi method for configuring the
parameters of a memetic algorithm [24].

Orthogonal Arrays (OAs) can be viewed as plans for multi-
factor experiments where the columns correspond to the fac-
tors (parameters), the columns entries correspond to the test
levels of the factors, and the rows correspond to the test runs
[25]. Taguchi’s format for an OA has the property that the
entries in the columns on the left of the matrix change less
frequently than the entries on the right, with a gradual rise
in changes towards the right. Moreover, the columns of all
OAs are balanced in two ways: 1) the columns are balanced
within themselves such that they all have an equal number of
levels of the factor; 2) the columns are balanced between any
two columns such that together they form an equal number of
possible level combinations (pairwise orthogonal);

The Taguchi method assesses which of several varying
factors have the most noticeable effect on the desired outcome.
It involves the following steps [14]: (i) Specifying objective
functions and identify the design factors and levels; (ii) De-
signing the matrix experiments by selecting an appropriate
OA; (iii) Conduct the matrix experiments and analyse the
results; (iv) Determining the most suitable design parameters;
and (v) Performing a confirmatory experiment. The results
of the Taguchi is analysed in two phases: (i) Evaluating the

factorial effects (main effects) to identify the most suitable
design parameters; (ii) Performing an analysis of variance
(ANOVA) on the result from the average of repetitive runs.
ANOVA is a statistical test to determine the percentage
contribution of an individual factor. This study implements
a Taguchi OA for DoE to define a minimum set of TDNN
parameter-level combinations to be tested in the experiment.
Taguchi estimates the average effects of each parameter on
the measured response when it is changed from one level to
another.

D. Learning from Search Landscape

In this study, the influence of having more information
utilised by the machine learning algorithm on the performance
of generated selection hyper-heuristic is explored. The dis-
tance between solutions is used as an additional source of
information for machine learning. This choice originated from
previous studies on search or fitness landscape analysis which
has extensively been applied in the evolutionary computation
field [26]. It is a valuable tool used to gain a deeper un-
derstanding of the interdependence between heuristics, their
behaviour and performance. A heuristic can be considered as
a guidance mechanism for traversing a landscape in order to
get close to the highest peak or optimal solution. Knowledge
of landscape features could help to improve the design of
hyper-heuristics since it would influence the effectiveness of
the heuristic search.

A solution to a Vehicle Routing Problem (VRP) is most
naturally represented as a set of permutations of customers. For
permutation representation, there is a large number of distance
metrics in the scientific literature [27]. One important property
in solving VRP is an adjacency (e.g., of customers, nodes).
Therefore, adjacency-based distance is deployed in this study
as in Kubiak [28].

III. METHODOLOGY

A. Proposed Apprenticeship Learning Approach

Apprenticeship learning in this study involves learning from
examples provided by an expert to build a selection hyper-
heuristic focusing on the heuristic selection component. Our
approach operates in a train and test fashion in two phases.
Figure 1 illustrates the general process flow for the proposed
approach.

In the first phase, we generated a classifier for each dataset
using a Time Delay Neural Network (TDNN). We named this
process as the training part. We built a predictive model which
was then tested by cross-validation with ten folds to evaluate
the model’s accuracy. Cross-validation will split the whole
dataset into equal sized subsets and returns the averaged value
of the prediction scores of each subset obtained on the union
of all the other subsets. The learning process occurs in the
training part and the output is a model which describes the
dataset in a generalised form.

The dataset were collected by running an expert algorithm
(MCF-AM) on four instances where every instance was chosen
arbitrarily from each class of OVRP. This means that the

Fig. 1. Proposed apprenticeship learning approach

training instances were taken from different variants such
as the number of customers, the number of vehicles, and
vehicle capacity in order to represent generality. The expert
algorithm accepts all solutions including equal or worsening,
and therefore we only focused on the heuristic selection
demonstration. Following this, one dataset was constructed and
the four instances were combined together.

The dataset is an example for machine learning. The dataset
consists of several search states where each one is represented
by a feature vector. After running the expert algorithm, we
have a dataset in which a state is defined in Eq. 2.

st = {ht, ft, dt, ft−1, dt−1, , ft−n, dt−n} (2)

Here, ft is the change in evaluation function (fitness value),
while dt is the change in solution (distance metric). Both
show the difference in value from current solution to candidate
solution in eight previous consecutive times. Moreover, ft =
ot−ot−1 represents the change in the evaluation function value
at iteration t, where ot and ot−1 are evaluation function values
achieved in iterations t and t− 1 respectively. The action in
the dataset h is nominal, which is the set of all available low-
level heuristics. There are eight low-level heuristics which are
categorised as mutation, ruin-recreate, and local search. The
low-level heuristic details for VRP are the same as a study by
Walker et al. (2012) [29].

In addition, dt is a distance measure which counts the
number of positions at which a pair of permutation nodes
(adjacency-based) mismatch and thus the distance values range
from 0 (both are the same) to n (the length of the sequences).
Given that p1 and p2 are valid solutions to an OVRP instance
specified, the distance between the solutions p1 and p2 is
defined in Eq. 3 [30].

d(p1, p2) = |{i ∈ {1, ..., n}|p1(i) 6= p2(i)}| (3)

In the second phase, we applied the model to the unseen in-
stances. We named this process as the testing part. This phase
occurred inside the TDNN-based selection hyper-heuristic
framework, whose pseudo-code can be seen in Algorithm 1
[6]. There are four steps: initialise solution, select heuristic
based on TDNN classifier, apply a heuristic, and accept all
moves. The process stops when the time limit is reached.

Algorithm 1 TDNN-based selection hyper-heuristic
Require: problem domain to be solved

1: numberOfHeuristics← number of search operators
2: currentObjValue← current objective function value
3: Initialise one solution in the memory
4: repeat
5: h← TDNN Heuristic Selection
6: newObjValue← applyHeuristic (h)
7: Move acceptance: All-Moves
8: newObjValue← currentObjValue
9: until timeExpired = TRUE

B. Experimental Design for Parameter Tuning of Time Delay
Neural Network

Since using the best performing (classifier or function) is
crucial with the apprenticeship learning framework, we applied
an experimental design approach namely Taguchi method to
obtain the best settings for the design parameters. We identified
three parameters with five levels of each parameter. Testing
all the combinations means having 125 settings which would
result in an exhaustive experiment. However, by using the
Taguchi Orthogonal Array this has been reduced to 25 settings
based on L25 table design.

Three design parameters were considered here for optimi-
sation: number of neurons, learning rate, and momentum. The
first level for a number of neurons in the hidden layer was
set to the average of the number of input neurons and output
neurons. This is considered as being the minimum acceptable
number of hidden neurons [21]. There were 16 input neurons
(consist of 8 of f and 8 of d) and 8 output neurons (the number
of search operators h). Thereby, 12 was the number of hidden
neurons at the first level. Four was added to this number to
represent the experimental range with a consistent increase.
We limited the neuron to less than twice the size of inputs
[31], set the number of epochs (learning duration) to 8192
and the number of samples or cases to 71936.

The most widely used method for training a Time Delay
Neural Network (TDNN) is gradient descent [31], also known
as the back-propagation algorithm. The training algorithm
adjusts the weights to reduce error, with the amount of
adjustment controlled by two parameters, namely learning

TABLE II
LEVEL CONFIGURATIONS DEPLOYED DURING TDNN PARAMETER TUNING

Parameters Levels
Neurons {12, 16, 20, 24, 28}

Learning rate {0.01, 0.03, 0.05, 0.07, 0.09}
Momentum {0.1, 0.3, 0.5, 0.7, 0.9}

rate and momentum. Learning rate is a scale or steps size
along the error surface to correct the weight, while momentum
is a weight change proportion which has been previously
calculated [21]. In this study, both values cover a range
commonly used in literature [32]. The values or level options
for each parameter can be seen in Table II.

IV. EMPIRICAL RESULTS

Four sets of experiments are conducted to identify the best
parameter setting for a Time Delay Neural Network (TDNN)
and observe the influence of inclusion of additional distance
information on the performance of generated hyper-heuristic.
The experiments were performed on an Intel(R) Core(TM)i7
Windows 7 Enterprise (3.40 GHz) with 16 GB RAM. After the
generation of selection hyper-heuristic, they are tested based
on 30 trials, each terminating after 600 nominal seconds.

A. Parameter Tuning of a Time Delay Neural Network

There are 25 settings which were carried out based on the
set of level combination in L25 Taguchi Orthogonal Array
[22]. In the first set of experiment, we investigate the best
parameter setting via Taguchi using three instances from 14
instances and fitness only data. The three instances represent
the variants in term of number of customers. It is imperative
to note that different samples generate hyper-heuristic with
totally different performance hence emphasize the importance
of sampling instances for parameter tuning under the proposed
framework. We ranked over 25 settings for each instance
according to the mean objective value (routing cost) and then
achieved the average rank over 30 trials as a final score. The
average effect of each parameter was computed by averaging
over five configurations for each parameter. For example, the
average effect of the number of neurons of 12 was calculated
as averaging the score (24.99+13.29+14.80+12.58+19.07)/5 =
16.94. The detailed values of score for each settings are pre-
sented in Table III, while the average effect of each parameter
at each level is summarised in the main effects plot which is
provided in Figure 2. The level which has the lowest value
(rank 1 is the highest) would be estimated as the best setting
for each parameter from the main effects plot. Therefore, the
best parameter setting for the Time Delay Neural Network
(TDNN) parameters obtained from Taguchi is 24 for neurons,
0.07 for learning rate and 0.9 for momentum.

In the second set of experiment, we repeat the Taguchi
experiments (the same 25 settings) using all instances and
having additional information of distance along with fitness.
The main effects plot is summarised in Figure 3. As illustrated,
the best setting obtained via tuning on all instances is consis-
tent with the best configuration identified using the training

TABLE III
PERFORMANCE COMPARISON BASED ON TAGUCHI L25 ORTHOGONAL

ARRAY

Settings Ins1 Ins2 Ins3 Score
1 25.00 24.97 25.00 24.99
2 15.73 13.57 10.57 13.29
3 14.53 15.53 14.33 14.80
4 12.47 12.17 13.10 12.58
5 10.23 23.57 23.40 19.07
6 13.33 13.30 14.03 13.56
7 13.17 13.17 7.63 11.32
8 15.23 13.90 13.03 14.06
9 7.30 10.13 2.33 6.59

10 12.63 12.10 12.93 12.56
11 15.27 14.40 13.17 14.28
12 13.73 13.43 14.27 13.81
13 2.40 20.80 14.53 12.58
14 13.00 12.17 11.87 12.34
15 15.90 13.50 13.07 14.16
16 11.37 11.67 11.47 11.50
17 12.13 11.57 12.37 12.02
18 10.33 7.57 7.90 8.60
19 10.97 8.73 9.80 9.83
20 12.47 11.87 13.47 12.60
21 12.97 12.03 12.37 12.46
22 11.70 6.83 11.07 9.87
23 13.47 8.63 14.13 12.08
24 12.70 7.17 11.40 10.42
25 12.93 8.13 12.07 11.04

Fig. 2. Main effects plot for fitness only information based on three instances
from OVRP

instances. The second experiment result shows that the best
setting generated from three instances is similar with the best
setting tested on all instances even if the training data contains
additional information of distance along with fitness.

In the third set of experiment, we performed a confirmation
or validation experiment for Taguchi based on the results from
the second experiment. Since the best identified parameter
setting has not been performed on the instances, a confirmation
result is needed to verify the performance by comparing
the best setting performance against the 25 settings. The
confirmation result shows that the best obtained parameter
setting (Taguchi) manages to outperforms all of the other
settings. It can be seen from its lowest value in cost with
a score of 3.5, followed by setting number 9 with a score of
4.7. The performance comparison of each configuration can

Fig. 3. Main effects plot for fitness and distance information based on fourteen
instances from OVRP

Fig. 4. Cost comparison across TDNN design parameters

be seen in Figure 4.
The learning accuracy of heuristic selection is 51.2 %. Even

though the trained TDNN model of heuristic selection has
nearly 50% accuracy, it is as predicted as a previous study
which is using Multi-layer Perceptron (MLP) as a learning al-
gorithm obtained accuracy of 50.3 % in the heuristic selection
[12]. To the best of our knowledge, it does not suggest that
the heuristic selection machine is choosing randomly among
all heuristics since we have eight heuristics (eight classes in
the classification). It is important to note that in order to
make the heuristic selection influential to the hyper-heuristic
performance, it need to be combined with move acceptance
[33].

From three parameters, the number of neuron significantly
contribute to the performance with the highest percentage con-
tribution of 43.87%. Table IV shows the ANOVA analysis with
percentage contribution of each parameter. This is consistent
with the results described in a previous study by Packianather
et al. (2000) [21], that the number of neurons in a hidden
layer had a significant effect on the resulting performance for a
classification type neural network application. In this study, the
performance of neural network is insensitive to the momentum
within the level range observed. This is shown in Figure 2 and

TABLE IV
ANOVA ANALYSIS (DF: DEGREES OF FREEDOM, SS: SUM OF SQUARES,

MS: MEAN SQUARES, F: VARIANCE RATIO)

Parameters DF SS MS F p-value % cont.
Neurons 4 125.97 31.49 4.46 0.019 43.87

Learning rate 4 71.89 17.97 2.55 0.094 25.04
Momentum 4 4.63 1.16 0.16 0.953 1.61

Residual 12 84.66 7.06 - - 29.48
Total 24 287.15 - - - 100

Figure 3 by the flat line of momentum. This is as expected,
which is also consistent with the result in the previous study
[21].

B. The Influence of Inclusion of Distance as a Solution
Feature

The two-tailed Wilcoxon Signed-Rank test at 95 % confi-
dence level was applied in the fourth set of experiment to eval-
uate the significance of the performance difference between
TDNN learning using enriched knowledge with the best setting
and experts. The results are summarised in Table V. Given and
algorithm A, in notation W (A), ≤ (<) indicates that TDNN-
HH performs slightly (significantly) better than the algorithm
A (within a confidence interval of 95%), while ≥ (>) indicates
vice versa. Based on the mean performance, TDNN-HH is
significantly better than MCF-AM on 10 out of 14 instances.
We also compared the performance between learning with
fitness only information to learning with enriched knowledge
(fitness and distance information). TDNN-HH with enriched
knowledge performs significantly better than with fitness only
information (TDF) on 8 out of 14 instances.

V. CONCLUSION

In this study, we used a Time Delay Neural Network
(TDNN) as a apprenticeship learning hyper-heuristic employ-
ing learning by demonstration approach to generate a selection
hyper-heuristic focusing on heuristic selection for the Open-
VRP. The apprentice selection hyper-heuristic is generated by
observing the actions of an expert approach in operation while
making decisions regarding which low level heuristic to apply
at each step. Then that apprentice hyper-heuristic is tested
on unseen instances. The TDNN performance is improved
via the Taguchi Orthogonal Array method. Findings from a
series of computational experiments include: the number of
neuron in the hidden layer is the most influential factor on the
hyper-heuristic performance followed by learning rate, while
momentum has only minor effect.

In addition, this study investigates the learning and so
generalising capability selection hyper-heuristics generated in
an environment in which heuristic choice and fitness (cost) of
the new solution after its application are recorded as opposed
to an environment which additionally includes the distance
between solutions before and after invocation of the selected
heuristic. The empirical results indicate that enriching the
information with a proper feature in the learning environment

TABLE V
PERFORMANCE COMPARISON OF TDNN-HH BY UTILISING ENRICHED KNOWLEDGE (1) TO MCF-AM (2) AND TDF (3) BASED ON THE MEAN

OBJECTIVE VALUE OVER 30 TRIALS FOR EACH OVRP INSTANCE

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14
(1) 5432.4 10727.2 8728.9 12934.1 18054.1 5551.6 10671.2 8945.4 14094.3 18131.6 7976.8 10699.9 11579.9 10963.9
(2) 5560.5 10944.4 8925.6 13216.4 18168.5 5543.7 10937.9 8925.4 14229.3 18578.7 8279.1 10901.8 11539.2 10935.3

W (2) < < < < < ≥ < ≥ < < < < ≥ ≥
(3) 5534.3 10856.6 8838.5 13091.2 17502.2 5524.4 10860.8 8958.4 13135.4 17511.1 8068.7 10827.6 11417.2 10839.9

W (3) < < < < > ≥ < < > > < < ≥ ≥

has the potential to lead to generation of a selection hyper-
heuristic with increased generalisation capability delivering a
significantly better performance.

Furthermore, the successful learning from the heuristic
selection behaviour motivates us to include the move accep-
tance learning in the future studies. Besides, we consider to
investigate learning from multiple experts in order to further
improve the performance.

VI. ACKNOWLEDGMENTS

Raras Tyasnurita has been sponsored by Indonesia En-
dowment Fund for Education Scholarship (LPDP) from the
Ministry of Finance, the Republic of Indonesia.

REFERENCES

[1] Y. Tenne and C.-K. Goh, Computational intelligence in expensive
optimization problems. Springer Science & Business Media, 2010,
vol. 2.

[2] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,
and R. Qu, “Hyper-heuristics: A survey of the state of the art,” Journal
of the Operational Research Society, vol. 64, no. 12, pp. 1695–1724,
2013.

[3] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
J. R. Woodward, “Exploring hyper-heuristic methodologies with genetic
programming,” in Computational intelligence. Springer, 2009, pp. 177–
201.

[4] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward, “A genetic
programming hyper-heuristic approach for evolving 2-d strip packing
heuristics,” IEEE Transactions on Evolutionary Computation, vol. 14,
no. 6, pp. 942–958, 2010.

[5] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, “Automatic design of a
hyper-heuristic framework with gene expression programming for com-
binatorial optimization problems,” IEEE Transactions on Evolutionary
Computation, vol. 19, no. 3, pp. 309–325, 2015.

[6] G. Ochoa, M. Hyde, T. Curtois, J. A. Vazquez-Rodriguez, J. Walker,
M. Gendreau, G. Kendall, B. McCollum, A. J. Parkes, S. Petrovic et al.,
“Hyflex: A benchmark framework for cross-domain heuristic search,” in
European Conference on Evolutionary Computation in Combinatorial
Optimization. Springer, 2012, pp. 136–147.

[7] J. H. Drake, N. Kililis, and E. Özcan, “Generation of vns components
with grammatical evolution for vehicle routing,” in European Conference
on Genetic Programming. Springer, 2013, pp. 25–36.

[8] S. Asta, E. Özcan, A. J. Parkes, and A. Ş. Etaner-Uyar, “Generalizing
hyper-heuristics via apprenticeship learning,” in European Conference
on Evolutionary Computation in Combinatorial Optimization. Springer,
2013, pp. 169–178.

[9] S. Asta and E. Özcan, “An apprenticeship learning hyper-heuristic
for vehicle routing in hyflex,” in Evolving and Autonomous Learning
Systems (EALS), 2014 IEEE Symposium on. IEEE, 2014, pp. 65–72.

[10] G. Ochoa, J. A. Vázquez-Rodrı́guez, S. Petrovic, and E. Burke, “Dis-
patching rules for production scheduling: a hyper-heuristic landscape
analysis,” in 2009 IEEE congress on evolutionary computation. IEEE,
2009, pp. 1873–1880.

[11] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[12] R. Tyasnurita, E. Ozcan, S. Asta, and R. John, “Improving performance
of a hyper-heuristic using a multilayer perceptron for vehicle routing,”
in The 15th UK Workshop on Computational Intelligence, 2015.

[13] J. H. Drake, E. Özcan, and E. K. Burke, “An improved choice function
heuristic selection for cross domain heuristic search,” in International
Conference on Parallel Problem Solving from Nature. Springer, 2012,
pp. 307–316.

[14] J. F. Khaw, B. Lim, and L. E. Lim, “Optimal design of neural networks
using the taguchi method,” Neurocomputing, vol. 7, no. 3, pp. 225–245,
1995.

[15] K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse, “The vehicle
routing problem: State of the art classification and review,” Computers
& Industrial Engineering, 2015.

[16] F. Li, B. Golden, and E. Wasil, “The open vehicle routing problem:
Algorithms, large-scale test problems, and computational results,” Com-
puters & operations research, vol. 34, no. 10, pp. 2918–2930, 2007.

[17] N. Christofides, “The vehicle routing problem. combinatorial optimiza-
tion. christofides n., mingozzi a., toth p., sandi c.(eds) j,” 1979.

[18] K. K. Htike and O. O. Khalifa, “Rainfall forecasting models using
focused time-delay neural networks,” in Computer and Communication
Engineering (ICCCE), 2010 International Conference on. IEEE, 2010,
pp. 1–6.

[19] N. Charaniya and S. Dudul, “Focused time delay neural network model
for rainfall prediction using indian ocean dipole index,” in Computa-
tional Intelligence and Communication Networks (CICN), 2012 Fourth
International Conference on. IEEE, 2012, pp. 851–855.

[20] W. Sukthomya and J. Tannock, “The optimisation of neural network pa-
rameters using taguchis design of experiments approach: an application
in manufacturing process modelling,” Neural Computing & Applications,
vol. 14, no. 4, pp. 337–344, 2005.

[21] M. Packianather, P. Drake, and H. Rowlands, “Optimizing the parameters
of multilayered feedforward neural networks through taguchi design of
experiments,” Quality and Reliability Engineering International, vol. 16,
no. 6, pp. 461–473, 2000.

[22] R. K. Roy, A primer on the Taguchi method. Society of Manufacturing
Engineers, 2010.

[23] J. Ortiz-Rodrı́guez, M. Martı́nez-Blanco, and H. Vega-Carrillo, “Robust
design of artificial neural networks applying the taguchi methodology
and doe,” in Proceedings of the Electronics, Robotics and Automotive
Mechanics Conference-Volume 02. IEEE Computer Society, 2006, pp.
131–136.

[24] D. B. Gümüş, E. Ozcan, and J. Atkin, “An investigation of tuning a
memetic algorithm for cross-domain search,” in Evolutionary Computa-
tion (CEC), 2016 IEEE Congress on. IEEE, 2016, pp. 135–142.

[25] R. N. Kacker, E. S. Lagergren, and J. J. Filliben, “Taguchis orthogonal
arrays are classical designs of experiments,” Journal of research of the
National Institute of Standards and Technology, vol. 96, no. 5, pp. 577–
591, 1991.

[26] T. Schiavinotto and T. Stützle, “A review of metrics on permutations for
search landscape analysis,” Computers & operations research, vol. 34,
no. 10, pp. 3143–3153, 2007.

[27] K. Sörensen, “Distance measures based on the edit distance for
permutation-type representations,” Journal of Heuristics, vol. 13, no. 1,
pp. 35–47, 2007.

[28] M. Kubiak, “Distance measures and fitness-distance analysis for the
capacitated vehicle routing problem,” in Metaheuristics. Springer, 2007,
pp. 345–364.

[29] J. D. Walker, G. Ochoa, M. Gendreau, and E. K. Burke, “Vehicle routing
and adaptive iterated local search within the hyflex hyper-heuristic
framework,” in Learning and Intelligent Optimization. Springer, 2012,
pp. 265–276.

[30] P. Merz and B. Freisleben, “Fitness landscape analysis and memetic
algorithms for the quadratic assignment problem,” IEEE Transactions
on Evolutionary Computation, vol. 4, no. 4, pp. 337–352, 2000.

[31] J. Heaton, Introduction to neural networks with Java. Heaton Research,
Inc., 2008.

[32] M. A. Bramer, Artificial Intelligence in Theory and Practice II: IFIP
20th World Computer Congress, TC 12: IFIP AI 2008 Stream, September
7-10, 2008, Milano, Italy. Springer, 2010, vol. 276.

[33] E. Özcan, B. Bilgin, and E. E. Korkmaz, “A comprehensive analysis
of hyper-heuristics,” Intelligent Data Analysis, vol. 12, no. 1, pp. 3–23,
2008.

