Learning Heuristics for Basic Block
Instruction Scheduling

Abid M. Malik, Tyrel Russell, Michael Chase, and Peter van Beek
School of Computer Science
University of Waterloo, Waterloo, Canada

Abstract

Instruction scheduling is an important step for improving the performance of object code
produced by a compiler. A fundamental problem that arises in instruction scheduling is to find
a minimum length schedule for a basic block—a straight-line sequence of code with a single
entry point and a single exit point—subject to precedence, latency, and resource constraints.
Solving the problem exactly is known to be difficult, and most compilers use a greedy list
scheduling algorithm coupled with a heuristic. The heuristic is usually hand-crafted, a poten-
tially time-consuming process. In contrast, we present a study on automatically learning good
heuristics using techniques from machine learning. In our study, a recently proposed optimal
basic block scheduler was used to generate the machine learning training data. A decision
tree learning algorithm was then used to induce a simple heuristic from the training data. The
automatically constructed decision tree heuristic was compared against a popular critical-path
heuristic on the SPEC 2000 benchmarks. On this benchmark suite, the decision tree heuristic
reduced the number of basic blocks that were not optimally scheduled by up to 55% com-
pared to the critical-path heuristic, and gave improved performance guarantees in terms of the
worst-case factor from optimality.

1 Introduction

Modern computer architectures are pipelined and can issue multiple instructions per time cycle. On
such processors, the order that the instructions are scheduled can significantly impact performance.
The basic block instruction scheduling problem is to find a minimum length schedule for a basic
block—a straight-line sequence of code with a single entry point and a single exit point—subject
to precedence, latency, and resource constraints!. Basic block scheduling is important in its own
right and also as a building block for scheduling larger groups of instructions such as superblocks
[2, 18].

Solving the basic block instruction scheduling problem exactly is known to be difficult, and
most compilers use a greedy list scheduling algorithm together with a heuristic for choosing which

I'See Section 2 for the necessary background on computer architectures and basic block instruction scheduling.



instruction to schedule next [4, 13]. Such a heuristic usually consists of a set of features and
a priority or order in which to test the features. Many possible features and orderings have been
proposed (see, for example, [1, 19]). The heuristic in a production compiler is usually hand-crafted
by choosing and testing many different subsets of features and different possible orderings—a
potentially time-consuming process. For example, the heuristic developed for the IBM XL family
of compilers “evolved from many years of extensive empirical testing at IBM” [7, p. 112, emphasis
added].

In this paper, we present a study on automatically learning a good heuristic using supervised
machine learning techniques. In supervised learning, one learns from training examples which
are labeled with the correct answers. More precisely, each training example consists of a vector
of feature values and the correct classification or correct answer for that example. The success
of a supervised learning approach depends heavily on the quality of the training data; i.e., if the
examples are representative of what will be seen in practice and if the features recorded in each
example are adequate to distinguish all of the different cases. Moss et al. [12] were the first
to propose the use of supervised learning techniques in this context. Their idea was to design
an optimal schedule and use their optimal scheduler to correctly label the data. However, their
approach was hampered by the quality of their training data; their optimal scheduler could only
optimally solve basic blocks with ten or fewer instructions and they recorded only five features in
each training example?.

McGovern et al. [11] used the same set of features as Moss et al., but proposed the use of
rollouts and reinforcement learning to overcome the difficulty of obtaining training data on larger
basic blocks. Rollouts and reinforcement learning are machine learning techniques which are
non-supervised; i.e., they do not require the data to be correctly labeled. However, the efficiency
of the instruction scheduler is critical in compilers, and McGovern et al.’s scheduler based on
rollouts would be much too expensive to be used in a production compiler. Further, in McGovern
et al.’s work using reinforcement learning, a known heuristic was used to guide the reinforcement
learning. However, the resulting learned instruction scheduler was not better than the original
heuristic used to guide the learning. Li and Olafsson [9], in recent work on learning heuristics for
single machine job shop scheduling using supervised learning, use existing heuristics to label the
training examples. In other words, in their approach some of the training examples will be labeled
incorrectly. As a result, the heuristics that they learn are never better than the original heuristics
used to label the data. In contrast to McGovern et al. and to Li and Olafsson, in our work we are
able to learn heuristics that outperform existing heuristics.

In our work, we improved the quality of the training data in three ways. First, we overcame
the limitation on basic block size by designing and using an optimal basic block scheduler based
on constraint programming [10, 21] to generate the correctly labeled training data. Currently, this
optimal scheduler is too time consuming to be used on a routine basis®. However, it can solve

’The heuristic that would be learned from their training data would be similar to the critical-path based heuristic,
which we compare against below and in Section 4.

3Large software projects can contain tens of thousands of basic blocks and users demand fast compile times during
the development phase of a project. Thus, the instruction scheduling component of the compiler must execute quickly
during this phase. However, slower compile times may be acceptable during a production build and the constraint
programming approach may be viable during this phase of a project.



all but a very few basic blocks and routinely solves blocks with 2500 or more instructions in a
few minutes. (The speed of the optimal scheduler is not an issue when gathering training data, as
this is an offline process.) Second, we improved the quality of the training data by performing an
extensive and systematic study and ranking of previously proposed features (as surveyed in [19]).
Third, we improved the quality of the training data by synthesizing and ranking novel features.
One of these novel features is the best feature among all of the features that we studied, and is one
of the major reasons behind the success of our approach.

Once the training data was gathered, a decision tree learning algorithm [16] was used to induce
a heuristic from the training data. In a decision tree the internal nodes of the tree are labeled with
features, the edges to the children of a node are labeled with the possible values of the feature, and
the leaves of the tree are labeled with a classification. To classify a new example, one starts at the
root and repeatedly tests the feature at a node and follows the appropriate branch until a leaf is
reached. The label of the leaf is the predicted classification of the new example.

The usual criterion one wants to maximize when devising a heuristic is accuracy. In this study,
we also had an additional criterion: that the learned heuristic be efficient. When compiling large
software projects, the heuristic used by the list scheduler can be called hundreds of thousands or
even millions of times and can represent a significant percentage of the overall compilation time.
Since each additional feature used in a heuristic adds to the overall computation time, we want to
learn a heuristic that is both simple and accurate. Fortunately, these are not necessarily conflicting
goals since it is known that more complex decision trees often “overfit” the training data, and that
simpler decision trees often generalize better and so perform better in practice [23]. In contrast
to Cooper and Torczon [2], who note that no set of features and no order in which to test the
features dominates the others, we found that a small set of features and orderings did dominate
and that many features were irrelevant in that they did not improve the accuracy of a heuristic in a
statistically significant way.

Once learned, the resulting decision tree heuristic was incorporated into both a forward list
scheduler and a backward list scheduler and experimentally compared against a popular critical-
path heuristic on the SPEC 2000 benchmarks, using four different architectural models. On this
benchmark suite, the decision tree heuristic reduced the number of basic blocks that were not
optimally scheduled by up to 55% compared to the critical-path heuristic. As well, for every basic
block where the critical-path heuristic found a better schedule than the decision tree heuristic,
there were up to eight basic blocks where the decision tree heuristic found a better schedule than
the critical-path heuristic. Finally, the decision tree heuristic improved performance guarantees in
terms of the worst-case factor from optimality, a measure of the robustness of a heuristic.

2 Background

In this section, we define the instruction scheduling problem studied in this paper followed by a
brief review of the list scheduling algorithm and the heuristics used in the algorithm (for more
background on these topics see, for example, [4, 6, 13]).

We consider multiple-issue, pipelined processors. Multiple-issue and pipelining are two tech-
niques for performing instructions in parallel and processors which use these techniques are now



standard in desktop and laptop machines. In such processors, there are multiple functional units
and multiple instructions can be issued (begin execution) in each clock cycle. Examples of func-
tional units include arithmetic-logic units (ALUs), floating-point units, memory or load/store units
which perform address computations and accesses to the memory hierarchy, and branch units
which execute branch and call instructions. The number of instructions that can be issued in each
clock cycle is called the issue width of the processor. As well, in such processors functional units
are pipelined. Pipelining is a standard implementation technique for overlapping the execution of
instructions on a single functional unit. A helpful analogy is to a vehicle assembly line [6] where
there are many steps to constructing the vehicle and each step operates in parallel with the other
steps. An instruction is issued (begins execution) on a functional unit and associated with each in-
struction is a delay or latency between when the instruction is issued and when the instruction has
completed and the result is available for other instructions which use the result. In this paper, we
assume that all functional units are fully pipelined and that instructions are typed and execute on a
functional unit of that type. Examples of types of instructions are integer, floating point, load/store,
and branch instructions.
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Figure 1: (a) Dependency DAG associated with the instructions to evaluate (a-+b)+c on a processor
where loads from memory have a latency of 3 cycles and integer operations have a latency of 1
cycle; (b) a schedule; (c) a better schedule.

We use the standard labeled directed acyclic graph (DAG) representation of a basic block (see
Figure 1(a)). Each node corresponds to an instruction and there is an edge from ¢ to j labeled with
a positive integer [(7, j) if j must not be issued until 7 has executed for [(, j) cycles. The goal
is to schedule the basic block on a target processor. The target processor will have a particular
set of resources: the number and type of functional units available in the processor for executing
instructions.

Given a labeled dependency DAG for a basic block and a target processor, a schedule for
the processor specifies an issue or start time for each instruction or node such that the latency
constraints are satisfied and the resource constraints are satisfied. The resource constraints ensure
that the limits of the processor’s resources are never exceeded; i.e., the resource constraints are
satisfied if, at every time cycle, the number of instructions of each type issued at that cycle does
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not exceed the number of functional units that can execute instructions of that type. The length of
a schedule is the number of cycles needed for the schedule to complete; i.e., each instruction has
been issued at its start time and, for each instruction with no successors, enough cycles have elapsed
that the result for the instruction is available. The basic block instruction scheduling problem is to
construct a schedule with minimum length.

Example 1 Figure 1 shows a simple dependency DAG and two possible schedules for the DAG,
assuming a single-issue processor that can execute all types of instructions. The first schedule
(b) requires four NOP instructions (null operations) because the values loaded are used by the
following instructions. The better schedule (c), the optimal or minimum length schedule, requires
only one NOP and completes in three fewer cycles.

Basic block instruction scheduling under the assumption that all functional units are fully
pipelined is the special case of resource-constrained project scheduling (see, e.g., [3, 14]) where all
of the activities have unit execution times and we seek a schedule which minimizes the makespan.

Instruction scheduling for basic blocks is known to be NP-complete for realistic architectures.
The most popular method for scheduling basic blocks continues to be list scheduling [13]. A list
scheduler takes a set of instructions as represented by a dependency DAG and builds a schedule
using a best-first greedy heuristic. A list scheduler generates the schedule by determining all
instructions that can be scheduled at that time step, called the ready list, and uses the heuristic
to determine the best instruction on the list. The selected instruction is then added to the partial
schedule and the scheduler determines if any new instructions can be added to the ready list.
List schedulers work in one of two directions: forward from the roots to the leaves or backward
from the leaves to the roots (see [2] for a discussion of forward versus backward list scheduling).
Conceptually, a backward list scheduler can be obtained by running a forward list scheduler on a
dependency DAG that has had the direction of each edge reversed. Both forward and backward list
scheduling are used in production compilers. As examples, IBM’s Tobey compiler uses forward
list scheduling [1] and the GCC compiler uses backward list scheduling [20].

The heuristic in a list scheduler generally consists of a set of features and an order for testing
the features. Some standard features are as follows. The path length from a node 7 to a node j in
a DAG is the maximum number of edges along any path from ¢ to j. The critical-path distance
from a node ¢ to a node j in a DAG is the maximum sum of the latencies along any path from ¢
to 7. Note that both the path length and the critical-path distance from a node 7 to itself is zero. A
node j is a descendant of a node i if there is a directed path from 7 to j; if the path consists of a
single edge, 7 is also called an immediate successor of i. The earliest start time of a node i is a
lower bound on the earliest cycle in which the instruction ¢ can be scheduled. The heuristic in a
list scheduler is also known as a dispatching rule in the scheduling literature (see, e.g., [15]).

3 Learning a Heuristic

In this section, we describe the methodology we followed to automatically construct a list schedul-
ing heuristic for scheduling basic blocks by applying techniques from supervised machine learning.



We explain the construction of the initial set of features (Section 3.1), the collection of the data
(Section 3.2), the use of the data to filter and rank the features to find the most important fea-
tures (Section 3.3), and the use of the data and the important features to learn a simple heuristic
(Section 3.4).

3.1 Feature construction

To use supervised learning techniques to construct a list scheduling heuristic, the problem first has
to be phrased as a classification problem. Moss et al. [12] note that to choose the best instruction on
a ready list to schedule next, it is sufficient to be able to compare two instructions ¢ and j and return
true if 7 should be scheduled before j; and false otherwise. We thus have a binary classification
problem.

The choice of distinguishing features is critical to successfully learning a classifier. In contrast
to Moss et al. [12], who recorded only five features in each training example, we began with almost
100 features that we felt would be promising. The features can be categorized as either static or
dynamic. The value of a static feature is determined before the execution of the list scheduler;
the value of a dynamic feature is determined during the execution of the list scheduler. The 100
features included all of the classic features surveyed by Smotherman et al. [19], except for the
features having to do with register pressure* and a few features that were irrelevant or whose
roles were better performed by other features. These classic features all measure properties of an
instruction on the ready list (see Table 2 for a summary of most of these features).

Also included were features that measured properties of the DAG to be scheduled, properties
of the target architecture, and properties of a ready list itself. The DAG features were both static
and dynamic. The static features included the source language and the number of instructions of
each type. The dynamic features included the number of instructions of each type that still needed
to be scheduled; the number of edges between instructions of the same type and of different types
in the unscheduled part of the DAG; and the maximum, average, and standard deviation of the
critical-path distances and the latencies on the edges in the unscheduled part of the DAG. The
target architecture features were all static features. Examples of these features include the number
of functional units of each type. The ready list features were all dynamic features. Examples of
these features include the number of instructions of each type on the ready list and the maximum
number of instructions of each type that could still be scheduled during the current time cycle.

Also included were features that measured properties of an instruction relative to all of the other
instructions on a ready list. For these features, given an instruction ¢, a property of an instruction
such as critical-path distance, and a ready list, we determine the property’s maximum and minimum
value over all of the instructions on the ready list. The value v of the property for instruction ¢ is
then compared against these maximum and minimum values and the value of the feature is gt if v
is closer to the maximum, eq if it is midway between the maximum and the minimum, and /¢ if it
is closer to the minimum.

4These features were omitted as our optimal basic block scheduler [10, 21], which was used to correctly label the
data, does not currently handle register pressure. We are currently working on removing this limitation and once it is
removed, it will be straightforward to incorporate these features as well.



A more accurate classifier can sometimes be achieved by synthesizing new features from ex-
isting basic features. We also included many such synthesized features. In our case, the feature
synthesis was performed by hand. However, this phase only has to be performed once and then
these new features can be used in the future for constructing heuristics for compilers targeted to
new computer architectures. We constructed some of the novel features by applying simple func-
tions to basic features. Examples include comparison of two features, maximum of two features,
and the average of several features.

Table 1: Notation for the resource-based distance to leaf node feature.

ky The number of functional units that can execute instructions of type ¢.

desc(i, t) The set of all descendants of instruction ¢ that are of type ¢ in a DAG.
These are all of the instructions of type ¢ that must be issued with or
after ¢+ and must all be issued before the leaf node can be issued.

ep(i, ) The critical-path distance from i to j.

r1(i,t) The minimum number of cycles that must elapse before the first
instruction in desc(i,t) can be issued; i.e., min{cp(i,k) | k €
desc(i,t)}, the minimum critical-path distance from i to any node
in desc(i, t).

ro(i, 1) The minimum number of cycles to issue all of the instructions in
desc(i,t); i.e., | desc(i,t) | / ki, the size of the set of instructions
divided by the number of functional units that can execute instruc-
tions of type ¢.

r3(i,t) The minimum number of cycles that must elapse between when the
last instruction in desc(i, t) is issued and the leaf node [ can be is-
sued; i.e., min{cp(k,l) | k € desc(i,t)}, the minimum critical-path
distance from any node in desc(i, t) to the leaf node.

One of the novel features that we constructed, resource-based distance to the leaf node, turned
out to be the best feature among all of the features that we studied. Consider the notation shown
in Table 1. For convenience of presentation, we are assuming that a DAG has a single leaf node;
1.e., we are assuming a fictitious node is added to the DAG and zero-latency arcs are added from
the leaf nodes to this fictitious node. The resource-based distance from a node 7 to the leaf node is
given by,

rb(i) = mtax{rl(i, t) 4+ ra(i, t) + r3(i, 1)},

where we are finding the maximum over all instruction types ¢. The distance was sometimes
improved by “removing” a small number of nodes (between one and three nodes) from desc(i, t).
This was done whenever removing these nodes led to an increase in the value of rb(i); i.e., the
decrease in 75 (, t) was more than offset by the increase in r(¢,t) + r3(i, t).



3.2 Collecting the training, validation, and testing data

In addition to the choice of distinguishing features (see Section 3.1 above), a second critical
factor in the success of a supervised learning approach is whether the data is representative of
what will be seen in practice. To adequately train and test our heuristic classifier, we collected
all of the basic blocks in the jpeg and mpeg benchmarks from the MediaBench [8] benchmark
suite and all of the basic blocks from the SPEC 2000 integer and floating point benchmarks
[http://www.specbench.org]. The SPEC benchmarks are standard benchmarks used to evaluate
new CPUs and compiler optimizations. The benchmarks were compiled using IBM’s Tobey com-
piler [1] targeted towards the PowerPC processor [7], and the basic blocks were captured as they
were passed to Tobey’s instruction scheduler. The basic blocks contain four types of instructions:
branch, load/store, integer, and floating point. The range of the latencies is: all 1 for branch in-
structions, 1-12 for load/store instructions (the largest value is for a store-multiple instruction,
which stores to memory the values in a sequence of registers), 1-37 for integer instructions (the
largest value is for division), and 1-38 for floating point instructions (the largest value is for square
root). The Tobey compiler performs instruction scheduling before global register allocation and
once again afterwards, and our test suite contains both kinds of basic blocks. The compilations
were done using Tobey’s highest level of optimization, which includes aggressive optimization
techniques such as software pipelining and loop unrolling.

Following Moss et al. [12], a forward list scheduling algorithm was modified to generate the
data. Recall that each instance in the data is a vector of feature values and the correct classification
for that instance. Let better (i, j, class) be a vector that is defined as follows,

better(i, j, class) = (fi1(i,7), ..., fa(i, ), class),

where i and j are instructions, f;(i, j) is the k' feature that measures some property of i and j, and
class is the correct classification. Given a partial schedule and a ready list during the execution of
the list scheduler on a basic block, each instruction on the ready list was scheduled by an optimal
scheduler [10, 21] to determine the length of an optimal schedule if that instruction were to be
selected next. The optimal scheduler was targeted to a 4-issue processor, with one functional unit
for each type of instruction. Then, for each pair of instructions 7 and 7 on the ready list, where ¢
led to an optimal schedule and j did not, the instances better(i, 7, true) and better(j, 7, false) were
added to the data set (see the equation above). Note that the goal of the heuristic that is learned
from the data is to distinguish those instructions on a ready list that lead to optimal schedules from
those instructions that lead to non-optimal schedules. Thus, pairs of instructions ¢ and j in which
both 7 and j led to an optimal schedule are ignored; i.e., they do not add any instances to the data
set. Similarly, pairs of instructions in which both 7 and j led to a non-optimal schedule are also
ignored. Once the data collection process was completed for a particular ready list, the partial
schedule was then extended by randomly choosing an instruction from among the instructions on
the ready list that led to an optimal schedule, the ready list was updated based on that choice of
instruction, and the data collection process was repeated.

Example 2 Consider once again the DAG and its schedules introduced in Example 1. Suppose
that each instance in our learning data contains two features: f1(i, j) returns the size of the DAG
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and f5(i,j) returns lt, eq, or gt depending on whether the critical-path distance of i to the leaf
node is less than, equal to, or greater than the critical-path distance of j to the leaf node. When
the list scheduling algorithm is applied to the DAG, instructions A, B, and D are on the ready list
at time cycle 1. Scheduling A first or B first both lead to an optimal schedule, whereas scheduling
D first does not. Thus, the pair A, D would add the vectors (5, gt, true) and (5,1t, false) to the
data, since the critical-path distance for A is 4 and for D is 3. Similarly, the pair B, D would add
the vectors (5, gt, true) and (5,1t, false). At this point, one of A and B is randomly selected and
scheduled at time cycle 1. The list scheduler then advances to time cycle 2, updates the ready list,
and repeats the above process.

When lots of data is available, as in our study, a standard approach is to split the data into
training, validation, and test sets [23, pp. 120-122]. The training set is used to come up with the
classifier, the validation set is used to optimize the parameters of the learning algorithm and to
select a particular classifier, and the test set is used to report the classification accuracy. Separating
the training and the testing data in this way is important for getting a reliable estimate of how
accurately the heuristic will perform in practice. We set aside all of the basic blocks from the SPEC
2000 benchmark for testing, and used the data generated from the jpeg basic blocks for training and
the data generated from the mpeg basic blocks for validation. There were approximately 200,000
instances in the training set and 100,000 instances in the validation set. Many of these instances
were from large basic blocks of up to 2600 instructions.

3.3 Feature filtering

An important next step, prior to learning the heuristic, is to filter the features. The goal of filtering is
to select the most important features for constructing a good heuristic. Only the selected features
are then passed to the learning algorithm and the features identified as irrelevant or redundant
are deleted. There are two significant motivations for performing this preprocessing step: the
efficiency of the learning process can be improved and the quality of the heuristic that is learned can
be improved (many learning methods, decision tree learning included, do poorly in the presence of
redundant or irrelevant features [23, pp. 231-232]).

Several feature filtering techniques have been developed (see, for example, [5] and the refer-
ences therein). In our work, a feature was deleted if both: (i) the accuracy of a single feature
decision tree classifier constructed from this feature was no better than random guessing on the
validation set; and (ii) the accuracy of all two-featured decision tree classifiers constructed from
this feature and each of the other features was no better than or a negligible improvement over
random guessing on the validation set. The motivation behind case (ii) is that a feature may not
improve classification accuracy by itself, but may be useful together with another feature. In both
cases, the heuristic classifier was learned from the jpeg training data and evaluated on the mpeg
validation set. Finally, a feature was also deleted if it was perfectly correlated with another feature.

Table 2 shows the 17 features that remained after filtering. For succinctness, each feature is
stated as being a property of one instruction. When used in a heuristic to compare two instructions
v and j, we actually compare the value of the feature for 7 with the value of the feature for j
(see the use of the critical-path feature in Example 2). The features are shown ranked according
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Table 2: Features remaining after filtering, ordered from highest ranking to lowest ranking.

1. Maximum of feature 2 and feature 5. 12.  Path length from root node.
Resource-based distance to leaf node 13.  Sum of latencies to all immediate suc-
(see Section 3.1). cessors of the instruction.
3. Path length to leaf node. 14. Updated earliest start time.
4. Number of descendants of the instruc- 15. Number of instructions of type load/
tion. store that would be added to the ready
5. Ciritical-path distance to leaf node. list for the next time cycle if the in-
6. Slack—difference between the earli- struction was scheduled.
est and latest start times. 16. Number of instructions of type inte-
7. Order of the instruction in the original ger that would be added to the ready
instruction stream. list for the current time cycle if the in-
8. Number of immediate successors of struction was scheduled.
the instruction. 17.  Number of instructions of type load/
9. Earliest start time of the instruction. store that would be added to the ready
10. Critical-path distance from root. list for the current time cycle if the in-
11. Latency of the instruction. struction was scheduled.

to their overall value in classifying the data. The overall rank of a feature was determined by
averaging the rankings given by three feature ranking methods: the single feature decision tree
classifier, information gain, and information gain ratio (see [23] for background and details on
the calculations). The feature ranking methods all agreed on the top seven features. The ranking
can be used as a guide for hand-crafted heuristics and also for our automated machine learning
approach, as we expect to see at least one of the top-ranked features in any heuristic. A surprise is
that critical-path distance to the leaf node, commonly used as the primary feature [4, 13]), is ranked
only in 5" place. Also somewhat surprising is that the lowest ranked features, features 14—17, are
dynamic features. All of the rest of the features are static features.

3.4 Classifier selection

Given the features shown in Table 2, the next step is to learn the best heuristic from the training
data; i.e., the best decision tree classifier.

In our context, the best decision tree classifier is one that is both accurate and efficient. Since
each additional feature brings additional computational cost, we want the smallest subset of fea-
tures such that a classifier learned using this subset still has acceptable accuracy. Several methods
have been proposed for searching through the possible subsets of features. We chose forward se-
lection with beam search, as it works well to minimize the number of features in the classifier
[23, 5]. Forward selection with beam search begins at level 1 by examining all possible ways of
constructing a decision tree from one feature. The search then progresses to level 2 by choosing
the best of the classifiers from level 1 and extending them in all possible ways by adding one ad-
ditional feature. In general, the search progresses to level £ + 1 by extending the best classifiers at
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level k by one additional feature. The search continues until some stopping criteria is met.

In our work, the search expanded up to a maximum of 30 of the best classifiers at each level.
The value of 30 was chosen as it was found that around this point the quality of the classifiers
had already deteriorated. Thus the value of 30 was chosen as a conservative value that avoided a
brute-force test of all possible classifiers but with a low risk that we would cutoff and therefore
miss a good classifier. For each subset of features at each level, a decision tree heuristic was
learned from the jpeg training data and an estimate of the classification accuracy of the heuristic
was determined by evaluating the heuristic on the mpeg validation set. The classification accuracy
was used to decide which subsets to expand to the next level. We chose decision tree classifiers
over other possible machine learning techniques because of their excellent fit with our goals of
accuracy and efficiency. To learn a classifier, we used Quinlan’s C4.5 decision tree software [16].
The software was run with the default parameter settings, as this consistently gave the best results
on the validation set.

The following table shows for each level [ (where [ corresponds to the number of features in
the decision tree), the accuracy of the best decision tree learned with [ features and the size of
the decision tree. The accuracy is stated as the percentage of instances in the validation set that
were incorrectly classified. When there were ties for best accuracy at a level, the average size was
recorded. The size of the decision tree is the number of nodes in the tree.

level 1 2 3 4 5 6 7
accuracy 4.05 3.82 3.76 3.72 371 3.71 3.70
size 4 7 14 17 30 48 43

We chose four features as the best trade-off between simplicity and accuracy. The decision
tree with four features attains an accuracy of 3.72 while containing only 17 nodes. Increasing the
number of features gives only a slight improvement in accuracy, but a relatively large increase in
the size of the tree (1.8 — 2.8 times). Since there were ties for the best choice of four features,
decision trees for the subsets of four features tied for best were learned over again, this time using
all of the data (the validation set was added into the training set, a standard procedure once the best
subset of features has been chosen). The smallest tree was then chosen as the final tree. In contrast
to Moss et al. [12], who did not perform feature filtering and used all of the features in the training
data at once to learn a classifier, our use of forward selection with beam search led to a smaller yet
more accurate heuristic. The final decision tree heuristic constructed is shown in Algorithm 1.

It is interesting to note that all of the features in the final decision tree heuristic are comparative
features with three discrete values; that is, the feature compares some property of two instructions
¢ and j and the value of the feature is [?, eq, or gt depending on whether the value of the property
for 7 is less than, equal to, or greater than the value of the property for j. Besides using three
discrete values It, eq, and gt, we also tried five discrete values: 2gt, gt, eq, It, and 2[t. The idea
was to more accurately capture sow much smaller or bigger one value was than another. For
example, if the value of the property for ¢ is much greater than the value of the property for j,
the value of the feature would be 2¢gt and if it was only slightly greater, the value of the feature
would be just gt. Using five discrete levels, we were able to improve the accuracy to 3.50% with
seven features. Unfortunately, it also increased the size of the tree to 250 nodes. As we already
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Algorithm 1: Automatically constructed decision tree heuristic for list scheduler.

input : Instructions ¢ and j
output : Return true if ¢ should be scheduled before j; false otherwise

i.mazx_distance «— max(i.resource_based_dist_to_leaf,i.critical_path_dist_to_leaf);
j-mazx_distance « max(j.resource_based_dist_to_leaf, j.critical _path_dist_to_leaf);
if i.maz_distance > j.max_distance then

| return true;

else if .. mazr_distance < j.max_distance then
| return false;

else
if i.descendants > j.descendants then
if 2.latency > j.latency then return true;
| else return false;
else if i.descendants < j.descendants then
if i.latency > j.latency then return true;
| else return false;
else
if i.sum_of latencies > j.sum_of_latencies then return true;
| else return false;

mentioned, besides good accuracy we are also interested in a simple heuristic which is easily
understandable and efficient. A decision tree with 250 nodes gives a complex heuristic, which is
against our aim.

4 Experimental Evaluation

In this section, we describe the experimental evaluation of the decision tree heuristic that was
learned following the methodology given above (see Algorithm 1).

The decision tree heuristic was incorporated into a list scheduler and experimentally evaluated
on all of the basic blocks from the SPEC 2000 benchmarks, using four different architectural
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models:
I-issue processor executes all types of instructions.

2-issue processor with one floating point functional unit and one functional unit that can
execute integer, load/store, and branch instructions.

4-issue processor with one functional unit for each type of instruction.

6-issue processor with the following functional units: two integer, one floating point, two
load/store, and one branch.

To begin, the decision tree heuristic (h4;:) was compared against previously proposed list schedul-
ing heuristics (hest, hep, and hgy ) and against the schedules found by the optimal scheduler.

The h.s heuristic used updated earliest start time as the primary feature, critical-path distance
as a tie-breaker if the updated earliest start times were equal, and order within the instruction
stream as a tie-breaker if both the earliest start times and the critical-path distances were equal.
The heuristic is similar to a heuristic proposed by Warren [22]. The minor differences are due to
differences in architectural models and register pressure features. We refer to this heuristic as the
earliest start time heuristic.

The h,, heuristic used critical-path distance as the primary feature, updated earliest start time
as a tie-breaker, and order within the instruction stream as the next tie-breaker. The h ., heuristic
is perhaps of the most interest in this comparison. This is true for several reasons: critical-path
distance is one of the most popular features in the heuristics surveyed by Smotherman et al. [19];
the primary and secondary features are as recommended in a classic text by Muchnick [13]; A, is
similar to the heuristic in the widely used GCC compiler [20]; and finally and most importantly,
hep s the heuristic that would have been learned in the work of Moss et al. [12] when targeted
towards our architectural models. We refer to this heuristic as the critical-path heuristic.

The h,., heuristic used critical-path distance as the primary feature, latency of the instruc-
tion as a tie-breaker, number of successors as the next tie-breaker, and order within the instruction
stream as the final tie-breaker. The heuristic is similar to a heuristic proposed by Shieh and Pa-
pachristou [17]. The minor differences are due to further tie-breaking features in the original
proposal. However, we found that these additional features slightly degraded performance. We
refer to this heuristic as Shieh and Papachristou’s heuristic.

One of the aims of the experiments is to measure the robustness of the decision tree heuristic
across architectures and scheduling methods. Recall that the decision tree heuristic was discovered
from training data that arose from applying forward list scheduling on a single target architecture
(a 4-issue architecture). To measure robustness, the experiments evaluate the heuristics on multiple
architectures and using both forward and backward list scheduling.

Table 3 shows the number of basic blocks in the SPEC 2000 benchmark suite that were not
scheduled optimally by a forward list scheduling algorithm when using the various heuristics.
Table 4 shows the results for a backward list scheduling algorithm. The automatically learned de-
cision tree heuristic is better than all three of the previously proposed heuristics. To systematically
study the scaling behavior of the heuristics, we report the results broken down by increasing size
ranges of the basic blocks. For reference, the number of basic blocks in each size range is given in
Table 5. For all of the heuristics, as the basic block size increases the accuracy of the list scheduler
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decreases. For the largest basic blocks, up to 31% of the schedules are not optimal (see the 2-issue
architecture). However, it can be seen that the decision tree heuristic is very effective for small
and medium size basic blocks. Tables 3 & 4 show that the decision tree heuristic gave overall
reductions in the number of basic blocks not optimally scheduled of between 28% and 55% when
compared to the critical-path heuristic. The decision tree heuristic gave similar overall reductions
when compared to the /4, heuristic and significantly greater reductions when compared to the
h.s: heuristic.

Table 3: Forward list scheduler. Number of basic blocks in the SPEC 2000 benchmark suite not
scheduled optimally by the earliest start time heuristic (h.s), Shieh and Papachristou’s heuristic
(hs4p), the critical-path heuristic (h.,), and the decision tree heuristic (hq) for ranges of basic
block sizes and various issue widths. Also shown is the percentage improvement given by the
decision tree heuristic over the critical-path heuristic (% = 100 X (hep — hat)/hep)-

1-issue 2-issue
range hest hs-i—p hcp hdt % hest hs+p hcp hdt %
1-5 2,613 105 338 0 100.0 | 2,602 113 350 0 100.0
6-10 15,269 531 804 134 83.3 | 15,216 637 907 165 81.8
11-20 16,949 1,077 1,118 598 46.5 | 16,186 1,185 1,226 586 52.2
21-30 6,574 569 619 290 53.2 | 5,808 761 781 347 55.6
31-50 4,815 640 628 337 463 | 4419 817 853 512 40.0
51-100 3,053 540 536 315 41.2 | 2,805 818 790 464 41.3
101-250 1,600 260 270 218 193 | 1,571 485 505 408 19.2
251-2600 264 64 72 68 5.6 273 103 111 111 0.0
Total 51,137 3,786 4,385 1,960 55.3 | 48,880 4,919 5,523 2,593 53.1
4-issue 6-issue

range hest hs+p hcp hdt % hest herp hcp hdt %
1-5 1,045 112 182 12 934 0 0 0 0 —
6-10 7,934 565 736 121  83.6 576 90 69 56 18.8
11-20 9,864 1,515 1,623 681 58.0 | 3,093 546 534 344  35.6
21-30 4,637 926 962 479 50.2 | 2,396 627 584 469  19.7
31-50 3,723 951 1,013 548 459 | 2437 597 615 437 289
51-100 2,578 867 915 455 503 | 2,017 542 538 318 40.9
101-250 1,533 484 501 358 28.5 | 1,347 346 337 251 255
251-2600 260 108 117 101 13.7 230 93 96 91 5.2
Total 31,574 5,528 6,049 2,755 545 | 12,096 2,841 2,773 1,966 29.1
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Table 4: Backward list scheduler. Number of basic blocks in the SPEC 2000 benchmark suite not
scheduled optimally by the earliest start time heuristic (h.s:), Shieh and Papachristou’s heuristic
(hsyp), the critical-path heuristic (hp,), and the decision tree heuristic (hq:) for ranges of basic
block sizes and various issue widths. Also shown is the percentage improvement given by the
decision tree heuristic over the critical-path heuristic (% = 100 X (h¢p — hat)/hep)-

1-issue 2-issue
range hest hs+p hcp hdt % hest herp hcp hdt %
1-5 495 27 43 0 100.0 488 26 43 0 100.0
6-10 21,240 184 324 43  86.7 | 21,011 195 323 52 839
11-20 19,810 673 784 346 559 | 18,732 733 846 343  59.5
21-30 7,181 386 387 224 42.1 | 6,381 421 393 207 473
31-50 5,311 438 406 2890 28.8 | 4,785 606 552 376  31.9
51-100 3,258 359 386 259 329 | 2,999 565 580 374 355
101-250 1,824 220 231 196 152 | 1,790 353 386 293 241
251-2600 303 54 54 53 1.9 303 79 77 71 7.8
Total 59,422 2,341 2,615 1,410 46.1 | 56,489 2,978 3,200 1,716 464

4-issue 6-issue
range hest hs-i—p hcp hdt % hest hs+p hcp hdt %
1-5 56 28 46 1 978 6 3 4 0 100.0
6-10 5,258 280 277 76 72.6 201 60 65 39  40.0
11-20 9,269 807 822 338 589 | 2,457 343 355 176 504
21-30 4,283 665 616 384 3777 | 1,978 275 250 190 24.0
31-50 3,629 824 787 514 347 | 2,282 532 491 376 234
51-100 2,583 757 805 527 345 1,992 543 565 369  34.7
101-250 1,609 473 493 398 19.3 1,400 372 378 335 11.4
251-2600 268 106 104 106 -1.9 247 92 97 94 3.1
Total 26,955 3,940 3,950 2,344 40.7 | 10,563 2,220 2,205 1,579 284
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Table 5: Number of basic blocks in the SPEC 2000 benchmark suite in each size range.

range # blocks
1-5 324,352
6-10 94,066
11-20 46,502
21-30 13,911
31-50 9,760
51-100 5,669
101-250 2,789
251-2600 358
Total 497,407

In the remainder of the experimental evaluation, we give a detailed comparison between the
decision tree heuristic hg4 and the critical-path heuristic /., and omit the Shieh and Papachristou
heuristic /., and the earliest start time heuristic /.y from further consideration. We focus on
comparing against the critical-path heuristic for three reasons. First, as previously mentioned,
the critical-path heuristic is the heuristic that would have been learned in the work of Moss et
al. [12]. Second, the performance of the Shieh and Papachristou heuristic /s, is quantitatively
and qualitatively similar to that of the critical-path heuristic; hence the relative performance of
hs1p can be inferred from the relative performance of h.,. Third, the performance of the earliest
start time heuristic h.4 is completely dominated by the performance of the other heuristics; hence
a detailed comparison against h.g is of lesser interest.

Table 6 shows a comparison of the number of basic blocks where one heuristic gave a better
schedule than the other heuristic when coupled with a forward list scheduler. Table 7 shows the
results for a backward list scheduling algorithm. On this performance measure, the decision tree
heuristic is significantly better than the critical-path heuristic for small and medium size basic
blocks. However, as the basic block size increases, the advantage of the decision tree heuristic
decreases. Overall, for every basic block where the critical-path heuristic found a better schedule
than the decision tree heuristic, there were between 2.9 and 7.8 basic blocks where the decision
tree heuristic found a better schedule than the critical-path heuristic.
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Table 6: Forward list scheduler. Number of basic blocks in the SPEC 2000 benchmark suite where
the critical-path heuristic gave a better schedule (/.,) and where the decision tree heuristic gave a
better schedule (h4), for ranges of basic block sizes and various issue widths. Also shown is the
ratio of the number of improvements (r = hg;/hep).

1-issue 2-issue 4-issue 6-issue
range hep hat T | hep hat T | hep hat | hep hat T
1-5 0 338 — 0 350 — 0 170 — 0 0o —

6-10 33 708 21.5| 32 791 247 7 625 893 5 18 3.6
11-20 145 677 4.7 127 785 6.2 | 63 1006 160 | 70 260 3.7
21-30 90 423 47| 83 544 66| 8 603 6.8 |128 233 1.8
31-50 115 422 37144 553 38128 669 52| 80 288 3.6
51-100 | 113 355 3.1 1104 545 52 |115 644 56| 8 341 4.0
101-250 | 103 155 15116 272 23| 83 301 3.6 | 78 184 24
251-2600 | 46 39 08| 47 51 11| 36 60 1.7 29 36 1.2
Total 645 3,117 4.8 653 3,891 6.0 |521 4,078 7.8 |476 1360 2.9

Table 7: Backward list scheduler. Number of basic blocks in the SPEC 2000 benchmark suite
where the critical-path heuristic gave a better schedule (h.,) and where the decision tree heuristic
gave a better schedule (h4), for ranges of basic block sizes and various issue widths. Also shown
is the ratio of the number of improvements (7 = hg/hep).

1-issue 2-issue 4-issue 6-issue
range hep Rt | Dhep hat T | Dep Rt | hep hat r
1-5 0 43 — 0 43 — 0 45 — 0 4 —

6-10 19 300 158 | 23 294 128 | 13 214 165 0 26 —
11-20 120 561 47109 610 56| 54 544 10.1 7 188 26.9
21-30 64 247 39| 51 251 49| 65 318 49| 28 88 3.1
31-50 106 228 22122 297 24 |126 406 32| 79 211 27
51-100 83 271 33| 92 360 39| 96 460 48| 69 303 44
101-250 | 71 119 1.7 88 216 25| 80 243 3.0 | 62 158 2.5
251-2600 | 21 20 10| 12 45 38| 26 47 1.8 25 32 13
Total 484 1,789 3.7 1497 2,116 4.3 460 2,277 5.0 270 1,010 3.7
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We conclude the detailed comparison between the decision tree heuristic h g and the critical-
path heuristic /., by examining how far from optimal are the non-optimal schedules found by the
heuristics.

Table 8 shows performance guarantees in terms of the worst-case factor from optimality, a
measure of the robustness of a heuristic, when the heuristics are coupled with a forward list sched-
uler. Table 9 shows the results for a backward list scheduling algorithm. For each basic block,
we calculated the ratio of the length of the schedule found by the heuristic over the length of the
optimal schedule. Each entry in the table is then the maximum over all ratios for basic blocks in
that size range. Another way to read the entries in this table is that saying, for example, that the
decision tree heuristic is within a factor of 1.25 of optimal is that the decision tree heuristic was
always within 25% of the optimal value in that size range. For most size ranges and architectural
models the decision tree heuristic gave much better worst-case guarantees than the critical-path
heuristic. It is interesting to note that (i) the heuristics, especially the critical-path heuristic, can
be quite far from optimal for relative large basic blocks (see, for example, the size range 51-100
and the 4-issue and 6-issue architectures), and (ii) the backward list scheduler, while optimal more
often than the forward list scheduler, can make more costly mistakes when it returns a schedule
that is non-optimal.

Finally, Figure 2 shows the percentage of all basic blocks in the size range 6-2600 where the
list scheduler was within a given percentage of optimal. In constructing the graphs, we omitted
the blocks in the size range 1-5. This was done to avoid inflating the percentages by including
hundreds of thousands of basic blocks that are relatively easy for most any heuristic. The results
for both the critical-path heuristic and the decision tree heuristic are shown. For example, the
backward list scheduler using the decision tree heuristic is within 5% of optimal for 99.7% of
all basic blocks on the 4-issue architecture. As another example, the forward list scheduler using
the decision tree heuristic finds an optimal schedule (i.e., is with 0% of optimal) for 98.6% of all
basic blocks on the 4-issue architecture. As is clear from the graphs, the decision tree heuristic
dominates the critical path heuristic at all points for all architectures.
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Table 8: Forward list scheduler. Performance guarantees in terms of worst-case factors from opti-
mality for the critical-path heuristic (.,) and the decision tree heuristic (h4:), for ranges of basic
block sizes and various issue widths.

1-issue 2-issue 4-issue 6-issue

range hcp hdt hcp hdt hcp hdt hcp hdt
1-5 1.20 1.00 | 1.33 1.00 | 1.25 1.25|1.00 1.00
6-10 1.20 1.13 | 1.30 1.14 | 133 125|133 1.33
11-20 .21 1.17 | 1.27 1.17 | 138 1.17 | 1.25 1.20
21-30 1.14 1.10 | 1.19 1.10 | 1.29 1.25|1.18 1.20
31-50 1.16 1.07 | 1.25 1.25|132 1.15|1.21 1.21
51-100 | 1.10 1.09 | 1.20 1.13 | 1.39 1.12 |1.29 1.24
101-250 | 1.10 1.09 | 1.27 1.24 | 1.28 1.16 | 1.32 1.16
251-2600 | 1.01 1.02 | 1.24 1.26 |1.16 1.13 | 1.05 1.06
Maximum | 1.21 1.17 | 1.33 1.26 | 1.39 1.25 | 1.33 1.33

Table 9: Backward list scheduler. Performance guarantees in terms of worst-case factors from
optimality for the critical-path heuristic (h.,) and the decision tree heuristic (h4), for ranges of
basic block sizes and various issue widths.

1-issue 2-issue 4-issue 6-issue

range hcp hdt hcp hdt hcp hdt hcp hdt
1-5 1.20 1.00 | 1.20 1.00 | 1.33 1.13 | 1.11 1.00
6-10 .18 1.13 | 1.18 1.13 | 1.33 1.33 | 1.20 1.20
11-20 1.17 113 | 1.23 1.13 | 1.25 1.17 | 1.20 1.17
21-30 1.13 1.11 | 1.39 1.11 | 141 123 |1.14 1.18
31-50 1.08 1.08 | 1.19 1.17 | 1.19 1.18 | 1.16 1.15
51-100 | 1.10 1.08 | 1.15 1.15 | 1.65 1.16 | 1.47 1.23
101-250 | 1.06 1.07 | 1.24 1.24 | 1.27 1.17 | 1.25 1.10
251-2600 | 1.01 1.02 | 1.32 1.28 | 1.23 1.24 | 1.22 1.22
Maximum | 1.20 1.13 | 1.39 1.28 | 1.65 1.33 | 1.47 1.23
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Figure 2: Performance guarantees in terms of worst-case factors from optimal for the critical-path
heuristic and the decision tree heuristic, for all basic blocks in the size range 6-2600; (a) 1-issue
architecture; (b) 2-issue architecture; (c) 4-issue architecture; (d) 6-issue architecture.
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5 Discussion

The machine learning approach for constructing a good heuristic for basic block scheduling has
several advantages over hand-crafted heuristics. The primary advantage is that of efficiency—
hand-crafting a heuristic is potentially a time-consuming process. In contrast, in the machine
learning approach feature construction needs to be done just once (as we have done in this pa-
per) and all of the subsequent stages can be fully automated. This means that new heuristics can
be easily generated for new architectures and for new programming languages and programming
styles. A secondary advantage is that hand-crafted heuristics are prone to the well-known pitfall of
over-fitting; that is, they work well on the training data to which they are tuned but not as well on
data that has not been seen before. In contrast, we used techniques from machine learning which
are designed to avoid over-fitting. In particular, we used feature filtering, feature selection, the use
of a validation set, and most importantly, the complete separation of the data used to discover the
heuristic from the data used to evaluate the heuristic. Further secondary advantages of the machine
learning approach include: (1) it is possible to test many more possible combinations of features
and orderings of features than in a hand-crafted approach, (i1) richer forms of the heuristics can
be tested (the form of the decision tree heuristic is more complex than the form that is usually
constructed by hand, which is a series of tie-breaking schemes), and (iii) the improved overall
performance of the resulting heuristic.

6 Conclusion

We presented a study on automatically learning a good heuristic for basic block scheduling us-
ing supervised machine learning techniques. The novelty of our approach is in the quality of the
training data—we obtained training instances from very large basic blocks and we performed an
extensive and systematic analysis to identify the best features and to synthesize new features—and
in our emphasis on learning a simple yet accurate heuristic. We performed an extensive eval-
uation of the heuristic that was automatically learned by comparing it against three previously
proposed heuristics and against an optimal scheduler, using all of the basic blocks in the SPEC
2000 benchmarks. On this benchmark suite, the decision tree heuristic was better than all three of
the previously proposed heuristics. In particular, the decision tree heuristic reduced the number of
basic blocks that were not optimally scheduled by up to 55% compared to the popular critical-path
heuristic, and gave improved performance guarantees in terms of the worst-case factor from opti-
mality. Beyond heuristics for compiler optimization, our results also provide further evidence for
the interest of machine learning techniques for discovering heuristics.
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