
Learning Hierarchical Latent Class Models

Technical Report HKUST-CS03-01

�

Nevin L. Zhang
Department of Computer Science

Hong Kong University of Science & Technology, China
lzhang@cs.ust.hk

Tomáš Kočka, Gytis Karciauskas, Finn V. Jensen
Department of Computer Science

Aalborg University, Denmark.
�kocka, gytis, fvj�@cs.auc.dk



Abstract

Hierarchical latent class (HLC) models generalize latent class models. As models for cluster analysis, they suit
more applications than the latter because they relax the often untrue conditional independence assumption. They
also facilitate the discovery of latent causal structures and the induction of probabilistic models that capture com-
plex dependencies and yet have low inferential complexity. In this paper, we investigate the problem of inducing
HLC models from data. Two fundamental issues of general latent structure discovery are identified and methods
to address those issues for HLC models are proposed. Based on the proposals, we develop an algorithm for learn-
ing HLC models and demonstrate the feasibility of learning HLC models that are large enough to be of practical
interest.



1 Introduction

Hierarchical latent class (HLC) models [Zhang 2002] are tree-structured Bayesian networks (BNs) where leaf
nodes are observed while internal nodes are not. They generalize latent class (LC) models [Lazarsfeld and Henry
1968] and were first identified as a potentially useful class of Bayesian networks by Pearl [1988]. This paper is
concerned with the problem of learning HLC models from data. The problem is interesting for three reasons.

First, the induction of HLC models from data can give rise to probabilistic models that represent complex
dependencies among observed variables and yet are computationally simple to work with. The past decade has
seen intensive research activities on learning BN models. The focus has mostly been on finding the model that
maximizes a scoring function [e.g. Jordan 1998] or satisfies a set of constraints sanctioned by data [e.g. Spirtes
et al. 1993]. Much progress has been made. However, relatively little consideration is given to the inferential
complexity of the resulting models. There are two notable exceptions. One is the work on learning observed
trees, i.e. trees over observed variables [Chow and Liu 1968]. The other is Elidanet al. [2001], who propose to
reduce the model complexity of a BN by introducing latent variables. HLC models can represent more complex
dependencies among observed variables than observed trees. Inference is easier in HLC models than in general
BNs with latent variables.

Second, the endeavor of learning HLC models can reveal latent causal structures. Often, observed variables
are correlated because they are influenced by some common hidden causes. HLC models can be interpreted as
hypotheses about how latent causes influence observed variables and how they are correlated among themselves.
Then finding an HLC model that fits data amounts to find a causal hypothesis that explains data. Researchers
have already been inferring latent causal structures from observed data. One example is the reconstruction of
phylogenetic trees [Durbinet al. 1998], which can be viewed as special HLC models.

Third, HLC models alleviate disadvantages of LC models as models for cluster analysis. An LC model consists
of one latent variable, namely the class variable, and a number of observed feature variables. It assumes that the
feature variables are mutually independent given the class variable. A serious problem with the use of LC models,
known aslocal dependence, is that this assumption is often violated. If one does not deal with local dependence
explicitly, one implicitly attributes it to the latent variable. In practice, this results in too many latent classes, many
of them spurious, and degenerates the accuracy of classification [Vermunt and Magidson 2002]. HLC models
alleviate this problem because it can model local dependence. As a matter of fact, the first systematic study on
HLC models [Zhang 2002] was motivated by the need, in an application in traditional Chinese medicine, for cluster
models that can deal with local dependence.

When learning BNs with latent variables, one needs to determine not only model structures, i.e. connections
among variables, but also cardinalities of latent variables, i.e. the numbers of values they can take. Although
not using the terminology of HLC models, Connolly [1993] proposed the first, somewhatad hoc, algorithm for
learning HLC models and tested it on one small toy example. A more principled algorithm was proposed by Zhang
[2002]. This algorithm hill-climbs in the space HLC models guided by a scoring function. It starts with an LC
model. At each step of search, it first generates a number of candidate structures by modifying the structure of the
current model. It then optimizes cardinalities of latent variables in the candidate structures, resulting in candidate
models. Finally, it evaluates the candidate models and pick the best one to seed the next step of search. Search
terminates when the best candidate model is no better than the current model. To optimize the cardinalities of the
latent variables in a model structure, the algorithm employees a lower level hill-climbing routine. Hence we call it
thedouble hill-climbing (DHC) algorithm.

Empirical results reported in [Zhang 2002] show that the DHC algorithm performs well in terms of model
quality when the BIC [Schwarz 1978] scoring function is used. However, it has a serious drawback, namely its
high complexity. Let� be the number of observed variables. At each step of search, DHC generates��� ��
models structures. To optimize the cardinalities of the latent variables in a given model structure, the lower level
search routine examines������ models, where� is the maximum cardinality for a latent variable. Hence there
are totally������ models to evaluate. Before a model can be evaluated, its parameter must be optimized. Due
to the presence of latent variables, parameter optimization requires the EM algorithm, which is known to be
computationally expensive.

In this paper, we propose a new algorithm for learning HLC models. Unlike DHC, this algorithm does not
obtain candidate models by first creating candidate structures and then optimizing cardinalities of latent variables
using a lower level hill-climbing routine. Rather, it generates candidate models directly. We hence call it thesingle
hill-climbing (SHC) algorithm. At each step of search, SHC generates and evaluates��� �� candidate models and



Figure 1: An example HLC model and the corresponding unrooted HLC model. The� �’s are latent variables and
the�� ’s are manifest variables.

is hence much more efficient than DHC. In the meantime, empirical studies indicate that SHC works as well as
DHC in terms of the quality of the models they produce. Moreover, SHC provides a framework where the idea of
structural EM [Friedman 1997] can easily be applied to greatly reduce the number of calls to EM.

There are two fundamental issues in the context of general latent structure discovery. The first is the well-
known problem of determining the cardinality of a new latent node. A straightforward solution would be to use
a lower level hill-climbing routine. But this would lead to DHC. The second issue is how to make the tradeoff
between variable complexity and structure complexity. Herevariable complexity refers to the number of values
latent variables can have, whilestructure complexity refers to the number of nodes and links among them. Those
two aspects of model complexity are related because one can always merge two neighboring latent nodes. In other
words, on can always increase variable complexity to compensate for the reduction in structure complexity. An
issue of trading off naturally arises. In this paper, methods for addressing those two issues for HLC models are
proposed.

The next section gives a brief review of some facts about HLC models. Section 3 develops the SHC algorithm
and Section 4 reports empirical results. Concluding remarks are provided in Section 5.

2 Hiearchical latent class models

A hierarchical latent class (HLC) model is a Bayesian network where (1) the network structure is a rooted tree
and (2) the variables at the leaf nodes are observed and all the other variables are not. An example HLC model is
shown in Figure 1 (on the left). Following the latent class analysis literature, we refer to the observed variables as
manifest variables and all the other variables aslatent variables. A latent class (LC) model is an HLC model where
there is only one latent node. We usually write an HLC model as a pair� � ��� ��, where� is the collection of
parameters. The first component� consists of the model structure and cardinalities for the latent variables. We
will sometimes refer to� also as an HLC model. When it is necessary to distinguish between� and the pair
��� ��, we call� anunparameterized HLC model and the pair��� �� a parameterized HLC model.

Two parameterized HLC models����� �� and� ������ ��� aremarginally equivalent if they share the same
manifest variables��, ��, . . . ,�� and

	 ���� 
 
 
 � ����� �� � 	 ���� 
 
 
 � ����
�� ���
 (1)

An unparameterized HLC models� includes another� � if for any parameterization� � of ��, there exists param-
eterization� of � such that��� �� and���� ��� are marginally equivalent, i.e. if� can represent any distributions
over the manifest variables that�� can. If� includes�� and vice versa, we say that� and�� aremarginally
equivalent. Marginally equivalent (parameterized or unparamterized) models areequivalent if they have the same
number of independent parameters. We cannot distinguish between equivalent models using penalized likelihood
scores [Green 1998].

Let�� be the root of an HLC model�. Suppose�� is a child of�� and it is a latent node. Define another
HLC model�� by reversing the arrow�����. In��,�� is the root. The operation is hence calledroot walking;
the root has walked from�� to ��. Root walking leads to equivalent models [Zhang 2002]. This implies that
it is impossible to determine edge orientation from data. We can learn onlyunrooted HLC models, which are
HLC models with all directions on the edges dropped. Figure 1 also shows an example unrooted HLC model. An
unrooted HLC model represents a class of HLC models. Semantically it is a Markov random field on an undirected



tree. The leaf nodes are observed while the interior nodes are latent. The concepts of marginal equivalence and
equivalence can be defined for unrooted HLC models in the same way as for rooted models.

Let �� � stand for the cardinality of a variable� . For a latent variable� in an HLC model, enumerate its
neighbors as��, ��, . . . ,��. An HLC model isregular if for any latent variable�,

��� �

��

��� ����

������� ����
� (2)

and when� has only two neighbors and one of which is also a latent node,

��� �
��������

����� ���� � �

 (3)

Note that this definition applies to parameterized as well as to unparameterized models.
Given an irregular parameterized model� , there exists, a regular model that is marginally equivalent to�

and has fewer independent parameters [Zhang 2002]. Such a regular model can be obtained from� by deleting,
one by one, nodes that violate Condition (3) and reducing the cardinality of each node that violates Condition (2)
to the quantity on the right hand side. The second step needs to be repeated until cardinalities of latent variables
can no longer to reduced. We will refer to the process asregularization. It is evident that if penalized likelihood is
used for model selection, the regularized model is always preferred over� itself.

3 Learning HLC models

Assume that there is a collection of i.i.d samples on a number of manifest variables generated by an unknown
regular HLC model. This section presents an algorithm, named SHC, for reconstructing the regular unrooted HLC
models that corresponds to the generative model. In the rest of this section, we always mean unrooted models
when speaking of HLC models.

3.1 General Issues

The search space that SHC works with consists of all unrooted regular HLC models for the given manifest variables.
As for scoring functions, Zhang (2002) tested four with the DHC algorithm, namely AIC, hold-out LS, BIC, and
CS. Empirical results indicate BIC and CS are more suitable for the task of reconstructing HLC models than the
other two. In this paper, we use BIC. Given a data set�, the BIC score of a model� is

������� � ���	 ����� ����
�

�
����

where�� is the ML estimate of model parameters,� is the dimension of�, i.e. the number of independent
parameters, and� is the sample size. The first term is known as maximized loglikelihood. It has the following
nice property: If model� includes� �, then the maximized loglikelihood of� is larger than or equal to that of
��. The second term is a penalty term. It decreases with sample size.

The overall strategy of SHC is similar to that of greedy equivalence search (GES), an algorithm for learning
Bayesian network structures in the case when all variables are observed (Meek 1997). It begins with the simplest
HLC model and works in two phases. In Phase I, SHCexpands models by introducing new latent nodes and
additional states for existing nodes. The aim is to improve the likelihood term of the BIC score. In Phase II, SHC
retracts models by deleting latent nodes or states of latent nodes. The aim is to reduce the penalty term of the BIC
score, while keeping the likelihood term more less the same. If model quality is improved in Phase II, SHC goes
back to Phase I and the process repeats itself.

3.2 Search operators

SHC hill-climbs in the space of regular HLC models using five search operators, namely State Introduction, Node
Introduction, Node Relocation, State Deletion, and Node Deletion. The first three operators are used in Phase I
and the rest are used in Phase II.



Figure 2: Illustration of Node Introduction and Node Relocation.

Given an HLC model and a latent variable in the model,State Introduction creates a new model by adding an
additional state of the state space of the variable. Clearly, the new model includes the old model.

Node Introduction involves one latent node� in an HLC model and two of its neighbors. It creates a new
model by introducing a new latent node� � to mediate� and the two neighbors. The new node has the same
number of states as� . Consider the HLC model�� in Figure 2. Applying the Node Introduction operator to the
latent Node� and its neighbors�� and�� results in the model��. The new node�� has the same state space as
� . For the sake for computational efficiency, we do not consider introducing a new node to mediate� and more
than two of its neighbors. Without this restriction, the number of candidate models the operator could produce
is exponential in the number of neighbors. Also note that Node Introduction is disallowed when� has only two
neighbors. In this case, it would create a latent node that is also a leaf node. In HLC models, only manifest nodes
can be leaves.

Let �� be a model obtained from another model� via Node Introduction. Then� � includes�. Note that
if we set the cardinality of the new node� � to �� �, then it might no longer be the case that� � includes�. On
the other hand, if we set�� �� to a number larger than�� �, then� � is more complex than necessary. The only
alternative left is to set�� �� to be the same as�� �. This addresses the first fundamental issue raised at the end of
Section 1.

The two operators discussed so far introduce new ingredients to a model. CalledNode Relocation, the next
operator re-arranges connections among existing nodes. It involve two neighboring latent nodes� � and�� and a
neighbor� of �� that is different from��. It creates a new model by relocating� to��, i.e. removing the link
between� and�� and adding a link between� and��. Consider the HLC model�� in Figure 2. Relocating��
from� to�� results in model��. Note that a node is allowed to be relocated only “one step away”. This is for
the sake of computational efficiency and, judging from our experience, more flexibility does not seem necessary.
Also note that if the latent node�� has only two neighbors, relocating� to�� would make the latent node�� a
leaf node. In this case, we simply remove��.

There is a variant to Node Relocation that we callAccommodating Node Relocation. It is the same as Node
Relocation except that, after relocating a node, it adds one state to the new neighbor of the node. To understand
the need for this variant, consider again the models�� and�� in Figure 2. Model�� is obtained from model
�� by relocating�� from � to ��. In ��, �� mediates the interactions among three variables, while in�� it
mediates the interactions among four variables. The more states a latent variable has, the more interactions among
its neighbors it can capture. In other words, the cardinality of a latent variable limits its the ability in mediating
interactions. For the sake of argument, assume the relocating� � to�� is a ”good” move. Sometimes the benefit
of such a move cannot be realized unless the cardinality of� � is increased.

State Deletion is the opposite of State Introduction. Given an HLC model and a latent node in the model, it
creates a new model by deleting a state of the latent node. It is not applicable if the latent node has only two states.
Node Deletion is the opposite of Node Introduction. It involves two neighboring latent node� and� � in an HLC
model. It creates a new model by deleting� and making all neighbors of� other than� � neighbors of� �. If
model�� is obtained by applying State or Node Deletion to an model�, then� includes� �.

All of the five operators might lead to the violation of the regularity constraints. We therefore follow each
operator immediately with a regularization step.



3.3 Model selection

Given a data set, our task to is find a model that fits the data well and has low complexity. It is possible to achieve
perfect fit to data using an LC model where the latent node has a high cardinality. That is to use the model with
the lowest structure complexity and high variable complexity. Clearly this model does not meet our objective. We
need to find a balance between variable complexity and structure complexity so that the overall model complexity
is low. This is the second fundamental issue mentioned at the end of Section 1.

State Introduction increases variable complexity, while Node Introduction increases structure complexity. To
find an appropriate tradeoff between the two aspects of model complexity, SHC starts with the model that has the
lowest variable complexity and the lowest structure complexity, i.e. the LC model where the latent node has only
two states. At each step in Phase I, it decides whether and how to apply State Introduction, Node Introduction, or
Node Relocation. The key question is how this decision should be made.

A naive answer to the question is to (1) generate candidate models by applying those three search operators on
the current model, (2) evaluate them one by one, and (3) pick the one with the highest score. This strategy does
not work. To understand why, consider the first step, where the current model is the LC model with a binary latent
node. Suppose there are� manifest variables. State Introduction would increase the number of model parameters
by ���, while Node Introduction would increase the number of model parameters only by�. It therefore comes
with no surprise that the (unique) model generated by State Introduction is likely to have a much higher score
than models produced by Node Introduction. Consequently, State Introduction is likely to be chosen, resulting in
another LC model where the latent node has three states. Repeating the arguments, we see that State Introduction
is likely to be applied again in the next step, and again in the step after, and so on. Our experiments have confirmed
this behavior. We observed that SHC would never leave LC models when this naive model selection strategy was
used.

Define the cost of (a particular application of) an operator to be the increase in model parameters it brings
about. A natural way to overcome the above difficulty is to choose the operator that is the most cost-effective. To
be more specific, let� be the current model and� � be a candidate model. Define theunit improvement of � � over
� to be

������� �
score����� score���

dimension����� dimension���
�

wheredimension��� stands for the number of independent parameters in�. SHC adopts the following model
selection strategy:

Among all candidate models, choose the one that has the highest unit improvement over the current
model.

We will refer to this strategy ascost-effectiveness model selection.
Node Relocation does not necessarily increase the number of model parameters. Care must be taken when

comparing models it produces with models generated by other operators. At each step, SHC considers Node
Relocation first. For each candidate model� � obtained from the current model� by relocating a node, SHC
check whether the score of�� is greater than that of�. If this is not the case,� � is discarded and SHC creates
another model��� by adding an additional state to the new neighbor of the node that was relocated. In other
words, Accommodating Node Relocation is applied. If the score of� �� is still not greater than that of�, it is also
discarded. The remaining candidate models, if any, all have scores higher than that of�. If some of the remaining
models have no more parameters than�, then SHC skips the rest of the current iteration and moves to the next step
with the first such model it encounters. By doing so, it improves model score without increasing model complexity.
If no such models exist, SHC compares the remaining models with models generated by State Introduction and
Node Introduction in terms of cost-effectiveness and pick the one with the highest unit improvement over� to
seed the next step.

Model selection in Phase II is straightforward and is based on model score.

3.4 The SHC algorithm

We now give the pseudo code of the SHC algorithm. The input to the algorithm is a data set� on a list of manifest
variables. Records in� do not necessarily contain values for all the manifest variables. The output is an unrooted
HLC model. Model parameters are optimized using the EM algorithm. Given a model� , the collections of can-
didate models the search operators produce will be denoted by�����, �����, �����, ������, �����, and



Figure 3: The unrooted HLC model SHC learned from data that were generated using the model in Figure 1.

�����. HereNI, for instance, is a shorthand for Node Introduction.

������
Let� be the LC model with a binary latent node.
Repeat until termination:
� ���	
��������.
If ������ ����������, return M. Else��� �.
� ���	
���������.
If ������ ����������, return M. Else��� �.

�	
��������
Repeat until termination:
���.
For� �������,

If ������ ����������, add� � to �
Else let� �� be the corresponding model inANR(M).

If ������ �����������, add� �� to �
If there is� ��� s.t.����������� ���������������
��� � and continue.

Let� ���	�����	����� s.t.��� ���� is maximum.
If ������ ����������, return M. Else��� �.

�	
���������
Repeat until termination:

Let� �������	����� s.t.������ �� is maximum.
If ������ ����������, return M. Else��� �.

In the Appendix, we illustrate in detail how SHC works with an example.

4 Empirical results

This section reports experiments designed to determine whether SCH can learn models of good quality and how
efficient it is. In all the experiments, EM was configured as follows. To estimate parameters for a given unpa-
rameterized model�, we first randomly generated 64 different parameterizations of�. This gave us 64 initial
parameterized models. One EM iteration was run on all models and afterwards the worst 32 models were dis-
carded. Then two EM iterations were run on the remaining 32 models and afterwards the worst 16 models were
discarded. This process was continued until there was only one model. On this model, EM was terminated either
if the increase in loglikelihood fell below 0.01 or the total number of iterations exceeded 500.

Our experiments were based on synthetic data. In the first experiment, data were generated using the model
shown in Figure 1. The cardinalities of all variables were set at 3. Parameters for the model were randomly
generated except that we ensured that each conditional distribution has a component with mass larger than 0.6. A
data set of 10,000 records were sampled.



Figure 4: Test Models: Manifest nodes are labelled with their names. All manifest variables have 3 states. Latent
nodes are labelled with their cardinalities.

We tested both DHC and SHC on the data set. The tests were carried on a PC with a 1 GHz Pentium III
processor. DHC took 97 hours to terminate while SHC finished in 4.4 hours. SHC was about 22 times faster.
In terms of model quality, DHC recovered the unrooted model in Figure 1 except that the cardinality of� � was
underestimated by one. On the other hand, SHC yielded the model in Figure 3, where both� � and�� have
cardinality 3. This model closely resembles the one found by DHC. Denote by	 � and	� the joint distributions of
the manifest variables in the models found by DHC and SHC respectively. The KL divergence of	 � from 	� is
0.0017. So the two distributions are very close.

It might appear that both DHC and SHC failed in this experiment because they did not exactly recover the
generative model. In reality, the generative model is in the neighborhood of the learned model in both cases.
This implies that the two models were compared and the learned model was chosen because it is better than the
generative model according to data.

For the second experiment, we used the models��, ��, and�� shown in Figure 4. Parameters were ran-
domly generated except that we ensured that each conditional distribution has a component with mass larger than
0.8. We also ensured that, in every conditional probability table, that the large components of different rows are
not all at the same column. A data set of 10,000 records were sampled for each model. We will denote the three
data sets by��,��, and�� respectively. SHC was tested on the data sets, while DHC was not because of its high
complexity.

The unrooted HLC model SHC produced based on�� corresponds exactly to the rooted HLC model��.
Models�� and�� are not regular. In both models, Condition (3) is violated by the root node. Let� �

�
and� �

�
be

the models obtained respectively from�� and�� by regularization. They are the same as�� and�� except that
the root node is deleted and an edge is added to connect the two children of the root. The unrooted HLC models
SHC produced based on�� and�� correspond precisely to� �

�
and� �

�
. In other words, SHC performed well in

terms of model quality. In all cases, SHC found the final model in Phase I.
Figure 5 shows the running times of SHC on a PC with a 2.26GHz Pentium 4 processor. We see that, although

being much faster than DHC, SHC is still inefficient due to the large number of calls to EM. Fortunately, SHC
provides a framework where the idea of structural EM [Friedman 1997] can easily be applied to drastically reduce
the number of calls to EM. We have been investigating this opportunity in parallel with the work reported in the
current paper. A heuristic version of SHC have been developed. It yielded the same models as SHC on the three
data sets and, as can seen from Figure 5, it is much faster than SHC. (Temporary note: Even better results are
expected in the near future.) Details of this work will be described in a separate paper.



100

1000

10000

100000

6 7 8 9 10 11 12

T
im

e 
(S

ec
on

ds
)

Model Size (Number of Manifest Variables)

SHC
Heuristic SHC

Figure 5: Running time of SHC and a heuristic verison of SHC on three synthetic data sets.

5 Conclusions

It is interesting to learn HLC models because, as models for cluster analysis, they relax the often untrue conditional
independence assumption of LC models and hence suit more applications. They also facilitate the discovery of
latent causal structures and the induction of probabilistic models that capture complex correlations and yet have
low inferential complexity. In this paper, we have developed an algorithm for learning HLC models called SHC
and demonstrated that SHC is able to learn HLC models that are large enough to be of practical interest.

Acknowledgement

Research was partially supported Hong Kong Research Grants Council under grant HKUST6088/01E.

References

Chow, C. K. and Liu, C. N. (1968). Approximating discrete probability distributions with dependence trees.IEEE
Transactions on Information Theory, IT-14(3): 462-467.

Connolly, D. (1993). Constructing hidden variables in Bayesian networks via conceptual learning.ICML-93,
65-72.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998).Biological sequence analysis: probabilistic models of
proteins and nucleic acids. Cambridge University Press.

Elidan, G., Lotner, N., Friedman, N. and Koller, D. (2001). Discovering hidden variables: A structure-based
approach.NIPS-01.

Friedman, N. (1997). Learning belief networks in the presence of missing values and hidden variables.ICML-97,
125-133.

Green, P. (1998). Penalized likelihood. InEncyclopedia of Statistical Sciences, Update Volume 2. John Wiley &
Sons.

Jordan, M. J. (ed.) (1998).Learning in graphical models. Kluwer Academic Publishers.

Lazarsfeld, P. F., and Henry, N.W. (1968).Latent structure analysis. Boston: Houghton Mifflin.

Meek, C. (1997).Graphical models: Selection causal and statistical models. Ph.D. Thesis, Carnegie Mellon
University.



Pearl, J. (1988).Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference Morgan Kauf-
mann Publishers, Palo Alto.

Schwarz, G. (1978). Estimating the dimension of a model.Annals of Statistics, 6(2), 461-464.

Spirtes, P., Glymour, C., and Scheines, R. (1993).Causation, prediction, and search. Springer-Verlag.

Vermunt, J.K. and Magidson, J. (2002). Latent class cluster analysis. In Hagenaars, J. A. and McCutcheon A. L.
(eds.).Advances in latent class analysis. Cambridge University Press.

Zhang, N. L. (2002). Hierarchical latent class models for cluster analysis.AAAI-02, 230-237.



Appendix: Execution trace of SHC on data sampled from M3 of Figure 4.

Nodes affected by search operators are indicated with ovals.

2

v5 v6 v7 v8 v9 v10 v13 v14 v15 v16 v17 v18

2

v5 v6 v7 v8 v9 v10 v14 v16 v17 v18 2

v13 v15
2

v5 v6 v7 v8 v9 v10 v14 v16 v18 2

v13 v15 v17

2

v5 v6 v7 v8 v9 v10 v16 v18 2

v13 v15 v17 v14
2

v5 v6 v7 v8 v9 v10 v18 2

v13 v15 v17 v14 v16

2

v5 v6 v7 v8 v9 v10 2

v13 v15 v17 v14 v16 v18

2

v5 v6 v7 v9 2

v8 v10

2

v13 v15 v17 v14 v16 v18

2

v5 v6 v7 2

v8 v10 v9

2

v13 v15 v17 v14 v16 v18

2

2

v5 v6 v7 2

v8 v10 v9

v13 2

v15 v14

v17 v16 v18

2

2

v5 v6 v7 2

v8 v10 v9

v13 2

v15 v14

v16 2

v17 v18

2

2

v5 v6 v7 2

v8 v10 v9

v13 2

v15 v14

2

v17 v18 v16

2

2

v5 v6 v7 2

v8 v10 v9

v13 2

v15 v14

2

v17 2

v18 v16

2

2

v5 v6 v7 3

v8 v10 v9

v13 2

v15 v14

2

v17 2

v18 v16

2

2

v5 v6 v7 3

v8 v10 v9

3

v15 v14 v13

2

v17 2

v18 v16

2

2

2

v5 v6 v7

3

v8 v10 v9

3

v15 v14 v13

2

v17 2

v16 v18

2

2

2

v5 v6 v7

3

v8 v10 v9

3

v15 v14 v13

3

v17 v16 2

v18

2

2

2

v5 v6 v7

3

v8 v10 v9

3

v15 v14 v13

3

v17 v16 v18

2

2

3

v5 v6 v7

3

v8 v10 v9

3

v15 v14 v13

3

v17 v16 v18


