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Abstract

Building models, or maps, of robot environments is
a highly active research area; however, most existing
techniques construct unstructured maps and assume
static environments. In this paper, we present an al-
gorithm for learning object models of non-stationary
objects found in office-type environments. Our al-
gorithm exploits the fact that many objects found in
office environments look alike (e.g., chairs, recycling
bins). It does so through a two-level hierarchical repre-
sentation, which links individual objects with generic
shape templates of object classes. We derive an ap-
proximate EM algorithm for learning shape parame-
ters at both levels of the hierarchy, using local occu-
pancy grid maps for representing shape. Additionally,
we develop a Bayesian model selection algorithm that
enables the robot to estimate the total number of ob-
jects and object templates in the environment. Ex-
perimental results using a real robot equipped with a
laser range finder indicate that our approach performs
well at learning object-based maps of simple office en-
vironments. The approach outperforms a previously
developed non-hierarchical algorithm that models ob-
jects but lacks class templates.

1 Introduction

Building environmental maps with mobile robots is a key

prerequisite of truly autonomous robots [19]. State-of-the-

art algorithms focus predominantly on building maps in

static environments [20]. Common map representations

range from lists of landmarks [3, 9, 21], fine-grained grids

of numerical occupancy values [6, 15], collections of point

obstacles [11], or sets of polygons [12]. These representa-

tions are appropriate for mobile robot navigation in static

environments.

Real environments, however, consist of objects. For ex-

ample, office environments possess chairs, doors, recycling

bins, etc. Many of these objects are non-stationary, that

is, their locations may change over time. This observation

motivates research on a new generation of mapping algo-

rithms, which represent environments as collections of ob-

jects. At a minimum, such object models would enable a

robot to track changes in the environment. For example, a

cleaning robot entering an office at night might realize that

a recycling bin has moved from one location to another. It

might do so without the need to learn a model of this recy-

cling bin from scratch, as would be necessary with existing

robot mapping techniques [20].

Object representations offer a second, important advan-

tage, which is due to the fact that many office environ-

ments possess large collections of objects of the same type.

For example, most office chairs are instances of the same

generic chair and therefore look alike, as do most doors,

recycling bins, and so on. As these examples suggest, at-

tributes of objects are shared by entire classes of objects,

and understanding the nature of object classes is of signifi-

cant interest to mobile robotics. In particular, algorithms

that learn properties of object classes would be able to

transfer learned parameters (e.g., appearance, motion pa-

rameters) from one object to another in the same class.

Such ability to generalize would have a profound impact on

the accuracy of object models, and the speed at which such

models can be acquired. If, for example, a cleaning robot

enters a room it has never visited before, it might realize

that a specific object in the room possesses the same vi-

sual appearance of other objects seen in other rooms (e.g.,

chairs). The robot would then be able to acquire a map

of this object much faster. It would also enable the robot

to predict properties of this newly seen object, such as the

fact that a chair is non-stationary—without ever seeing this

specific object move.

In previous work, we developed an algorithm that has

successfully been demonstrated to learn shape models of

non-stationary objects [2]. This approach works by com-

paring occupancy grid maps acquired at different points

in time. A straightforward segmentation algorithm was

developed that extracts object footprints from occupancy

grid maps. It uses these footprints to learn shape models

of objects in the environment, represented by occupancy

grid maps. This algorithm is related to work on learn-

ing generative object models in computer vision and med-

ical imaging. Frey and Jojic [7] describe an unsupervised

approach which infers a set of object templates and their

transformations from a set of camera images. Leventon et

al. [10] describe an alternative shape representation based

on geodesic active contours. They show how to learn ob-
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Figure 1: (a) Generative hierarchical model of environ-

ments with non-stationary objects. (b) Representation as

a graphical model.

ject shape priors using the representation and how to use the

object priors for tissue segmentation in tomography scans.

This paper goes one step further by proposing an al-

gorithm that identifies classes of objects, in addition to

learning plain object models. In particular, our approach

learns shape models of individual object classes, from mul-

tiple occurrences of objects of the same type. By learning

shape models of object types—in addition to shape models

of individual objects—our approach is able to generalize

across different object models that belong to the same ob-

ject class. This approach follows the hierarchical Bayesian

framework (see [1, 8, 13]). We show that our approach

leads to significantly more accurate models in real-world

environments with multiple objects of the same type.

The specific learning algorithm proposed here is an in-

stance of the popular EM algorithm [14]. We develop a

closed-form solution for learning at both levels of the hi-

erarchy, which simultaneously identifies object models and

shape templates for entire object classes. On top of this, we

propose a Bayesian procedure for determining the appro-

priate number of object models, and object class models.

We tested our algorithm on data gathered by a physical

robot, which was equipped with a laser range finder. Our

results suggest that our approach succeeds in learning ac-

curate shape and class models. A systematic comparison

with our previous, non-hierarchical approach [2] illustrates

that the use of class models yields significantly better re-

sults, both in terms of predictive power (as measured by

the log-likelihood over testing data) and in terms of con-

vergence properties (measured by the number of times each

algorithm is trapped in a local maximum of poor quality).

2 The Generative Hierarchical Model

We begin with a description of the hierarchical model. The

object level generalizes the approach of [2] to maps with

continuous occupancy. The central innovation is the intro-

duction of a template level.

2.1 The Object Hierarchy

Our object hierarchy (Figure 1a) is composed of two levels,

the object template level at the top, and the physical object

level at the bottom. The object template level consists of a

set of M shape templates, denoted ' = '1; : : : ; 'M . Each

template 'm is represented by an occupancy grid map [6,

15, 20], that is, an array of values in [0; 1℄ that represent the

occupancy of a grid cell.

The object level contains shape models of concrete ob-

jects in the world, denoted: � = �1; : : : ; �N , whereN is the

total number of objects (with N �M ). Each object model

�n is represented by an occupancy grid map, just like at the

template level. The key difference between object models

�n and templates 'm is that each �n corresponds to ex-

actly one object in the world, whereas a template 'm may

correspond to more than one object. If, for example, all

non-stationary objects were to look alike, � would contain

multiple models (one for each object), whereas ' would

contain only a single shape template.

To learn a hierarchy, we assume that the robot maps its

environments at T different points in time, between which

the configuration of the environment may have changed.

Each map is obtained from laser sensor readings and is rep-

resented as a (static) occupancy grid map. The sequence of

maps is denoted � = �1; : : : ; �T .

Objects may or may not be present at any time t, and they

may be located anywhere in the free space of the environ-

ment. The number of object snapshots present in the map

�t is denoted Kt. The set of object snapshots extracted

from the map �t are denoted �t = �1;t; : : : ; �Kt;t.

Each object snapshot �k;t is—once again—represented

by an occupancy grid map, constructed from robot sensor

measurements [6, 15, 20]. The exact routines for extraction

of object snapshots from maps are described in [2] and will

be reviewed briefly below.

Finally, we notice that objects may be observed in any

orientation. Since aligning object snapshots with objects in

the model is an important step in the learning procedure, we

will make the alignment parameters explicit. In particular,

we will use Æk;t to denote the alignment of snapshot �k;t
relative to the generative model. In our implementation,

each Æk;t consists of two translational and one rotational

parameters.

2.2 Probabilistic Model

To devise a sound algorithm for inferring an object hier-

archy from data, we have to specify probabilistic models

of how snapshots are generated from objects and how ob-

jects are generated from object templates. An graphical

overview for our probabilistic model is shown in Figure 1b.

Let �n be a concrete object, and �k;t be a single snapshot

of this object. Recall that each grid cell �n[j℄ in �n is a real

number in the interval [0; 1℄. We interpret each occupancy

value as a probability that a robot sensor would detect an

occupied grid cell. However, when mapping an environ-

ment, the robot typically takes multiple scans of the same

object, each resulting in a binomial outcome. By aggre-

gating the individual binary variables into a single aggre-

gate real value, we can approximate this fairly cumbersome



model into a much cleaner Gaussian distribution of a single

real-valued observation. Thus, the probability of observing

a concrete snapshot �k;t of object �n is given by

p(�k;t j �n; Æk;t) / e
�

1

2�2

P
j
(f(�k;t;Æk;t)[j℄��n[j℄)

2

(1)

The function f(�k;t; Æk;t) denotes the aligned snapshot

�k;t, and f(�k;t; Æk;t)[j℄ denotes its j-th grid cell. The ro-

tation and translation parameters of the alignment are spec-

ified by Æk;t. The parameter �2 is the variance of the noise.

It is useful to make explicit the correspondence between

objects �n and object snapshots �k;t, by introducing corre-

spondence variables � = �1; �2; : : : ; �T . Since each �t
is an entire set of snapshots, each �t is in fact a function:

�t : f1; : : : ;Ktg �! f1; : : : ; Ng.

A similar model governs the relationship between tem-

plates and individual objects. Let �n be a concrete object

generated according to object template 'm, for some n and

m. The probability that a grid cell �n[j℄ takes on a value

r 2 [0; 1℄ is a function of the corresponding grid cell 'm[j℄.

We assume that the probability of a grid cell value �n[j℄ is

normally distributed with variance �2:

p(�n[j℄ j 'm[j℄) =
1p
2��

e
�

1

2�2
(�n[j℄�'m[j℄)2

(2)

Equation (2) defines a probabilistic model for individual

grid cells, which is easily extended to entire maps:

p(�n j 'm) =

Y
j

p(�n[j℄ j 'm[j℄)

/ e
�

1

2�2

P
j
(�n[j℄�'m[j℄)2

(3)

Again, we introduce explicit variables for the correspon-

dence between objects �n and templates 'm: � =

�1; : : : ; �N with �n 2 f1; : : : ;Mg. The statement �n = m

means that object �n is an instantiation of the template

'm. The correspondences � are unknown in the hierarchi-

cal learning problem, which is a key complicating factor in

our attempt to learn hierarchical object models.

There is an important distinction between the correspon-

dence variables �’s and �’s, arising from the fact that each

object �n can only be observed once when acquiring a local

map �t. This induces a mutual exclusivity constraint on the

set of valid correspondences at the object level: If k 6= k 0,

then �t(k) 6= �t(k
0
). Thus, we see that the physical ob-

jects, modeled in the object level, can only be observed at

most once in any given map, whereas the class level object

templates might be instantiated more than once. For ex-

ample, an object at the class level might be a prototypical

chair, which might be mapped to multiple concrete chairs

at the object level—and usually multiple observations over

time of any of those concrete chairs at the snapshot level.

3 Hierarchical EM

Our goal in this paper is to learn the model 	 = h�; '; Æi
given the data � using EM [5]. Unlike many EM im-

plementations, however, we do not simply want to maxi-

mize the probability of the data given the model. We also

want to take into consideration the probabilistic relation-

ships between the two levels of the hierarchy. Thus, we

want to maximize the joint probability over the data � and

the model 	:

argmax

	

p(	; �) = argmax

�;';Æ

p(�; '; Æ; �) (4)

Note that we treat the latent alignment parameters Æ as

model parameters, which we maximize during learning.

EM is an iterative procedure that can be used to max-

imize a likelihood function. Starting with some ini-

tial model, EM generates a sequence of models of non-

decreasing likelihood:

h�[1℄; '[1℄; Æ[1℄i; h�[2℄; '[2℄; Æ[2℄i; : : : (5)

Let 	[i℄
= h�[i℄; '[i℄; Æ[i℄i be the i-th such model. Our de-

sire is to find an (i+ 1)st model 	[i+1℄ for which

p(	[i+1℄; �) � p(	[i℄; �) (6)

As is common in the EM literature [14], this goal is

achieved by maximizing the expected log likelihood

	
[i+1℄

= argmax

	

E�;�

h
log p(�; �;	; �)

���	[i℄; �
i

(7)

Here E�;� is the mathematical expectation over the latent

correspondence variables � and �, relative to the distribu-

tion p(�; � j 	[i℄; �).

The probability inside the logarithm in (7) factors into

two terms, one for each level of the hierarchy (multiplied

by a constant):

p(�; �;	; �) = p(�; �; '; �; Æ; �) (8)

Exploiting the independencies shown in Figure 1b, and the

uniform priors over �, �, and �, we obtain:

= p(') p(�) p(� j �; ') p(�) p(Æ) p(� j Æ; �; �)
/ p(� j �; ') p(� j Æ; �; �) (9)

The probability log p(� j �; ') of the objects � given the

object templates ' and the correspondences � is essen-

tially defined via (3). Here we recast it using a notation

that makes the conditioning on � explicit:

p(� j �; ') (10)

/
NY
n=1

e
�

1

2�2

P
M

m=1
I(�n=m)

P
j
(�n[j℄�'m[j℄)2

where I( ) is an indicator function which is 1 if its argu-

ment is true, and 0 otherwise. Similarly, the probability

p(� j �; �; Æ) is based on (1) and conveniently written as:

p(� j �; �; Æ) / (11)

TY
t=1

KtY
k=1

e
�

1

2�2

P
N

n=1
I(�t(k)=n)

P
j
(f(�k;t;Æk;t)[j℄��n[j℄)

2



Substituting the product (9) with (10) and (11) into the ex-
pected log likelihood (7) gives us:

	
[i+1℄

= argmax
';�;Æ

�

NX
n=1

(
MX
m=1

p(�n=m j 	[i℄
; �)

�2

X
j

(�n[j℄ � 'm[j℄)
2

(12)

+

TX
t=1

KtX
k=1

p(�t(k)=n j 	[i℄
; �)

�2

X
j

(f(�k;t; Æk;t)[j℄ � �n[j℄)
2

)

In deriving this expression, we exploit the linearity of

the expectation, which allows us to replace the indicator

variables through probabilities (expectations). It is easy

to see that the expected log-likelihood in (12) consists of

two main terms. The first enforces consistency between

the template and the object level, and the second between

the object and the data level.

4 The Implementation of the EM Algorithm

The standard implementation of EM requires the M-step to

find the parameter assignment h	[i+1℄i which maximizes

(12). A variation of EM called Generalized EM [5] re-

quires only that the M-step finds an assignment for h	 [i+1℄i
which increases, but does not necessarily maximize, the ex-

pected log-likelihood in (7). Generalized EM has the con-

vergence guarantees of EM, while possibly taking more it-

erations to converge. In our case, it allows us to avoid solv-

ing a complex joint optimization problem for the model pa-

rameters in the M-step.

Our Generalized EM starts with a random model and ran-

dom alignment parameters. It then alternates an E-step, in

which the expectations of the correspondences are calcu-

lated given the i-th model and alignment, and two M-steps,

one that generates a new hierarchical model h� [i+1℄; '[i+1℄i
and one for finding new alignment parameters Æ [i+1℄. Each

of the two M-steps does not decrease the expected log-

likelihood. If at least one of them increases it, we have a

guarantee of improving the original likelihood in (4). If

both result in no change in the expected log-likelihood,

then our algorithm has converged. As our objective func-

tion is not convex (because of the non-linear projection f ),

it is possible in principle that our implementation of Gen-

eralized EM converges to a ridge point, where optimizing

only for h�[i+1℄; '[i+1℄i or for Æ[i+1℄ does not increase the

log-likelihood, while jointly optimizing all the above pa-

rameters does. Nevertheless, our experiments show that the

algorithm converges rapidly to a good result.

4.1 E-Step

In our case, the E-step can easily be implemented exactly:

b[i℄n;m = p(�n=m j �[i℄; '[i℄
)

=
p(�[i℄ j �n=m;'[i℄

) p(�n=m j; '[i℄
)PM

m0=1 p(�
[i℄ j �n=m0; '[i℄) p(�n=m0 j; '[i℄)

=
p(�

[i℄
n j �n=m;'

[i℄
m)PM

m0=1 p(�
[i℄
n j �n=m0; '

[i℄
m)

=
e
�

1

2�2

P
j
(�[i℄n [j℄�'[i℄

m [j℄)2

PM

m0=1 e
�

1

2�2

P
j
(�

[i℄
n [j℄�'

[i℄

m0
[j℄)2

(13)

and, similarly,

a
[i℄
k;t;n = p(�t(k) = n j �

[i℄
; �

[i℄
; Æk;t) = (14)P

at
I(�t(k)=n) e

�

1

2�2

P
j

P
k0
(f(�

[i℄

k0;t
[j℄;Æ

k0;t
)��

[i℄

�t(k
0)
[j℄)2

P
at
e
�

1

2�2

P
j

P
k0
(f(�

[i℄

k0;t
[j℄;Æ

k0;t
)��

[i℄

�t(k
0)
[j℄)2

The summation over �k in calculating the expectations

a
[i℄

k;t;n is necessary because of the mutual exclusion con-

straint described above, namely that no object can be seen

twice in the same map. The summation is exponential in

the number of observed objects Kt—however, Kt is rarely

larger than 10. If summing over � t (because of its expo-

nential domain) becomes too costly, efficient (and provably

polynomial) sampling schemes can be applied for approxi-

mating the desired expectations [4, 16].

4.2 Model M-Step

Our M-step first generates a new hierarchical model �; ' by

maximizing (12) under fixed expectations b
[i℄
n;m and a

[i℄

k;t;n

and fixed alignment parameters Æ. It is an appealing prop-

erty of our model that this part of the M-step can be exe-

cuted efficiently in closed form.

Our first observation is that the expression in (12) de-

composes into a set of decoupled optimization problems

over individual pixels, that can be optimized for each pixel

j individually:

h�[i+1℄
n [j℄; '[i+1℄

m [j℄i = argmin

�n[j℄'m[j℄

NX
n=1

MX
m=1

b
[i℄
n;m

�2
(�n[j℄� 'm[j℄)2 (15)

+

NX
n=1

TX
t=1

KtX
k=1

a
[i℄

k;t;n

�2
(f(�k;t; Æ

[i℄

k;t)[j℄� �n[j℄)
2

We then observe that (15) is a quadratic optimization prob-

lem, which therefore possesses a convenient closed-form

solution [18]. In particular, we can reformulate (15) as a

standard least-squares optimization problem:

argmin

x[j℄

(A � x[j℄� w[j℄)2 (16)

where x[j℄ = (�[j℄; '[j℄) is a vector comprising the j-th

cell value of all models at both levels. The constraint matrix

A has the form

A =

�
��1Bn;m:� ���1Bn;m:'

��1Ak;t;n 0

�
(17)



(a) (b)
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Figure 2: (a) The Pioneer robot used to collect laser range

data. (b) The robotics lab where the second data set was

collected. (c) Actual images of dynamic objects used in the

second data set.

where Bn;m:�, Bn;m:' and Ak;t;n are submatrices gener-

ated from the expectations calculated in the E-step. Gener-

ating such matrices from a quadratic optimization problem

such as (15) is straightforward, and the details are omitted

here due to space limitations. The vectorw[j℄ is of the form

w[j℄ =

�
0 ��1Ak;t;n�

0
[j℄T

�
(18)

where �0[j℄ is a vector constructed from the aligned j-th

map cell values of the snapshots �. The solution to (15) is

x[j℄ = (ATA)�1ATw[j℄ (19)

Thus, the new model �
[i+1℄
n ; '

[i+1℄
m is the result of a se-

quence of simple matrix operations, one for each pixel j.

4.3 Alignment M-Step

A final step of our M-step involves the optimization of the

alignment parameters Æ. Those are obtained by maximizing

the relevant parts of the expected log likelihood (12). Of

significance is the fact that the alignment variables depend

only on the object level �, and not on the template level '.

This leads to a powerful decomposition by which each Æk;t
can be calculated separately, by minimizing:

Æ
[i+1℄

k;t = argmin

Æk;t

(20)

NX
n=1

e
[i℄

k;t;n

X
j

(f(�k;t; Æk;t)[j℄� �[i+1℄
n [j℄)2

We represent the Æ for each snapshot as a discrete set

of possible transformation values and pick the value of Æ

which minimizes the above term. We can use gradient de-

scent to additionally refine the estimate.

4.4 Improving Global Convergence

Our approach inherits from EM the property that it is a hill

climbing algorithm, subject to local maxima. In our ex-

periments, we found that a straightforward implementation

(a)

(b) (c)

Figure 3: (a) Four maps from the Study Room dataset. Each

map contains the same set of non-stationary objects. (b)

Overlay of optimally aligned maps. (c) A particular differ-

ence map before low-pass filtering.

of EM frequently led to suboptimal maps. Our algorithm

therefore employs deterministic annealing [17] to smooth

the likelihood function and improve convergence. In our

case, we anneal by varying the noise variance � and � in the

sensor noise model. Larger variances induce a smoother

likelihood function, but ultimately result in fuzzier shape

models. Smaller variances lead to crisper maps, but at the

expense of an increased number of sub-optimal local max-

ima. Consequently, our approach anneals the covariance

slowly towards the desired values of � and �, using large

values for �0 and �0 that are gradually annealed down with

an annealing factor 
 < 1:

�[i℄ = � + 
i�0 (21)

�[i℄ = �+ 
i�0 (22)

The values �[i℄ and �[i℄ are used in the i-th iteration of EM.

4.5 Determining the Number of Objects

A final and important component of our mapping algorithm

determines the number of class templates M and the num-

ber of objectsN . So far, we have silently assumed that both

M and N are given. In practice, both values are unknown

and have to be estimated from the data.

The number of objects is bounded below by the number

of objects seen in each individual map, and above by the



Figure 4: Nine maps from the Robotics Lab dataset. The

number of objects present varies.

sum of all objects ever seen:

max
t

Kt � N �
X
t

Kt (23)

The number of class templates M is upper-bounded by the

number of objects N .

Our approach applies a Bayesian prior for selecting the

rightN and M , effectively transforming the learning prob-

lem into a maximum a posteriori (MAP) estimation prob-

lem. At both levels, we use an exponential prior, which in

log-form penalizes the log-likelihood in proportion to the

number of objects N and object templates M :

E�;�[log p(�; �; � j �; ') j �; �; '℄� 
�N � 
'M (24)

with appropriate constant penalties 
� and 
'. Hence, our

approach applies EM for plausible values of N and M . It

finally selects those values for N and M that maximize

(24), through a separate EM optimization for each value of

N and M . At first glance this exhaustive search procedure

might appear computationally wasteful, but in practice N

is usually small (andM is even smaller), so that the optimal

values can be found quickly.

5 Experimental Results

Our algorithm was evaluated extensively using data col-

lected by a Pioneer robot equipped with a laser range finder.

As in [2], maps were acquired in two different office en-

vironments: the Study Room and the Robotics Lab. Fig-

ure 2 shows the robot, and some of the non-stationary ob-

jects encountered by the robot. Figures 3a and 4 show four

and nine example maps extracted in these environments, re-

spectively. Each static map of the Study Room always con-

tained the same objects, while in the maps of the Robotics

Lab all the objects were not necessarily present.

The maps were generated by the concurrent mapping and

localization algorithm described in [20]. The individual

object snapshots were extracted from regular occupancy

grid maps using map differencing, a technique closely re-

lated to image differencing, which is commonly used in

the field of computer vision. In particular, our approach

identifies occupied grid cells which, at other points in time,

were free. Such cells are candidates of snapshots of mov-

ing objects. A subsequent low-pass filter removes arti-

facts that occur along the boundary of occupied and free

space. Finally, a flood-filling technique identifies distinct

object snapshots [22]. Empirically, our approach found

all non-stationary objects with high reliability as long as

they are spaced apart by at least one grid cell (5 cm). Fig-

ure 3b shows a typical overlay of the individual maps, and

Figure 3c provides examples of object snapshots extracted

from those maps. Clearly, more sophisticated methods are

needed if objects can touch each other.

In a first series of experiments, we trained our hierar-

chical model from data collected in the two robot environ-

ments. Figure 5a shows an example run of EM for the Study

Room environment, using the correct number ofN = 4 ob-

jects and M = 3 shape templates. As is easily seen, the

final object models are highly accurate—in fact, they are

more accurate than the individual object snapshots used for

their construction. In a series of 20 experiments using dif-

ferent starting points, we found that the hierarchical model

converges in all cases to a model of equal quality, whose

result is visually indistinguishable from the one presented

here. We also tested the ability of our algorithm to cor-

rectly associate object snapshots with their object models,

and object models with their templates. Figure 5b shows a

graph of the probabilities for � and � correspondence vari-

ables, over iterations of the EM algorithm. As we can see,

the model rapidly converges to a definite correspondence,

which is the right one. These results are typical for other

correspondences.

We then compared our approach with the non-

hierarchical technique described in [2]. The purpose of

these experiments was to quantify the relative advantage

of our hierarchical object model over a shallow model that

does not allow for cross-object transfer. We noticed several

deficiencies of the non-hierarchical model. The resulting

object models were systematically inferior to those gener-

ated using our hierarchical approach. Figure 5c shows two

examples of results, obtained with different initial random

seeds. While the first of these results looks visually ade-

quate, the second does not — it contains an incorrect col-

lection of objects (three circles, one box). Unfortunately,

in 11 out of 20 runs, the flat approach converged to such a

suboptimal solution.

Moreover, even the visually accurate non-hierarchical

models turn out to be inferior. Figure 7 plots log-likelihood
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Figure 5: Convergence over seven iterations of EM: (a) Results of the hierarchical learning: (i) templates models, and (ii)

object models. (b) Correspondence probabilities (i) between a robot snapshot and different object models (ii) between a

robot object model and different template models. (c) Results of the flat model: (i) successful convergence, (ii) unsuccessful

convergence to a poor model; 11 out of 20 runs converged poorly.

results on training and testing data for each environment.

We perform leave-one-out cross-validation, where we train

T different models by leaving one of the T maps in the

dataset out. For each model we compute the log-likelihood

of both the training and test data and plot these log-

likelihood values averaged over the T models. Even in the

case when the non-hierarchical approach produces visually

adequate results, their actual accuracy lags significantly be-

hind that of the models generated by our hierarchical algo-

rithm. We attribute this difference to the fact that the non-

hierarchical approach lacks cross-object generalization.

Finally, we evaluated our approach to model selection,

estimating how well our approach can determine both the

right number of objects and class templates. Throughout

all of our experiments we used the penalty term 35N +

15M . For both data sets, we found that the log posterior

shows a clear peak at the correct values. The results for the

Robotics Lab are shown in Figure 6, with the correct values

shown in bold face. Note that the algorithm converged to

the correct value of N = 4, although none of the training

maps possessed all the 4 objects. The number had to be

estimated exclusively based on the fact that, over time, the

robot faced 4 different objects with 3 different shapes.

In summary, our experiments indicate that our algorithm

learns highly accurate shape models at both levels of the

hierarchy, and it consistently identifies the ‘right’ number

of objects and object templates. In comparison with the

flat approach described in [2], it yields significantly more

accurate object models and also converges more frequently

N = 3 N = 4 N = 5 N = 6 N = 7
M = 1 �636:2 �603:1 �635:5 �663:9 �702:4
M = 2 �603:2 �551:5 �568:7 �580:7 �615:2
M = 3 �612:5 �535:7 �567:5 �586:9 �623:2
M = 4 �550:7 �587:4 �567:6 �618:5
M = 5 �595:0 �585:4 �599:2
M = 6 �621:3 �643:1
M = 7 �608:9

Figure 6: Model selection results for the Robotics Lab

to an accurate solution.

6 Conclusion

We have presented an algorithm for learning a hierarchy

of object models of non-stationary objects with mobile

robots. Our approach is based on a generative model

which assumes that objects are instantiations of object tem-

plates, and are observed by mobile robots when acquir-

ing maps of its environments. An approximate EM algo-

rithm was developed, capable of learning models of ob-

jects and object templates from snapshots of non-stationary

objects, extracted from occupancy grid maps acquired at

different points in time. Systematic experiments using a

physical robot illustrate that our approach works well in

practice, and that it outperforms a previously developed

non-hierarchical algorithm for learning models of non-

stationary objects.

Our approach possesses several limitations that warrant
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Figure 7: Log-likelihood of the training and testing (leave-one-out) data from both real-world data sets. The dashed line

is the result of the shallow, non-hierarchical approach, which performs significantly worse than the hierarchical approach

(solid line).

future research. For identifying non-stationary objects, our

present segmentation approach mandates that objects do

not move during robotic mapping, and that they are spaced

far enough apart from each other (e.g., 5 cm). Beyond that,

our approach currently does not learn attributes of objects

other than shape, such as persistence, relations between

multiple objects, and non-rigid object structures. Finally,

exploring different generative models involving more com-

plex transformations (e.g., scaling of templates) constitutes

another worthwhile research direction.

Nevertheless, we believe that this work is unique in

its ability to learn hierarchical object models in mobile

robotics. We believe that the framework of hierarchi-

cal models can be applied to a broader range of map-

ping problems in robotics, and we conjecture that cap-

turing the object nature of robot environments will ulti-

mately lead to much superior perception algorithms in mo-

bile robotics, along with more appropriate symbolic de-

scriptions of physical environments.
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