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Abstract—Many classification tasks target high-level concepts
that can be decomposed into a hierarchy of finer-grained sub-
concepts. For example, some string entities that are Locations
are also Attractions, some Attractions are Museums, etc. Such
hierarchies are common in named entity recognition (NER),
document classification, and biological sequence analysis. We
present a new approach for learning hierarchically decomposable
concepts. The approach learns a high-level classifier (e.g., location
vs. non-location) by seperately learning multiple finer-grained
classifiers (e.g., museum vs. non-museum), and then combining
the results. Soliciting labels at a finer level of granularity than
that of the target concept is a new approach to active learning,
which we term active over-labeling. In experiments in NER
and document classification tasks, we show that active over-
labeling substantially improves area under the precision-recall
curve when compared with standard passive or active learning.
Finally, because finer-grained labels may be more expensive to
obtain, we also present a cost-sensitive active learner that uses
a multi-armed bandit approach to dynamically choose the label
granularity to target, and show that the bandit-based learner is
robust to differences in label cost and labeling budget.

Keywords—semi-supervised learning; active learning; hierar-
chical labeling; text classification; cost analysis

I. INTRODUCTION

Several applications of machine learning have instances
that can be classified with hierarchical labeling schemes. For
example, in named entity recognition (NER), the phrase “The
Metropolitan Museum of Art” can be labeled as a Location,
as a Building, or as a Museum, where each label forms
a subcategory of the previous one. Likewise, in the Gene
Ontology (GO) [1], a biological sequence can be labeled with
multiple terms from a hierarchical scheme.

While some recent work has considered classification into
fine-grained (low-level) categories [2, 3] or hierarchies [4],
the majority of classification tasks in practice target a small
number of labels. NER, for example, typically targets a small
set of coarse-grained labels such as Location, Organization,
and Person [5].

We show how classifiers aimed at coarse-grained tasks
can be improved by training on fine-grained labels. For ex-
ample, we show that an NER system can be made more
precise by not treating the broad “Organization” label as a
single concept, but instead explicitly learning a combination of
fine-graned labels comprising the category (e.g., “University,”
“Railroad Company,” and so on). As we argue theoretically

in Section II-B and establish in our experiments, fine-grained
labeling information can significantly improve the accuracy of
a classifier aimed at a coarse-grained task. Further, actively
soliciting informative fine-grained labels, rather than passively
sampling them, provides an additional performance boost. We
refer to this new approach, which extends the standard active
learning model to one in which the learner can solicit labels at
finer levels of the hierarchy than that targeted for classification,
as active over-labeling.

We present a general schema for performing active over-
labeling for any given hierarchical classification task, using
any given probabilistic base learner. In our experiments, we
demostrate the effectiveness of the schema across multiple
classification tasks (NER and document classification) and
multiple base learners (Conditional Random Fields and Logis-
tic Regression). We show that over-labeling improves perfor-
mance over standard passive or active learning, and that active
over-labeling outperforms passive over-labeling, in terms of
area under the precision-recall curve.

Finally, we expect that obtaining a finer-grained label will
often be more costly than obtaining a coarse-grained label. For
example, in GO, one could label a sequence as being involved
in biological processes, but a finer-grained label for the same
sequence could specify it as involved in growth, localization,
or one of 22 other labels, which requires more expertise and
effort to obtain. Thus, we also present a method that uses a
multi-armed bandit approach to dynamically balance cost and
estimated benefit when choosing the level of granularity to
query. We then show that the bandit approach is robust to
changes in label cost.

The rest of this paper is organized as follows. In Section II,
we define our learning setting and give intuition as to why our
approach offers advantages in this context. In Section III we
describe our algorithms in our new model, and we then present
experimental results in Section IV. We cover related work in
Section V and conclude in Section VI.

II. PROBLEM DEFINITION

Our setting resembles conventional pool-based active learn-
ing. Formally, our task is to learn a target concept over an input
space X , i.e., a function f : X → Y = {0, 1}. We are given
a pool of unlabeled examples U ⊂ X , a base probabilistic
machine learner L that can be trained on labeled examples
(x, y), and access to an oracle that can be queried at some cost



for the label of any example u ∈ U . Our goal is to choose a
relatively small number of examples from U to be labeled, and
train L on the labeled examples to output a relatively accurate
classifier.

Our setting resembles conventional active learning models
in that the learner purchases labels and builds its classifier
in order to make predictions of the labels of new instances.
The key distinction is that in our model, the oracle can
also return more refined label information for each query
example. Specifically, we consider target concepts that can
be decomposed hierarchically into constituent subconcepts, at
varying levels of granularity. We assume the decomposition is
given to the learner, and that the oracle can then return labels
corresponding to any node in the hierarchy, which we refer to
as a labeling tree. An example labeling tree based on Reuters
Corpus Volume I (RCV1) [6] is shown in Figure 1.

Formally, nodes of the tree each represent concepts (i.e.,
subsets of the instance space X ). The root of the labeling tree
corresponds to the target concept to be learned, and lower lev-
els of the tree are sub-concepts of their ancestor concepts. The
oracle in our setting returns a vector of labels, corresponding
to a path starting at the root of the tree. For example, based
on the label tree in Figure 1, an instance could be labeled as
〈Location,Building,Museum〉, 〈Location,Attraction,Museum〉,
〈Location,Lake,X〉, or 〈X,X,X〉, where an ‘X’ indicates that
no value at that level applies. Thus, the latter labeling example
indicates an instance that is not a location.

Fig. 1. An example labeling tree based on Reuters Corpus Vol-
ume I (RCV1) [6].

A vector of labels is denoted 〈ℓ1, . . . , ℓk〉, where a label
ℓi is the instance’s label at the ith level of the tree, or ‘X’ if
that is undefined in the tree. If ℓi = X , then ℓj = X for all
j > i (i.e., if a level-i label does not apply, then no other label
farther from the root may either). Further, if i is the largest
value such that ℓi 6= X , then the values ℓi, . . . , ℓ1 must form
a path from a leaf to the tree’s root.

Each instance in U is initially labeled with the vector
〈?,?,. . .,?〉, where ‘?’ denotes a label value that is yet unspeci-
fied but can be purchased. For a specific instance, a value for ℓi
may be purchased at cost ci ≥ cj > 0 for all i > j. We assume

that a purchase of ℓi automatically yields the values of ℓ1
through ℓi−1. E.g., a purchase of ℓ3 of an instance could yield
〈Location,Building,Museum〉, 〈Location,Attraction,Museum〉,
〈Location,Lake,X〉, or 〈X,X,X〉.1 Further, an ℓ2 purchase
could yield 〈Location,Building,?〉, 〈Location,Attraction,?〉,
〈Location,Lake,X〉, or 〈X,X,X〉 (once an ‘X’ or a leaf is
encountered, one can fill in the rest of the vector with ‘X’).

A. Intuition

Over-labeling relies on learning classifiers for the fine-
grained (non-root) concepts and combining the results to pre-
dict the coarse-grained (root) label, rather than simply directly
learning the coarse-grained (root) concept. To see the potential
advantage of over-labeling, consider the simple example of
Figure 2. In the figure, the coarse-grained concept to be learned
is circles (positives) versus diamonds (negatives). If one limits
the set of possible classifiers C to the set of single axis-parallel
boxes, then any hypothesis that has high recall will have low
precision (any rectangle that contains most of the circles will
also contain many diamonds). However, if it is the case that the
set of positive instances can be decomposed into fine-grained
classes such as the four separate types of circles in Figure 2,
then we can decompose the problem of classifying circles
versus diamonds into four problems: classifying green solid
circles versus everything else, classifying blue open circles
versus everything else, and so on. We could thus train four
fine-grained classifiers, one per circle type. With these inferred
fine-grained classifiers, one can predict on a new instance by
predicting its membership in each of the four fine-grained
classes and then returning a root-level prediction of circle if
any fine-grained classifier predicts ‘yes’.

In general, over-labeling takes advantage of a natural de-
composition of the target class into finer, possibly simpler sub-
classes. If the sub-classes are in fact simpler to learn, then we
can more easily learn the general class by first learning the sub-
classes and combining the sub-class predictions via, e.g., the
union operator. Since the union of hypotheses is a larger, more
general hypothesis space that includes the space of original
hypotheses, this lends us a potentially strong advantage in
terms of representational ability.

Fig. 2. An example of the potential usefulness of learning multiple fine-
grained concepts to support the learning of a single coarse-grained one.
Negative instances are diamonds and positive ones are circles.

1We assume that all labels in the same level are distinct, e.g., ‘Museum’
under ‘Attraction’ is distinguishable from the one under ‘Building’.



B. Learning-Theoretic Advantages

To formalize the intuitive advantage described in Sec-
tion II-A, we present some simple theoretical results that
immediately follow from the literature. This section’s purpose
is not to advance the state of the art in learning theory, but
to highlight the advantages that over-labeling can provide.
We present observations in both the probably approximately
correct (PAC) [7] and exact [8] models of learning. The
results below focus on the case of learning concepts that are
unions of axis-parallel boxes over real and ordinal feature
spaces.

1) PAC Learning with Active Over-labeling: In PAC, a
learner is given parameters 0 < ǫ, δ < 1/2 and access to
labeled training instances drawn iid according to arbitrary
distribution D. The learner then outputs a hypothesis in poly-
nomial time that, with probability at least 1 − δ, has error at
most ǫ on new instances drawn according to D.

a) Computational Complexity: In the context of compu-
tational complexity, we consider the case of proper learning2,
in which the training instances are labeled by a concept from
C and the hypothesis inferred by the learner is required to also
be from C. We consider learning concepts that are unions of
k axis-parallel boxes in R

d. This task is not properly PAC-
learnable (i.e., learning C using C) if RP 6= NP.

Observation 1: The class of k-unions of axis-parallel
boxes in R

d is not properly PAC-learnable unless RP = NP.

Proof Sketch: From Theorem 3.1.1 of Blumer et al. [9],
concept class C is properly PAC learnable iff there exists a
randomized polynomial-time algorithm to find a hypothesis
from C consistent with a sufficiently large labeled training
sample X (called the consistent hypothesis problem). It is
known to be NP-hard [9, 10] to find a smallest set of rectangles
to cover a set of points in R

d even for d = 2. Thus, the
consistent hypothesis problem for k-unions of boxes is NP-
hard, implying that one cannot properly PAC learn k-unions
of boxes. �

In contrast, consider an over-labeling version of this learn-
ing problem, in which each of the k boxes is a separate
subconcept, as in Figure 2. Thus, examples from the ith box
(i = 1, . . . , k) have a fine-grained label (call it Ii) and all other
examples are labeled ‘−’.

Observation 2: In the over-labeling setting, k-unions of
boxes from R

d is properly PAC-learnable.

Proof Sketch: Let m be the number of labeled training
instances labeled by the target concept of some k-union
of boxes. For each sub-concept, a consistent sub-hypothesis
(single bounding box) can be learned from the fine-grained
labels in time O(dm). The learner can learn each of the k sub-
concepts separately and output their union in time O(kdm),
and this union will be consistent with all the labeled examples.
Thus, the consistent hypothesis problem can be solved in time
polynomial in d, k, and m. Blumer et al. [9] show that, if
m is sufficiently large, then a consistent hypothesis h will

2Note that the negative results described below for both exact and PAC
learning are only for proper learning. One can get positive results for these
cases by allowing a logarithmic increase in the number of boxes used, by
applying the set cover approximation algorithm.

meet the PAC criteria. Specifically, Equation 1 below gives
sufficient conditions on m for error bound ǫ and bound δ on
probability of failure. Because the over-labeling approach is
finding a separate consistent hypothesis for each of the k fine-
grained labels, we apply Equation 1, but reduce ǫ and δ each
by a factor of k to account for this. This yields a polynomial
bound on m. �

b) Label Complexity: We now consider label complex-
ity, in which one wants to minimize the number of labels
purchased by a pool-based active learning algorithm. We work
in a model where we are given a size-m set of training data
U , but initially the labels are missing. When seeking a PAC
algorithm for learning, one can apply a standard result from
Blumer et al. [9] that says if the algorithm efficiently finds a
hypothesis from C that is consistent with U , which is drawn
iid from fixed distribution D and is of size at least

m(ǫ, δ) = max

(

2

ǫ
log

2

δ
,
8D

ǫ
log

13

ǫ

)

(1)

(where D is the VC dimension of C), then with probability ≥
1−δ, the hypothesis will have error at most ǫ. If the instances
of U are unlabeled, the goal in active learning is to purchase
as few as possible labels of instances of U and still guarantee a
hypothesis consistent with all of U (including the yet unlabeled
ones), which would yield a PAC result.

For this example, we focus on what we term the disjoint
k-intervals problem. I.e., C is the set of unions of ≤ k disjoint
intervals on R. When a coarse-grained label of instance x ∈ U
is purchased, it returns ‘+’ if x lies in one of the k target
intervals and ‘−’ otherwise. When a fine-grained label of x is
purchased, the label is an indicator of which of the k target
intervals it lies in (I1, . . . , Ik) or ‘−’ if it does not lie in any
interval. We assume that there is at least one point from U in
each interval Ij and that there is at least one point from U
between each adjacent pair of intervals.

In the following two observations, we bound the number of
purchases needed in each labeling scheme to find a consistent
hypothesis. Since the total number of instances needed for PAC
learning (per Equation 1) differs between them (due to different
VC dimensions), in the next two observations, we use mc for
the number of instances in coarse-grained learning and mf

needed for fine-grained.

Assume that, for each target interval, there is one instance
of U that is pre-labeled for free. I.e., in the coarse-grained case,
there are k instances labeled ‘+’ (one in each target interval)
and in the fine-grained case there is one instance labeled I1,
one labeled I2, etc.

Observation 3: The consistent hypothesis problem on dis-
joint k-intervals with coarse-grained labels on mc instances
requires Ω(mc) label purchases in the worst case.

Proof Sketch: The algorithm must find the left and right
boundaries of each of the k target intervals, which is tanta-
mount to identifying the leftmost and rightmost negatively
labeled points between each consecutive pair of intervals.
Consider two consecutive intervals Ij and Iℓ. In searching for
the negative points from U between Ij and Iℓ, the learner
must purchase the label of some point between xj and xℓ,
where xj and xℓ are the pre-labeled points from U from Ij
and Iℓ, respectively. In the worst case, every query will result



in a response of ‘+’, until only one remains to be labeled
‘−’. Summed over all pairs of intervals, this requires Ω(mc)
purchases in the worst case. �

Observation 4: The consistent hypothesis problem on dis-
joint k-intervals with fine-grained labels on mf instances
requires O(k logmf ) queries in the worst case.

Proof Sketch: An algorithm in the active over-labeling setting
can perform a binary search between xj and xℓ (labeled Ij and
Iℓ rather than simply ‘+’) until a negatively labeled instance
x− is found. When that is done, the learner can simply perform
two binary searches: one between x− and the right-most point
in Ij and one between x− and the left-most point in Iℓ.
This requires at most O(logmf ) queries per pair of adjacent
intervals, for a total of O(k logmf ) queries. �

To bound mc, we use Equation 1 with VC dimension [9]
D = 2k and get (ignoring the typically smaller first term) a
number of purchases Ω(mc) = Ω((k/ǫ)(log 1/ǫ)). To bound
mf , note that we have k independent learning problems, each
a single box. Thus, we can use VC dimension [9] D = 2, but
the parameters ǫ and δ must each be reduced by a factor of k,
since the errors of these hypotheses accumulate. Further, we
must apply the learning process k times, so (again ignoring
the first term) mf = O((k2/ǫ) log(k/ǫ)), so our worst-case
upper bound of purchases is O(k log(k/ǫ) + k log log(k/ǫ)).
Both bounds grow linearly in k but the coarse-grained learner’s
bound is worse by a factor exponential in 1/ǫ.

Simply put, the advantage that the fine-grained approach
has comes from the fact that, for positively-labeled instance
x ∈ U , the fine-grained label indicates the interval that x lies
in, while in the coarse-grained approach, the label is simply
‘+’. The distinct fine-grained label given by each interval
allows for a binary search for interval boundaries, hence the
logarithmic dependence on mf . In contrast, the homogeneous
‘+’ label across all intervals for the coarse-grained labels can
force a number of purchases linear in mc.

2) Exact Learning with Active Over-Labeling: We now
illustrate the computational complexity advantages of active
over-labeling in the exact learning setting. In exact learning,
the learner gets access to two oracles: a membership query
(MQ) oracle and an equivalence query (EQ) oracle. An
efficient learner will learn the exact identity of the target
concept in time and number of queries that are polynomial in
the problem size. When the learner poses an EQ, it passes to
the oracle a hypothesis h ∈ C that it thinks is exactly equivalent
to the target concept, i.e., that will label all instances correctly.
The oracle either responds that the hypothesis is exactly correct
or gives to the learner a counterexample, which is an instance
on which h is wrong. An MQ oracle receives from the learner
an instance x and provides x’s label. This is similar to a pool-
based active learning model, except that in the MQ model, the
instances can be arbitrary, while in pool-based active learning,
the instances must come from a pre-specified set.

We consider proper learning of k-unions of disjoint axis-
parallel boxes, in a bounded, discretized, d-dimensional in-
stance space {0, . . . , t− 1}d.

Observation 5: With over-labeling, disjoint k-unions of
boxes can be exactly learned with O(k) EQs and O(kd log t)
MQs and time polynomial in the number of queries.

Proof Sketch: Using fine-grained labels for k distinct fine-
grained hypotheses (each using one box), one can exactly learn
each box j individually with one EQ (to get an instance in box
j) and O(d log t) MQs (for binary search to find the box j’s
2d boundaries), for a total of O(k) EQs and O(kd log t) MQs
and polynomial time. �

This contrasts with a result from Bshouty and Bur-
roughs [11] that one cannot exactly properly learn k-unions
of axis-parallel boxes when (constant) d > 2 unless P = NP.
I.e., while one can learn k-unions with O(d log k)-unions, one
cannot efficiently learn k-unions with k-unions if P 6= NP.
Note that our positive result for over-labeling works for non-
constant d, while the hardness result for direct proper learning
holds even for constant d.

III. APPROACH

We now present our method for performing the learning
task outlined in Section II. We refer to our method as HAL,
for Hierarchical Active Learner. The high-level steps of our
algorithm are given in Algorithm 1.

HAL iteratively purchases labels at each level of the
labeling tree in batches, where the proportion of labels pur-
chased at each level is specified by vector p. In the step
PURCHASE(b pi, i, C

∗(x)), the system purchases b pi dollars
worth of label vectors defined up to level i of the labeling tree,
where the instances to be labeled are chosen actively via uncer-
tainty sampling relative to classifier3 C∗(x) (discussed below).
Because label vectors are defined up to level i, they include
labels for all levels m ≤ i (Section II). LABELMAP(E′,m, j)
then creates individual labeled examples for class m at level
j corresponding to the given label vectors E′, for training the
classifiers Ci,j .

HAL then trains a probabilistic binary classifier Ci,j for
each class j at level i, using the machine learning algorithm
L. Ci,j(x) denotes Ci,j’s estimate of the probability that an
arbitrary example x is positive for class j at level i (e.g.,
C

2,“Lake”(x) is the probability that instance x is a Lake).

The choice of L depends on the particular learning task (we
use Gradient Boosted Regression Trees, Logistic Regression
and Conditional Random Fields in our experiments).

A key problem for HAL is how to combine the classifiers
Ci,j into an ensemble classifier for the coarse-grained level-
1 concept. In principle, the level-1 concept is a disjunction
over the concepts j at any given level i. However, modeling
the Ci,j for a given i explicitly as a disjunction can be
challenging, due to dependencies across the different level-i
classifiers (which are trained on related sets of data Ei,j). In
preliminary experiments, we explored combining the classifiers
with a noisy-or model (i.e., assuming independence), a linear
model [12], or taking a p-norm across all j. None of these
approaches outperformed a simple approach of simply taking
a maximum. Thus, we define:

C∗

i (x) = max
s>=i,j

Cs,j(x) (2)

as the output ensemble classifier.

3The number of examples purchased at each level will vary inversely with
the cost of labels at that level, and later we explore how varying label cost
ratios impacts performance of the algorithm for a given budget level.



Finally, when purchasing examples with active learning,
HAL uses uncertainty sampling. The uncertainty at level i is
measured with respect to the ensemble classifier C∗

i . Specifi-
cally, we define the uncertainty ui(x) of the label for example
x for level i as:

ui(x) =
1

2
−

∣

∣

∣

∣

C∗

i (x)−
1

2

∣

∣

∣

∣

. (3)

Algorithm 1 Method for learning the concept at the root of
labeling tree T . See text for Purchase and LabelMap.

function HAL(Unlabeled examples U , labeling tree T , machine
learner L, budget B, per-iteration budget b, Purchase proportions
p = (p1, . . . , pk) with ||p||1 = 1 and pi ≥ 0)

Ei,j ← ∅ ⊲ binary-labeled train set for level i, label j
Initialize Ci,j for all i, j
while B > b do

B ← B − b
for all Level i ∈ T do

E′ ← PURCHASE(b pi, i, C
∗

i )
for all Level m ≤ i do

for all Class j in Level m do
Em,j∪ = LABELMAP(E′,m, j)

end for
end for

end for
for all Level i ∈ T do

for all Class j in Level i do
Ci,j ← Train L on Ei,j

end for
end for

end while
return Ensemble classifier C∗({Ci,j},p)

end function

A. Dynamically Adapting Purchase Proportions

HAL takes as input a vector of purchase proportions,
specifying how much of the budget should be spent acquiring
labels at each given level of granularity in the hierarchy. The
cost of labeling an example can vary across levels of the
hierarchy, and as we show in Section IV-E, the relative benefit
of labels from a given level in the hierarchy often changes as
learning progresses. Thus, we desire a cost-sensitive approach
that dynamically adapts the purchase proportions.

We formulate the task of choosing which level of granu-
larity to purchase next as a multi-armed bandit problem, and
solve it using Auer et al.’s [14] ǫ-greedy bandit algorithm (we
refer to this approach as BANDIT). For clarity, we focus on
dynamically choosing between two strategies corresponding to
purchase proportions, p and p

′, but the generalization to more
strategies is straightforward.

BANDIT iteratively chooses strategies, and uses a running
average of the reward observed for each strategy to guide its
choices. For active learning, a natural way to define reward in
round j is in terms of observed model change:

gj =
1

‖X‖

∑

xi∈X

log (|fj−1(xi)− fj(xi)|) , (4)

where X is the set of withheld unlabeled examples, and fj(xi)
is HAL’s output for the input xi after the jth iteration.

However, our problem setting has special characteristics
that make the gain equation above unsuitable. In particular,
this gain score is not stationary as is assumed in the generic
BANDIT algorithm. Instead, as the number of purchased
examples increases and HAL gradually fits the data, the
model becomes less likely to change. This means the running
average of the gain will slowly decrease. As a result, BANDIT
will disproportionately favor arms it has not played recently
(whose average gains have not recently been updated). In our
preliminary experiments, we found that these characteristics
led the generic BANDIT approach to thrash between arms in
cases where sticking with one arm for longer was a stronger
strategy.

To adapt BANDIT to our setting, instead of modeling each
purchase strategy as an arm, we instead use two arms: (1)
maintain the same strategy as before, and (2) switch strategies.
The reward from the first arm is always zero. The reward from
the second arm depends on the difference in gain before and
after switching, defined as:

rj =







−gj/|gj | if p → p
′

gj/|gj | if p′ → p

0 if p → p or p′ → p
′

. (5)

IV. EXPERIMENTS

We begin by describing the three datasets we will consider:
a synthetic binary classification task, and two real-world data
sets in document classification and sequence tagging. We then
present our results. We first show that active over-labeling
improves accuracy over standard active or passive learning.
We then study how HAL’s performance varies with the relative
labeling cost between coarse (root) and fine (lower-level) labels
and overall budget (number of training examples). Finally,
we show how our adaptive bandit-based over-labeling scheme,
BANDIT, is robust to changes in labeling cost and budget4.

A. Synthetic Dataset

First we assess the advantage provided by using fine-
grained label data in a synthetic binary classification task. In
this dataset the sole feature is a single continuous value x ∈
[0, 18). The positive instances are all points in the 9 level-3 in-
tervals {[0, 1), [2, 3), [4, 5), . . . , [16, 17)}. We define the level-
2 intervals by taking the union of consecutive triples of the
level-3 intervals: {[0, 1), [2, 3), [4, 5)}, {[6, 7), [8, 9), [10, 11)},
and {[12, 13), [14, 15), [16, 17)}. The level-1 label (positive
versus negative) is the union of the three level-2 labels. The
goal is to learn the level-1 label of ‘+’ versus ‘−’. We
use as our base learner the Gradient Boosted Regression
Tree (GBRT) [13], which is an ensemble of regression trees.
We set the maximum depth in GBRT to be 1 so that each tree
maps to an interval. For the fine-grained learner, the classifers
at level 3 are combined with the level-2 classifier and then the
coarse-level classifier using Equation 2. Because GBRT can
be a union of intervals, the classifiers at each level should be
expressive enough to capture the target concept.

We chose n = 30 trees, learning rate λ = 0.9 and sample
rate r = 0.8 for our GBRT learners. Learners started with

4The code and dataset used in this experiment can be downloaded from
http://github.com/moyuji/hal

http://github.com/moyuji/hal


100 initial training examples to ensure that all learners had
initial instances in all fine-grained classes. In each iteration,
each learner purchases a label of one instance from a pool of
10,000 instances. We simulated noise by flipping the labels
for 10% of the examples (choosing noisy fine-grained labels
uniformly at random). The classifiers are then tested against a
set of 8,000 examples uniformly distriubuted in [0, 18).

B. Document Classification

The RCV1 data set [6] contains 23,149 training documents
and 781,265 test documents labeled with a 117-node hierarchy
of Reuters Topics categories. Each document was represented
in cosine-normalized log TF-IDF [15] format. Our coarse-
based and fine-based learners used logistic regression [16] as
the base learner, with L2 regularization. (The regularization
parameter of λ = 0.1 was chosen based on preliminary
experiments; it is future work to further tune this parameter
via cross-validation.)

We used ECAT as the coarse-grained class, which contains
119,920 positive examples and 33 sub-classes in multiple
levels underneath it. For this task we started with a seed set
of 2,000 randomly-selected instances and ran 100 iterations of
active learning with 120 labels acquired per iteration from the
pool of the remaining 22,949 instances using both coarse-based
and fine-based methods. To eliminate trivially small classes,
we filtered out all fine-grained classes with fewer than 10
instances. We tested the model on the entire test set, which
is independent from the initial seed training set and candidate
pool set. Each learning curve is the average of 50 rounds.

C. Sequence Tagging

We took OCR results from digitized editions of the Rich-
mond Daily Dispatch from November 1860 through December
1865 that had been tagged with XML labels according to a
two-level hierarchical labeling scheme [17]. The dataset we
used consists of 375,026 manually labelled organization names
across 1,384 newspaper articles. These names are further
categorized into a pool of 82 fine-grained categories, like
bank names, railroad names and government agency names.
Thus, the coarse-grained labels were “organization” versus
“not organization” and each fine-grained label is, e.g., “bank”
versus “not bank”.

In the Dispatch experiment, we used conditional random
fields (CRFs) [18] as the base learner. We trained CRFs using
standard 2–3 letter prefix, postfix, capitalization and numerical
features. We evaluate the trained CRF by performing the
Forward-Backward algorithm [19] on a new sentence s to
get an estimate of the probability that each token x ∈ s is
an organization. Evaluating the set of tokens above varying
thresholds on this probability yields the precision-recall curves
we use for evaluation.

We compared training fine-based classifiers via active
learning, fine-based classifiers via passive learning, coarse-
based via active learning, and coarse-based via passive learn-
ing. First, we set aside 20,000 sentences for the test set and
10,000 sentences for candidate set. The experiment starts with
a initial training set of 1,600 sentences. For this task our
experiments proceeded in 40 iterations, with batch sizes of
100 sentences each iteration. When computing the uncertainty

of a sentence s, we took the maximum uncertainty across all
tokens in s.

D. Results on active over-labeling

For each of the three tasks described above, we built
four learning curves. The experiments compare four settings,
for the four combinations of active vs. passive learning,5

and standard labeling vs. over-labeling with HAL. Because
standard learning solicits coarse-grained labels for the coarse-
grained task, we refer to that setting as coarse. The coarse
algorithms are representative of the state of the art in the
document classification and sequence tagging. HAL uses finer-
grained labels, so we refer to the over-labeling setting as fine.

The results appear in Figure 3. As all three figures show,
active over-labeling with active fine is the best method across
all three data sets. These results show how HAL improves
accuracy by querying for examples at a finer granularity than
that targeted for classification.

E. Results as cost varies

The above results demonstrate the advantages offered by
purchasing fine-grained labels in an active learning context to
improve performance. So far, we have ignored differences in
cost between label types. As discussed above, in practice fine-
grained labels are likely to be more expensive to obtain than
coarse-grained labels, which means we might not be able to
afford to purchase purely fine-grained labels.

We first provide an analysis indicating that active over-
labeling is likely to provide value at varying ratios of cost
between coarse and fine-grained labels. We examine the learn-
ing curve of varying fixed ratio of instances labeled at the fine
and coarse levels in the experiments (FFR). For example, in
a setting of fine cost 16 and iteration budget of 32, FFR[0.5]
allocates each of its 50% budget to coarse and fine, which
corresponds to picking 16 coarse instances and 1 fine instance
per iteration. This curve will give us an estimate of what ratio
of cost of fine-grained labels to coarse-grained labels justifies
the use of an active over-labeling approach.

We switch from the fixed number of purchases per iteration
to a fixed budget per iteration, re-run the three experiments
from Section IV-A–Section IV-C, and then compare the AUC
scores achieved for active FFR learners in across experiments.

In Figure 4(a), the synthetic dataset experiment, lower
FFR achieves better AUC in all 500 iterations. The synthetic
problem is easy to learn which means the benefit of fine-
grained labels cannot compensate for a fine cost as high as 16.
It is more cost effective to use a pure coarse-based classifier
and not utilize fine-grained labels at all.

In Figure 4(b), the document classification experiment,
FFR[0.0] rises fast but quickly reaches a bottleneck, which is
surpassed by FFR[0.1] in a later iteration. This problem is less
easy to learn and fine-grained labels may be worth their cost,
depending on the overall budget. If the budget is limited to
fewer than 38 rounds, FFR[0.0] is the best choice; otherwise,
FFR[0.1] delivers better value than FFR[0.0].

5Our passive learners are trained with the same number of training instances
as our active learners, but the instances are chosen randomly rather than via
uncertainty sampling.



(a) Synthetic dataset

(b) Document classification

(c) Sequence tagging

Fig. 3. Learning curves comparing combinations of fine/coarse and ac-
tive/passive PR-AUC

(a) Synthetic dataset

(b) Document classification

(c) Sequence tagging

Fig. 4. Learning curves comparing active FFR method PR-AUC on fine cost
16



In Figure 4(c), the sequence tagging experiment, the prob-
lem is harder, so FFR[0.1] has higher AUC than FFR[0.0]
starting from the beginning. Then FFR[0.2] catches up after
round 35. Higher FFR ratio is more affordable in the long run.
If the budget is less than 35 rounds then FFR[0.1] is preferred
over FFR[0.2].

From Figure 4, we can see that the choice of FFR to achieve
high AUC depends on multiple factors, like the overall budget
(the number rounds of iterations before termination), the cost
of fine-grained labels and the nature of the problem target
itself.

F. Results with BANDIT

We now turn to evaluating BANDIT, which chooses
purchase proportions dynamically. We configure the two
strategies that BANDIT selects between to be the all-
coarse (FFR[0.0]) and all-fine (FFR[1.0]) strategies. We
again set aside 20,000, 4,000 and 10,000 unlabeled exam-
ples for the synthetic task, document classification, and se-
quence tagging, and re-run the experiment in Section IV-E
with BANDIT. To evaluate the robustness of the algorithm,
we test each approach for fine-grain cost varying within
{1.0, 1.1, 1.2, 1.5, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0}.

Figure 5 shows the AUC for FFR and BANDIT in the end.
We see that AUC in FFR[0.0] is not affected by the fine cost.
And the AUCs for the other fixed ratio methods FFR[0.1]-
FFR[1.0] decrease as fine grained labels become more expen-
sive, because that results in these methods acquiring fewer
labels. FFR with a lower fine-grained ratio achieves higher
AUC when fine cost is high, and vice vesa. But the BANDIT
curve is almost always among the top curves, regardless of
the fine cost. This shows how BANDIT is robust to changes
in cost.

Tables I–III quantify the observations in Figure 5, by
measuring how close each learner is to the top-scoring learner
as fine cost varies. The metric diff gives the learner’s absolute
difference from the top learner. The rank metric is the learner’s
relative rank ordered by AUC. We caculate the minimum,
maximum, mean and standard deviation for both metrics. In
Table I, the diff of BANDIT is in the range of [0.001, 0.004]
and averages 0.002 away from the top curve. and the rank of
BANDIT ranges from 1 to 5 and averages 2.625. BANDIT’s
mean for diff and rank is the lowest among all learners,
and it has a low standard deviation, indicating that BANDIT
scores close to the top curve most of the time. Similar results
are shown in Table II and Table III, where the mean diff
of BANDIT is the lowest and the mean rank is the second
lowest (as highlighted). These results illustrate that BANDIT
successfully tunes the fine-grained ratio to cope with variable
cost/benefit settings, which is important in real-world settings
where the costs and benefits from querying at different levels
of granualrity are not known in advance.

Finally, we examine how BANDIT performs as budget
changes. Figure 6 shows the learning curves of how AUC
increases for FFR and BANDIT, averaging over different
costs. On different tasks, different fine-grained ratios may be
preferable for different budgets—e.g., FFR[0.0] performs best
for the first few purchases in Figure 6(b), but is much worse
for larger budgets. However, in all figures, BANDIT almost

(a) Synthetic dataset experiment

(b) Document classification experiment

(c) Sequence tagging experiment

Fig. 5. Comparing active FFR and BANDIT method PR-AUC on different
fine cost

always maintains the top AUC score after the first few rounds.
Thus, we expect BANDIT to perform well against fixed ratio
methods across a variety of budgets.

V. RELATED WORK

To our knowledge, our experiments are the first to demon-
strate how leveraging fine-grained label information can im-
prove the accuracy of a coarse-grained (root-level) classifier,



TABLE I. AGGREGATED PR AUC FOR SYNTHETIC DATASET

diff rank

min max mean std min max mean std

algorithm

BANDIT 0.001 0.004 0.002 0.001 1 5 2.625 1.598

FFR[0.0] 0.000 0.016 0.010 0.006 0 11 8.125 4.549

FFR[0.1] 0.000 0.006 0.003 0.002 0 9 4.875 3.603

FFR[0.2] 0.000 0.013 0.004 0.004 0 7 4.000 2.204

FFR[0.3] 0.001 0.018 0.005 0.006 1 4 3.250 1.165

FFR[0.4] 0.000 0.024 0.007 0.008 1 8 4.875 2.357

FFR[0.5] 0.000 0.025 0.006 0.009 0 9 3.750 3.151

FFR[0.6] 0.000 0.028 0.008 0.010 0 8 5.250 3.370

FFR[0.7] 0.000 0.033 0.008 0.012 0 9 4.250 3.240

FFR[0.8] 0.001 0.030 0.009 0.011 1 9 6.000 3.251

FFR[0.9] 0.002 0.035 0.011 0.012 6 11 8.750 1.669

FFR[1.0] 0.005 0.033 0.013 0.010 10 11 10.250 0.463

TABLE II. AGGREGATED PR AUC FOR DOCUMENT CLASSIFICATION

diff rank

min max mean std min max mean std

algorithm

BANDIT 0.001 0.001 0.001 0.000 1 8 3.750 2.188

FFR[0.0] 0.009 0.016 0.014 0.002 6 11 10.375 1.768

FFR[0.1] 0.000 0.004 0.003 0.002 0 10 7.500 4.629

FFR[0.2] 0.001 0.004 0.002 0.001 1 9 6.500 3.381

FFR[0.3] 0.001 0.003 0.002 0.001 3 9 6.750 2.375

FFR[0.4] 0.001 0.006 0.003 0.002 4 7 6.125 1.356

FFR[0.5] 0.000 0.008 0.003 0.002 0 6 5.000 2.070

FFR[0.6] 0.000 0.011 0.002 0.003 3 7 4.875 1.356

FFR[0.7] 0.000 0.011 0.002 0.004 2 8 4.250 2.121

FFR[0.8] 0.000 0.013 0.002 0.005 0 9 3.000 3.464

FFR[0.9] 0.000 0.015 0.003 0.005 0 10 2.625 4.274

FFR[1.0] 0.000 0.016 0.003 0.006 1 11 5.250 4.062

and the first investigation into active learning in a hierarchical
setting where label acquisition cost can vary.

Previous work in text classification [20] and rich media
indexing [28] has considered using hierarchies of labels to
improve a fine-grained classifier, through techniques that back
off to coarse levels of the hierarchy when fine-grained data
are sparse. By contrast, we present novel techniques that work
in the opposite direction, utilizing selectively acquired fine-
grained labels to improve classification over coarse categories.
In named entity recognition (NER), some recent work has
targeted fine-grained entity categories [2, 3] or hierarchies [4].
Our work differs from this previous work in that we focus
on active learning under variable label acquisition costs. Our
experiments illustrate that our active approach outperforms
passive learning on the NER task, and we demonstrate how
the relative cost of obtaining finer-grained labels impacts which
NER approach is most appropriate to use.

Our approach builds on a variety of previous work in
active learning. We focus on “pool-based” active learning, in
which a learner selects instances from a pool of unlabeled data
to be labeled by an oracle. When acquiring labels is costly,
active learning can reduce the expense by requesting only a

TABLE III. AGGREGATED PR AUC FOR SEQUENCE TAGGING

diff rank

min max mean std min max mean std

algorithm

BANDIT 0.000 0.027 0.016 0.011 0 8 4.250 2.712

FFR[0.0] 0.028 0.162 0.101 0.056 4 11 9.875 2.475

FFR[0.1] 0.000 0.104 0.045 0.041 0 10 6.500 4.840

FFR[0.2] 0.000 0.074 0.035 0.029 0 9 5.750 3.845

FFR[0.3] 0.006 0.061 0.030 0.020 3 8 5.000 2.330

FFR[0.4] 0.009 0.050 0.030 0.016 2 8 6.000 2.138

FFR[0.5] 0.005 0.045 0.029 0.011 2 9 6.500 2.268

FFR[0.6] 0.002 0.038 0.019 0.011 1 6 3.875 1.885

FFR[0.7] 0.000 0.044 0.018 0.014 0 8 4.125 2.850

FFR[0.8] 0.003 0.052 0.018 0.015 1 11 4.625 3.114

FFR[0.9] 0.000 0.043 0.018 0.016 0 10 4.375 3.662

FFR[1.0] 0.000 0.050 0.019 0.022 0 11 5.125 5.249

relatively small subset of the most informative labels [21].
One criterion used for selection of instances to label is to
choose those that reduce uncertainty. In our case, uncertainty
is measured in terms of the confidence of output values (e.g.,
Merialdo [22]); other measures include uncertainty in the
parameters of probabilistic models [23] or the size of a model’s
decision boundary [24].

In previous work, active learning has also been shown to
reduce sampling bias by utilizing the hierarchical structure of
input features [25, 26]. By contrast, our work focuses on active
learning over hierarchically structured output labels.

Luo et al. [27] looked at active learning to perform structure
prediction, e.g., to predict a segmentation of an image or a
parse tree of a sentence. While the predictions their algorithms
made are structured in nature, it is not similar to our work,
which predicts labels according to a fixed hierarchy known a
priori and varying costs.

VI. CONCLUSIONS

Hierarchical labeling schemes are increasingly common in
a variety of applications. Our results demonstrate that fine-
grained label data (labels specified at nodes removed from the
root of a labeling tree) can be used to improve precision of
a classifier for the coarse-grained (root) concept. However, it
is likely that such fine-grained labels will be more expensive
to obtain. We defined a new active learning approach, active
over-labeling, to address that scenario, created a family of
hybrid algorithms to actively make label purchase decisions,
empirically evaluated this family of algorithms, and analyzed
the relative cost points at which one algorithm is preferred
over another at various budget levels. Finally, we proposed a
more sophisticated algorithm which improves performance by
dynamically adjusting the proportion of labels purchased at
different levels of the labeling tree.

In future work, it would be interesting to consider other
hierarchically labeled data sets with multiple layers, e.g., that
labeled by the Gene Ontology [1].
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