
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 595–605
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Learning how to Active Learn:
A Deep Reinforcement Learning Approach

Meng Fang and Yuan Li and Trevor Cohn

School of Computing and Information Systems

The University of Melbourne

meng.fang@unimelb.edu.au, yuanl4@student.unimelb.edu.au,

t.cohn@unimelb.edu.au

Abstract

Active learning aims to select a small sub-

set of data for annotation such that a classi-

fier learned on the data is highly accurate.

This is usually done using heuristic selec-

tion methods, however the effectiveness of

such methods is limited and moreover, the

performance of heuristics varies between

datasets. To address these shortcomings,

we introduce a novel formulation by re-

framing the active learning as a rein-

forcement learning problem and explicitly

learning a data selection policy, where the

policy takes the role of the active learning

heuristic. Importantly, our method allows

the selection policy learned using simu-

lation on one language to be transferred

to other languages. We demonstrate our

method using cross-lingual named entity

recognition, observing uniform improve-

ments over traditional active learning.

1 Introduction

For most Natural Language Processing (NLP)

tasks, obtaining sufficient annotated text for train-

ing accurate models is a critical bottleneck. Thus

active learning has been applied to NLP tasks to

minimise the expense of annotating data (Thomp-

son et al., 1999; Tong and Koller, 2001; Settles and

Craven, 2008). Active learning aims to reduce cost

by identifying a subset of unlabelled data for anno-

tation, which is selected to maximise the accuracy

of a supervised model trained on the data (Settles,

2010). There have been many successful appli-

cations to NLP, e.g., Tomanek et al. (2007) used

an active learning algorithm for CoNLL corpus to

get an F1 score 84% with a reduction of annotation

cost of about 48%. In prior work most active learn-

ing algorithms are designed for English based on

heuristics, such as using uncertainty or informa-

tiveness. There has been comparatively little work

done about how to learn the active learning strat-

egy itself.

It is no doubt that active learning is extremely

important for other languages, particularly low-

resource languages, where annotation is typically

difficult to obtain, and annotation budgets more

modest (Garrette and Baldridge, 2013). Such set-

tings are a natural application for active learning,

however there is little work to this end. A poten-

tial reason is that most active learning algorithms

require a substantial ‘seed set’ of data for learning

a basic classifier, which can then be used for ac-

tive data selection. However, given the dearth of

data in the low-resource setting, this assumption

can make standard approaches infeasible.

In this paper,1 we propose PAL, short for Pol-

icy based Active Learning, a novel approach for

learning a dynamic active learning strategy from

data. This allows for the strategy to be applied in

other data settings, such as cross-lingual applica-

tions. Our algorithm does not use a fixed heuris-

tic, but instead learns how to actively select data,

formalised as a reinforcement learning (RL) prob-

lem. An intelligent agent must decide whether or

not to select data for annotation in a streaming set-

ting, where the decision policy is learned using a

deep Q-network (Mnih et al., 2015). The policy

is informed by observations including sentences’

content information, the supervised model’s clas-

sifications and its confidence. Accordingly, a rich

and dynamic policy can be learned for annotating

new data based on the past sequence of annotation

decisions.

Furthermore, in order to reduce the dependence

on the data in the target language, which may be

low resource, we first learn the policy of active

1Source code available at https://github.com/

mengf1/PAL

595

learning on another language and then transfer it to

the target language. It is easy to learn a policy on

a high resource language, where there is plentiful

data, such as English. We use cross-lingual word

embeddings to learn compatible data representa-

tions for both languages, such that the learned pol-

icy can be easily ported into the other language.

Our work is different for prior work in active

learning for NLP. Most previous active learning

algorithms developed for NER tasks is based on

one language and then applied to the language it-

self. Another main difference is that many ac-

tive learning algorithms use a fixed data selec-

tion heuristic, such as uncertainty sampling (Set-

tles and Craven, 2008; Stratos and Collins, 2015;

Zhang et al., 2016). However, in our algorithm,

we implicitly use uncertainty information as one

kind of observations to the RL agent.

The remainder of this paper is organised as fol-

lows. In Section 2, we briefly review some related

work. In Section 3, we present active learning al-

gorithms, which cross multiple languages. The ex-

perimental results are presented in Section 4. We

conclude our work in Section 5.

2 Related work

As supervised learning methods often require a

lot of training data, active learning is a technique

that selects a subset of data to annotate for train-

ing the best classifier. Existing active learning

(AL) algorithms can be generally considered as

three categories: 1) uncertainty sampling (Lewis

and Gale, 1994; Tong and Koller, 2001), which

selects the data about which the current classi-

fier is the most uncertain; 2) query by commit-

tee (Seung et al., 1992), which selects the data

about which the “committee” disagree most; and

3) expected error reduction (Roy and McCallum,

2001), which selects the data that can contribute

the largest model loss reduction for the current

classifier once labelled. Applications of active

learning to NLP include text classification (Mc-

Callumzy and Nigamy, 1998; Tong and Koller,

2001), relation classification (Qian et al., 2014),

and structured prediction (Shen et al., 2004; Set-

tles and Craven, 2008; Stratos and Collins, 2015;

Fang and Cohn, 2017). Qian et al. used uncer-

tainty sampling to jointly perform on English and

Chinese. Stratos and Collins and Zhang et al. de-

ployed uncertainty-based AL algorithms for lan-

guages with the minimal supervision.

Deep reinforcement learning (DRL) is a

general-purpose framework for decision mak-

ing based on representation learning. Recently,

there are some notable examples include deep Q-

learning (Mnih et al., 2015), deep visuomotor poli-

cies (Levine et al., 2016), attention with recur-

rent networks (Ba et al., 2015), and model predic-

tive control with embeddings (Watter et al., 2015).

Other important works include massively parallel

frameworks (Nair et al., 2015), dueling architec-

ture (Wang et al., 2016) and expert move predic-

tion in the game of Go (Maddison et al., 2015),

which produced policies matching those of the

Monte Carlo tree search programs, and squarely

beaten a professional player when combined with

search (Silver et al., 2016). DRL has been also

studied in NLP tasks. For example, recently, DRL

has been studied for information extraction prob-

lem (Narasimhan et al., 2016). They designed a

framework that can decide to acquire external ev-

idence and the framework is under the reinforce-

ment learning method. However, there has been

fairly little work on using DRL to learn active

learning strategies for language processing tasks,

especially in cross-lingual settings.

Recent deep learning work has also looked at

transfer learning (Bengio, 2012). More recent

work in deep learning has also considered trans-

ferring policies by reusing policy parameters be-

tween environments (Parisotto et al., 2016; Rusu

et al., 2016), using either regularization or novel

neural network architectures, though this work has

not looked at transfer active learning strategies be-

tween languages with shared feature space in state.

3 Methodology

We now show how active learning can be for-

malised as as a decision process, and then show

how this allows for the active learning selection

policy to be learned from data using deep rein-

forcement learning. Later we introduce a method

for transferring the policy between languages.

3.1 Active learning as a decision process

Active learning is a simple technique for labelling

data, which involves first selecting some instances

from an unlabelled dataset, which are then anno-

tated by a human oracle, which is then repeated

many times until a termination criterion is satis-

fied, e.g., the annotation budget is exhausted. Most

often the selection function is based on the pre-

596

dictions of a trained model, which has been fit to

the labelled dataset at each stage in the algorithm,

where datapoints are selected based on the model’s

predictive uncertainty (Lewis and Gale, 1994), or

divergence in predictions over an ensemble (Se-

ung et al., 1992). The key idea of these meth-

ods is to find the instances on which the model is

most likely to make errors, such that after their la-

belling and inclusion in the training set, the model

becomes more robust to these types of errors on

unseen data.

The steps in active learning can be viewed as a

decision process, a means of formalising the ac-

tive learning algorithm as a sequence of decisions,

where the stages of active learning correspond to

the state of the system. Accordingly, the state cor-

responds to the selected data for labelling and their

labels, and each step in the active learning algo-

rithm corresponds to a selection action, wherein

the heuristic selects the next items from a pool.

This process terminates when the budget is ex-

hausted.

Effectively the active learning heuristic is oper-

ating as a decision policy, a form of function tak-

ing as input the current state — comprising the la-

belled data, from which a model is trained — and a

candidate unlabelled data point — e.g., the model

uncertainty. This raises the opportunity to con-

sider general policy functions, based on the state

and data point inputs, and resulting in a labelling

decision, and, accordingly a mechanism for learn-

ing such functions from data. We now elaborate

on the components of this process, namely the for-

mulation of the decision process, architecture of

the policy function, and means of learning the de-

cision policy automatically from data.

3.2 Stream-based learning

For simplicity, we make a streaming assumption,

whereby unlabelled data (sentences) arrive in a

stream (Lewis and Gale, 1994).2 As each instance

arrives, an agent must decide the action to take,

namely whether or not the instance should be man-

ually annotated. This process is illustrated in Fig-

ure 1, which illustrates the space of decision se-

quences for a small corpus. As part of this pro-

cess, a separate model, pφ, is trained on the la-

belled data, and updated accordingly as the la-

belled dataset is expanded as new annotations ar-

2This is different to pool-based active learning, where one
of several options is chosen for annotation. Our setup permits
simpler learning, while remaining sufficiently general.

3: Ms. Haag plays Elianti

1: Pierre Vinken will join the board

2: Mr. Vinken is chairman of Elsevier

4: There is no asbestos in our products

...

label ~ !(ɸ
0
, x1)

label ~ !(ɸ
0
, x2)train ɸ

1
| ɸ

0
x1 y1

yes;

y1 = PER PER O O O O no

label ~ !(ɸ
1
, x2)

label ~ !(ɸ
1
, x3)train ɸ

2
| ɸ

1
x2 y2

no

label ~ !(ɸ
0
, x3)train ɸ'

1
| ɸ

0
x2 y2

no

terminate

... ...

terminate

yes;

y2 = O PER O O O O

yes;

y2 = O PER O O O O

... …

Figure 1: Example illustrating sequential active

learning as a Markov Decision process. Data

arrives sequentially, and at each time the active

learning policy, π, must decide whether it should

be labelled or not, based on the state which in-

cludes a predictive model parameterised by φ, and

an unlabelled data instance x. The process con-

tinues until termination, e.g., when the annotation

budget is exhausted. The solid green path shows

the maximum scoring decision sequence.

rive. This model is central to the policy for choos-

ing the labelling actions at each stage, and for de-

termining the reward for a sequence of actions.

This is a form of Markov Decision Process

(MDP), which allows the learning of a policy that

can dynamically select instances that are most in-

formative. As illustrated in Figure 1 at each time,

the agent observes the current state si which in-

cludes the sentence xi, and the learned model

φ. The agent selects a binary action ai, denot-

ing whether to label xi, according to the policy

π. For ai = 1, the corresponding sentence is

labelled and added to the labelled data, and the

model pφ updated to include this new training

point. The process then repeats, terminating when

either the dataset is exhausted or a fixed annota-

tion budget is reached. After termination a reward

is computed based on the accuracy of the final

model, φ. We represent the MDP framework as

a tuple 〈S, A, Pr(si+1|si, a), R〉, where S = {s}
is the space of all possible states, A = {0, 1} is

the set of actions, R(s, a) is the reward function,

and Pr(si+1|si, a) is the transition function.

597

3.2.1 State

The state at time i comprises the candidate in-

stance being considered for annotation and the la-

belled dataset constructed in steps 1 . . . i. We rep-

resent the state using a continuous vector, using

the concatenation of the vector representation of

xi, and outputs of the model pφ trained over the

labelled data. These outputs use both the predic-

tive marginal distributions of the model on the in-

stance, and a representation of the model’s confi-

dence. We now elaborate on each component.

Content representation A key input to the

agent is the content of the sentence, xi, which we

encode using a convolutional neural network to ar-

rive at a fixed sized vector representation, follow-

ing Kim (2014). This involves embedding each of

the n words in the sentence to produce a matrix

Xi = {xi,1, xi,2, · · · , xi,n}, after which a series

of wide convolutional filters is applied, using mul-

tiple filters with different gram sizes. Each filter

uses a linear transformation with a rectified linear

unit activation function. Finally the filter outputs

are merged using a max-pooling operation to yield

a hidden state hc, which is used to represent the

sentence.

Representation of marginals The prediction

outputs of the training model, pφ(y|xi), are cen-

tral to all active learning heuristics, and accord-

ingly, we include this in our approach. In order

to generalise existing techniques, we elect to use

the predictive marginals directly, rather than only

using statistics thereof, e.g., entropy. This gener-

ality allows for different and more nuanced con-

cepts to be learned, including patterns of proba-

bilities that span several adjacent positions in the

sentence (e.g., the uncertainty about the boundary

of a named entity).

We use another convolutional neural network to

process the predictive marginals, as shown in Fig-

ure 2. The convolutional layer contains j filters

with ReLU activation, based on a window of width

3 and height equal to the number of classes, and

with a stride of one token. We use a wide convo-

lution, by padding the input matrix to either size

with vectors of zeros. These j feature maps are

then subsampled with mean pooling, such that the

network is easily able to capture the average un-

certainty in each window. The final hidden layer

he is used to represent the predictive marginals.

Pierre

Vinken

will

join

the

board

…

Marginals Convolutional layer

Representation

of marginals

PER LOC ORG O

Figure 2: The architecture for representing predic-

tive marginal distributions, pφ(y|xi), as a fixed di-

mensional vector, to form part of the MDP state.

Confidence of sequential prediction The last

component is a score C which indicates the con-

fidence of the model prediction. This is de-

fined based on the most probable label sequence

under the model, e.g., using Viterbi algorithm

with a CRF, and the probability of this se-

quence is used to represent the confidence, C =
n

√

maxy pφ(y|xi), where n = |xi| is the length of

the sentence.

3.2.2 Action

We now turn to the action, which denotes whether

the human oracle must annotate the current sen-

tence. The agent selects either to annotate xi, in

which case ai = 1, or not, with ai = 0, after which

the agent proceeds to consider the next instance,

xi+1. When action ai = 1 is chosen, an oracle is

requested to annotate the sentence, and the newly

annotated sentence is added to the training data,

and φ updated accordingly. A special ‘terminate’

option applies when no further data remains or the

annotation budget is exhausted, which concludes

the active learning run (referred to as an ‘episode’

or ‘game’ herein).

3.2.3 Reward

The training signal for learning the policy takes

the form of a scalar ‘reward’, which provides feed-

back on the quality of the actions made by the

agent. The most obvious reward is to wait for a

game to conclude, then measure the held-out per-

formance of the model, which has been trained

on the labelled data. However, this reward is de-

layed, and is difficult to related to individual ac-

tions after a long game. To compensate for this,

598

we use reward shaping, whereby small interme-

diate rewards are assigned which speeds up the

learning process (Ng, 2003; Lample and Chap-

lot, 2016). At each step, the intermediate reward

is defined as the change in held-out performance,

i.e., R(si−1, a) = Acc(φi) − Acc(φi−1), where

Acc denotes predictive accuracy (here F1 score),

and φi is the trained model after action a has take

place, which may include an additional training in-

stance. Accordingly, when considering the aggre-

gate reward over a game, the intermediate terms

cancel, such that the total reward measures the

performance improvement over the whole game.

Note that the value of R(s, a) can be positive or

negative, indicating a beneficial or detrimental ef-

fect on the performance.

3.2.4 Budget

There is a fixed budget B for the total number of

instances annotated, which corresponds to the ter-

minal state in the MDP. It is a predefined number

and chosen according to time and cost constraints.

A game is finished when the data is exhausted or

the budget reached, and with the final result be-

ing the dataset thus created, upon which the final

model is trained.

3.2.5 Reinforcement learning

The remaining question is how the above compo-

nents can be used to learn a good policy. Different

policies make different data selections, and thus

result in models with different performance. We

adopt a reinforcement learning (RL) approach to

learn a policy resulting a highly accurate model.

Having represented the problem as a MDP,

episode as a sequence of transitions (si, a, r, si+1).
One episode of active learning produces a finite

sequence of states, actions and rewards. We

use a deep Q-learning approach (Mnih et al.,

2015), which formalises the policy using function

Qπ(s, a)→ Rwhich determines the utility of tak-

ing a from state s according to a policy π. In Q-

learning, the agent iteratively updates Q(s, a) us-

ing rewards obtained from each episode, with up-

dates based on the recursive Bellman equation for

the optimal Q:

Qπ(s, a) = E[Ri|si = s, ai = a, π]. (1)

Here, Ri =
∑T

t=i γ
t−irt is the discounted fu-

ture reward and γ ∈ [0, 1] is a factor discounting

the value of future rewards and the expectation is

Algorithm 1 Learn an active learning policy

Input: data D, budget B
Output: π

1: for episode = 1, 2, . . . , N do

2: Dl ← ∅ and shuffle D
3: φ← Random

4: for i ∈ {0, 1, 2, . . . , |D|} do

5: Construct the state si using xi

6: The agent makes a decision according to

ai = arg max Qπ(si, a)
7: if ai = 1 then

8: Obtain the annotation yi

9: Dl ← Dl + (xi,yi)
10: Update model φ based on Dl

11: end if

12: Receive a reward ri using held-out set

13: if |Dl| = B then

14: Store (si, ai, ri, Terminate) inM
15: Break

16: end if

17: Construct the new state si+1

18: Store transition (si, ai, ri, si+1) inM
19: Sample random minibatch of transitions

{(sj , aj , rj , sj+1)} from M, and per-

form gradient descent step on L(θ)
20: Update policy π with θ

21: end for

22: end for

23: return the latest policy π

taken over all transitions involving state s and ac-

tion a.

Following Deep Q-learning (Mnih et al., 2015),

we make use of a deep neural network to compute

the expected Q-value, in order to update the pa-

rameters. We implement the Q-function using a

single hidden layer neural network, taking as in-

put the state representation (hc,he, C) (defined

in §3.2.1), and outputting two scalar values cor-

responding to the values Q(s, a) for a ∈ {0, 1}.
This network uses a rectified linear unit (ReLU)

activation function in its hidden layer.

The parameters in the DQN are learnt using

stochastic gradient descent, based on a regression

objective to match the Q-values predicted by the

DQN and the expected Q-values from the Bell-

man equation, ri + γ maxa Q(si+1, a; θ). Fol-

lowing (Mnih et al., 2015), we use an experi-

ence replay memory M to store each transition

(s, a, r, s′) as it is used in an episode, after which

599

Algorithm 2 Active learning by policy transfer

Input: unlabelled data D, budget B, policy π

Output: Dl

1: Dl ← ∅
2: φ← Random

3: for |Dl| 6= B and D not empty do

4: Randomly sample xi from the data pool D
and construct the state si

5: The agent chooses an action ai according to

ai = arg max Qπ(si, a)
6: if ai = 1 then

7: Obtain the annotation yi

8: Dl ← Dl + (xi,yi)
9: Update model φ based on Dl

10: end if

11: D ← D\xi

12: Receive a reward ri using held-out set

13: Update policy π

14: end for

15: return Dl

we sample a mini-batch of transitions from the

memory and then minimize the loss function:

L(θ) = Es,a,r,s′

[

(

yi(r, s
′)−Q(s, a; θ)

)2
]

, (2)

where yi(r, s
′) = r + γ maxa′ Q(s′, a′; θi−1) is

the target Q-value, based on the current param-

eters θi−1, and the expectation is over the mini-

batch. Learning updates are made every training

step, based on stochastic gradient descent to min-

imise Eq. 2 w.r.t. parameters θ.

The algorithm for learning is summarised in Al-

gorithm 1. We train the policy by running multi-

ple active learning episodes over the training data,

where each episode is a simulated active learning

run. For each episode, we shuffle the data, and

hide the known labels, which are revealed as re-

quested during the run. A disjoint held-out set

is used to compute the reward, i.e., model accu-

racy, which is fixed over the episodes. Between

each episode the model is reset to its initialisation

condition, with the main changes being the differ-

ent (random) data ordering and the evolving policy

function.

3.3 Cross-lingual policy transfer

We now turn to the question of how the learned

policy can be applied to another dataset. Given

the extensive use of the training dataset, the policy

application only makes sense when employed in a

Algorithm 3 Active learning by policy and model

transfer, for ‘cold-start’ scenario

Input: unlabelled data D, budget B, policy π,

model φ

Output: Dl

1: Dl ← ∅
2: for |Dl| 6= B and D not empty do

3: Randomly sample xi from the data pool D
and construct the state si

4: The agent chooses an action ai according to

ai = arg max Qπ(si, a)
5: if ai = 1 then

6: Dl ← Dl + (xi,−)
7: end if

8: D ← D\xi

9: end for

10: Obtain all the annotations for Dl

11: return Dl

different data setting, e.g., where the domain, task

or language is different. For this paper, we con-

sider a cross-lingual application of the same task

(NER), where we train a policy on a source lan-

guage (e.g., English), and then transfer the learned

policy to a different target language. Cross-lingual

word embeddings provide a common shared rep-

resentation to facilitate application of the policy to

other languages.

We illustrate the policy transfer algorithm in Al-

gorithm 2. This algorithm is broadly similar to

Algorithm 1, but has two key differences. Firstly,

Algorithm 2 makes only one pass over the data,

rather than several passes, as befits an application

to a low-resource language where oracle labelling

is costly. Secondly, the algorithm also assumes

an initial policy, π, which is fine tuned during the

episode based on held-out performance such that

the policy can adapt to the test scenario.3

3.4 Cold-start transfer

The above transfer algorithm has some limita-

tions, which may not be realistic for low-resource

settings: the requirement for held-out evaluation

data and the embedding of the oracle annotator in-

side the learning loop. The former implies more

supervision than is ideal in a low-resource setting,

3Moreover, the algorithm can be extended to a traditional
batch setting by evaluating a batch of data instances and se-
lectinag the best k instances for labelling under the policy.
This could be applied in either the transfer step (Algorithm 2)
or initial policy training (Algorithm 1), or both.

600

while the latter places limitations on the commu-

nication with annotator as well as a necessity for

real-time processing, both which are unlikely in a

field linguistics setting.

For this data and- communication-impoverished

setting, denoted as cold-start, we allow only one

chance to request labels for the target data, and,

having no held-out data, do not allow policy up-

dates. The agent needs to select a batch of unla-

belled target instances for annotations, but cannot

use these resulting annotations or any other feed-

back to refine the selection. In this, more difficult

cold-start setting, we bootstrap the process with an

initial model, such that the agent can make infor-

mative decisions in the absence of feedback.

The procedure is outlined in Algorithm 3. Us-

ing the cross-lingual word embeddings, we trans-

fer both a policy and a model into the target lan-

guage. The model, φ, is trained on one source

language, and the policy is learned on a different

source language. Policy learning uses Alg 1, with

the small change that in step 3 the model is ini-

tialised using φ. Consequently the learned policy

can exploit the knowledge from cross-lingual ini-

tialisation, such that it can figure out which aspects

that need to be corrected using target annotated

data. Overall this allows for estimates and con-

fidence values to be produced by the model, thus

providing the agent with sufficient information for

data selection.

4 Experiments

We conduct experiments to validate the proposed

active learning method in a cross-lingual setting,

whereby an active learning policy trained on a

source language is transferred to a target language.

We allow repeated active learning simulations on

the source language, where annotated corpora are

plentiful, to learn a policy, while for target lan-

guages we only permit a single episode, to mimic

a language without existing resources.

We use NER corpora from CoNLL2002/2003

shared tasks,4 which comprise NER annotated text

in English (en), German (de), Spanish (es), and

Dutch (nl), each annotated using the IOB1 la-

belling scheme, which we convert to the IO label-

ing scheme. We use the existing corpus partions,

with train used for policy training, testb used

4 http://www.cnts.ua.ac.be/conll2002/

ner/, http://www.cnts.ua.ac.be/conll2003/

ner/

Bilingual Multilingual Cold-start

tgt src tgt src tgt src pre

de en de en,nl,es de nl en

nl en nl en,de,es nl de en

es en es en,de,nl es de en

- - - - de es en

- - - - nl es en

- - - - es nl en

Table 1: Experimental configuration for the three

settings, showing target language (tgt), source lan-

guage (src) as used for policy learning, and lan-

guage used for pre-training the model (pre).

as held-out for computing rewards, and final re-

sults are reported on testa.

We consider three experimental conditions, as

illustrated in Table 1:

bilingual where English is the source (used for

policy learning) and we vary the target lan-

guage;

multilingual where several source languages are

the used in joint learning of the policy, and a

separate language is used as target; and

cold-start where a pretrained English NER tag-

ger is used to initialise policy learning on a

source language, and in cold-start application

to a separate target language.

Configuration We now outline the parameter

settings for the experimental runs. For learning

an active learning policy, we run N = 10, 000
episodes with budget B = 200 sentences using

Alg. 1. Content representations use three convo-

lutional filters of size 3, 4 and 5, using 128 fil-

ters for each size, while for predictive marginals,

the convolutional filters are of width 3, using 20
filters. The size of the last hidden layer is 256.

The discount factor is set to γ = 0.99. We used

the ADAM algorithm with mini-batches of size 32
for training the neural network. To report perfor-

mance, we apply the learned policy to the target

training set (using Alg. 2 or 3, again with budget

200),5 after which we use the final trained model

for which we report F1 score.

For word embeddings, we use off the shelf CCA

trained multilingual embeddings (Ammar et al.,

5Although it is possible the policy may learn not to use
the full budget, this does not occur in practise.

601

●

●

●

●

●
● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ●

●

●
●

●
●

● ● ● ●

● ● ● ●
●

● ● ● ● ● ● ●

●

●

●
●

●

●

● ● ● ● ● ●
●

● ●

●
● ● ● ●

●

de es nl

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

0.0

0.2

0.4

0.6

Num. Labelled Sentences

F
1

Methods

● Random

Uncertainty

Pal.b

Pal.m

Figure 3: The performance of active learning methods on the bilingual and multilingual settings for

three target languages, whereby the active learning policy is trained on only en, or all other languages

excluding the target, respectively.

2016),6 using a 40 dimensional embedding and

fixing these during training of both the policy and

model. As the model, we use a standard linear

chain CRF (Lafferty et al., 2001) for the first two

sets of experiments, while for cold-start case we

use a basic RNN classifier with the same multilin-

gual embeddings as before, and a 128 dimensional

hidden layer.

The proposed method is referred to as PAL, as

shorthand Policy based Active Learning. Sub-

scripts b, m, c are used to denote the bilingual,

multilingual and cold-start experimental configu-

rations. For comparative baselines, we use the fol-

lowing methods:

Uncertainty sampling we use the total token en-

tropy measure (Settles and Craven, 2008),

which takes the instance x maximising
∑|x|

t=1
H(yt|x, φ), where H is the token en-

tropy. We use the whole training set as the

data pool, and select a single instance for

labelling in each active learning step. This

method was shown to achieve the best re-

sult among model-independent active learn-

ing methods on the CoNLL data.

Random sampling which randomly selects ex-

amples from the unlabelled pool.

Results Figure 3 shows results the bilingual

case, where PALb consistently outperforms the

Random and Uncertainty baselines across the

three target languages. Uncertainty sampling is in-

effective, particularly towards the start of the run,

6http://128.2.220.95/multilingual

as a consequence of its dependence on a high qual-

ity model. The use of content information allows

PALb to make a stronger start, despite the poor ini-

tial model.

Also shown in Figure 3 are results for multilin-

gual policy learning, PALm, which outperform all

other approaches including PALb. This illustrates

that the additional training over several languages

gives rise to a better policy, than only using one

source language. The superior performance is par-

ticularly marked in the early stages of the runs for

Spanish and Dutch, which may indicate that the

approach was better able to learn to exploit the

sentence content information.

We evaluate the cold-start setting in Figure 4.

Recall that in this setting there are no policy or

model updates, as no heldout data is used, and all

annotations arrive in a batch. The model, how-

ever, is initialised with a NER tagger trained on

a different language, which explains why the per-

formance for all methods starts from around 40%
rather than 0%. Even in this challenging eval-

uation setting, our algorithm PALc outperforms

both baseline methods, showing that deep Q learn-

ing allows for better exploitation of the pretrained

classifier, alongside the sentence content.

Lastly, we report the results for all approaches

in Table 2, based on training on the full 200 la-

belled sentences as selected under the different

methods. It is clear that the PAL methods all out-

perform the baselines, and among these the multi-

lingual training of PALm outperforms the bilingual

setting in PALb. Surprisingly, PALc gives the over-

all best results, despite using a static policy and

model during target application, underscoring the

importance of model pretraining. Table 2 also re-

602

● ● ● ● ●
●

●
●

● ● ● ●
● ● ● ● ● ● ● ● ●

● ●
● ● ●

● ●
●

●
● ●

●
● ● ● ● ●

● ●
● ●

●
● ● ● ● ● ● ● ●

●
● ●

●
● ● ●

● ●
● ● ●

● ●
●

● ● ● ● ● ● ●
●

●
● ●

● ●
● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
●

●
● ●

● ●
● ● ● ● ● ● ●

● ●

es → nl nl → de nl → es

de → es de → nl es → de

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

0.5

0.6

0.7

0.5

0.6

0.7

Num. Labelled Sentences

F
1

Method

● Random.pre

Uncertainty.pre

Pal.c

Figure 4: The performance of active learning methods on the cold-start setting, each showing different

source→ target configurations, in all cases pretraining in en.

de nl es

F1 C/R F1 C/R F1 C/R

Rand. 44.6 100 45.2 100 40.7 100
Uncert. 54.2 60 50.1 25 45.1 30
PALb 57.9 60 54.7 25 53.9 40
PALm 62.7 25 56.3 30 56.0 25
PALc 70.7 10 69.1 10 63.8 10

Table 2: Results from active learning using the dif-

ferent methods, where each approach constructs a

training set of 200 sentences. The three target lan-

guages are shown as columns, reporting in each F1

score (%) and the relative cost reduction to match

the stated performance of the Random strategy.

ports the cost reduction versus random sampling,

showing that the PAL methods can reduce the an-

notation burden to as low as 10%.

5 Conclusion

In this paper, we have proposed a new active learn-

ing algorithm capable of learning active learning

strategies from data. We formalise active learn-

ing under a Markov decision framework, whereby

active learning corresponds to a sequence of bi-

nary annotation decisions applied to a stream of

data. Based on this, we design an active learning

algorithm as a policy based on deep reinforcement

learning. We show how these learned active learn-

ing policies can be transferred between languages,

which we empirically show provides consistent

and sizeable improvements over baseline methods,

including traditional uncertainty sampling. This

holds true even in a very difficult cold-start setting,

where no evaluation data is available, and there is

no ability to react to annotations.

Acknowledgments

This work was sponsored by the Defense Ad-

vanced Research Projects Agency Information In-

novation Office (I2O) under the Low Resource

Languages for Emergent Incidents (LORELEI)

program issued by DARPA/I2O under Contract

No. HR0011-15-C-0114. The views expressed are

those of the authors and do not reflect the official

policy or position of the Department of Defense or

the U.S. Government. Trevor Cohn was supported

by an Australian Research Council Future Fellow-

ship.

References

Waleed Ammar, George Mulcaire, Yulia Tsvetkov,
Guillaume Lample, Chris Dyer, and Noah A Smith.
2016. Massively multilingual word embeddings.
arXiv preprint arXiv:1602.01925 .

Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu.
2015. Multiple object recognition with visual atten-
tion. In Proceedings of the International Conference
on Learning Representations (ICLR).

Yoshua Bengio. 2012. Deep learning of representa-
tions for unsupervised and transfer learning. In Pro-
ceedings of ICML Workshop on Unsupervised and
Transfer Learning. pages 17–36.

Meng Fang and Trevor Cohn. 2017. Model transfer
for tagging low-resource languages using a bilin-
gual dictionary. In Proceedings of the 55th Annual
Meeting on Association for Computational Linguis-
tics (ACL).

603

Dan Garrette and Jason Baldridge. 2013. Learning a
part-of-speech tagger from two hours of annotation.
In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(HLT-NAACL). pages 138–147.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods on Natural Lan-
guage Processing (EMNLP).

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML).
pages 282–289.

Guillaume Lample and Devendra Singh Chaplot. 2016.
Playing FPS games with deep reinforcement learn-
ing. arXiv preprint arXiv:1609.05521 .

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. 2016. End-to-end training of deep visuo-
motor policies. Journal of Machine Learning Re-
search 17(39):1–40.

David D Lewis and William A Gale. 1994. A sequen-
tial algorithm for training text classifiers. In Pro-
ceedings of the 17th International ACM SIGIR Con-
ference on Research and Development in Informa-
tion Retrieval. pages 3–12.

Chris J Maddison, Aja Huang, Ilya Sutskever, and
David Silver. 2015. Move evaluation in go using
deep convolutional neural networks. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR).

Andrew Kachites McCallumzy and Kamal Nigamy.
1998. Employing em and pool-based active learn-
ing for text classification. In Proceedings of the
15th International Conference on Machine Learning
(ICML). pages 359–367.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. 2015. Human-level
control through deep reinforcement learning. Na-
ture 518(7540):529–533.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas
Alcicek, Rory Fearon, Alessandro De Maria,
Vedavyas Panneershelvam, Mustafa Suleyman,
Charles Beattie, Stig Petersen, Shane Legg,
Volodymyr Mnih, Koray Kavukcuoglu, and David
Silver. 2015. Massively parallel methods for deep
reinforcement learning. In Proceedings of ICML
Workshop on Deep Learning.

Karthik Narasimhan, Adam Yala, and Regina Barzi-
lay. 2016. Improving information extraction by ac-
quiring external evidence with reinforcement learn-
ing. In Proceedings of the 2016 Conference on Em-

pirical Methods on Natural Language Processing
(EMNLP).

Andrew Y. Ng. 2003. Shaping and Policy Search in
Reinforcement Learning. Ph.D. thesis, University of
California, Berkeley.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhut-
dinov. 2016. Actor-mimic: Deep multitask and
transfer reinforcement learning. In Proceedings of
the International Conference on Learning Represen-
tations (ICLR).

Longhua Qian, Haotian Hui, Yanan Hu, Guodong
Zhou, and Qiaoming Zhu. 2014. Bilingual active
learning for relation classification via pseudo par-
allel corpora. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (ACL). pages 582–592.

Nicholas Roy and Andrew McCallum. 2001. Toward
optimal active learning through monte carlo esti-
mation of error reduction. In Proceedings of the
18th International Conference on Machine Learning
(ICML). pages 441–448.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671 .

Burr Settles. 2010. Active learning literature survey.
University of Wisconsin, Madison 52(55-66):11.

Burr Settles and Mark Craven. 2008. An analysis
of active learning strategies for sequence labeling
tasks. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP). pages 1070–1079.

H Sebastian Seung, Manfred Opper, and Haim Som-
polinsky. 1992. Query by committee. In Proceed-
ings of the 5th annual workshop on Computational
Learning Theory. pages 287–294.

Dan Shen, Jie Zhang, Jian Su, Guodong Zhou, and
Chew-Lim Tan. 2004. Multi-criteria-based active
learning for named entity recognition. In Proceed-
ings of the 42nd Annual Meeting on Association for
Computational Linguistics (ACL).

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. Nature 529(7587):484–489.

Karl Stratos and Michael Collins. 2015. Simple semi-
supervised pos tagging. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT). pages 79–
87.

604

Cynthia A Thompson, Mary Elaine Califf, and Ray-
mond J Mooney. 1999. Active learning for natu-
ral language parsing and information extraction. In
Proceedings of the 16th International Conference on
Machine Learning (ICML). pages 406–414.

Katrin Tomanek, Joachim Wermter, and Udo Hahn.
2007. An approach to text corpus construction
which cuts annotation costs and maintains reusabil-
ity of annotated data. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL). pages 486–
495.

Simon Tong and Daphne Koller. 2001. Support vec-
tor machine active learning with applications to text
classification. Journal of Machine Learning Re-
search 2(Nov):45–66.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van
Hasselt, Marc Lanctot, and Nando de Freitas. 2016.
Dueling network architectures for deep reinforce-
ment learning. In Proceedings of the 33rd Interna-
tional Conference on Machine Learning (ICML).

Manuel Watter, Jost Springenberg, Joschka Boedecker,
and Martin Riedmiller. 2015. Embed to control:
A locally linear latent dynamics model for control
from raw images. In Advances in Neural Informa-
tion Processing Systems (NIPS). pages 2746–2754.

Boliang Zhang, Xiaoman Pan, Tianlu Wang, Ashish
Vaswani, Heng Ji, Kevin Knight, and Daniel Marcu.
2016. Name tagging for low-resource incident lan-
guages based on expectation-driven learning. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Language Technologies (NAACL-HLT). pages
249–259.

605

