
Learning H u m a n Face Detec t ion in Clut tered Scenes

Kah-Kay S u n g a n d Tomaso Poggio
Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139, U.S.A.

Abs t rac t . This paper presents an example-based learning approach for

locating vertical frontal views of human faces in complex scenes. The

technique models the distribution of human face patterns by means of

a few view-based "face" and "non-face" prototype clusters. A 2-Value

metric is proposed for computing distance features between test patterns

and the distribution-based face model during classification. We show em-

pirically that the prototypes we choose for our distribution-based model,

and the metric we adopt for computing distance feature vectors, are both

critical for the success of our system.

1 Introduct ion

Finding human faces automatically in a cluttered image is a difficult yet impor-

tant first step to a fully automatic face recognition system. It also has many

potential applications ranging from surveillance and census systems to human-

computer interfaces. Human face detection is difficult because there can be huge

and unpredictable variations in the appearance of face patterns. Because many

of these variations are difficult to parameterize, traditional correlation-template

pattern matching techniques [1] [2] and geometric model-based object recogni-

tion approaches tend to perform inadequately for detecting faces. Some non-

parametric approaches, such as view-based eigen-spaees [3] and image invariance

schemes [4], have been recently proposed for detecting face patterns, but so far,

they have only been demonstrated on images with little clutter.

1.1 E x a m p l e - b a s e d L e a r n i n g a n d Face D e t e c t i o n

In this paper, we formulate the face detection problem as one of learning to

recognize face patterns from examples. We use an initial database of about 1000

face mugshots to derive a view-based model for the distribution of face patterns.

We then train a multi-layer perceptron net classifier on a sequence of "face" and

"non-face" examples, to empirically discover a set of distance feature thresholds

that separates "face" patterns from "non-face" patterns. Our learning-based

approach has the following distinct advantages over existing techniques:

(1) It depends on the distribution of real face patterns and not on domain

specific knowledge to build face models. This immediately eliminates potential

modeling errors due to inaccurate or incomplete knowledge.

(2) It derives its operating parameters and thresholds automatically from a large

number of annotated input-output examples and not manually from a few trial

Hlav~, ~ira (Eds.): CAIP '95 Proceedings, LNCS 970
�9 Springer-Verlag Berlin Heidelberg 1995

433

cases. The thresholds and parameters it arrives at are therefore statistically more

reliable because they come from a larger and wider sample of training data.

(3) It can be made arbitrarily robust by increasing the number and variety of

its training examples. Both false positive and false negative detection errors can

be easily corrected by further training with the wrongly classified patterns.

2 System Overview and Approach

Our view-based approach searches the image exhaustively over multiple scales

for square patches of the human face (henceforth referred to as canonical face
patterns) whose upper boundary lies just above the eyes and whose lower edge

falls just below the mouth (see Figure l(a)). At each image location and scale,

the system classifies the local image pattern as being either '% face" or "not a

face", based on a set of local distance feature measurements to the face model.

Fig. 1. (a): A "canonical" face pattern and a 19 x 19 mask for eliminating

near-boundary pixels of canonical face patterns. (b): The 12 prototype patterns

for approximating the distribution of face patterns. The 6 patterns on the left are

"face" prototypes. The 6 on the right are "non-face" prototypes.

Clearly, the most critical part of our system is the algorithm for classifying

new window patterns as "faces" or "non-faces". The rest of this paper focuses

on the approach whose general idea is as follows:

(1) We re-scale each window pattern to 19 • 19 pixels before classification.

Matching with a fixed sized window simplifies our algorithm because it allows

us to use the same classification procedure for all scales.

(2) In the 19 • 19 dimensional image window vector space, we use a few "face"

and "non-face" window pat tern prototypes to piece-wise approximate the distri-

bution of canonical face patterns. These pattern prototypes serve as a view-based

model for the class of canonical face patterns. Each prototype is encoded as a

multi-dimensional Gaussian cluster with a centroid and a covariance matrix.

(3) We define a set of image computations to measure the "difference" between a

new window pattern and our view-based canonical face model. Each set of image

measurements is a vector of directionalty dependent distance features between

the new window pattern and the stored prototype window patterns in the 19 • 19

pixel image vector space.

434

(4) We train a multi-layer perceptron (MLP) net to classify new window patterns

as "faces" or "non-faces" based on their vector of distance measurements to the

pattern prototypes.

3 Synthesizing Pattern Prototypes

Our approach uses 6 "face" and 6 "non-face" multi-dimensional Gaussian clus-

ters to piece-wise approximate the distribution of canonical face patterns in the

19 • 19 pixel image vector space. We choose a piece-wise continuous modeling

scheme because we believe face patterns occupy a smoothly varying and contin-

uous manifold in this vector space. Figure l(b) shows the 12 pattern prototype

centers we synthesized for our scheme. The 6 "face" prototypes are synthesized

from a database of canonical face window patterns, while the 6 "non-face" pro-

totypes are derived from a similar database of non-face patterns.

3.1 Preprocessing

The first step of synthesizing prototypes is to normalize each sample window

pattern in the "face" and "non-face" databases to compensate for certain sources

of image variation:

(1) W i n d o w resizing: Our scheme re-scales window patterns of different sizes

to 19 • 19 pixels before performing modeling and classification. We choose a

19 • 19 window size to keep the dimensionality of the vector space manageable

small, but also large enough to preserve distinctive features of face patterns.

(2) Masking: We use the 19 • 19 binary pixel mask in Figure l(b) to zero-out

some near-boundary pixels of each window pattern. For "face" patterns, these

masked pixels usually correspond to irrelevant background pixels.

(3) I l lumina t ion grad ien t correct ion: This operation subtracts a best-fit

brightness plane from the unmasked window pixels and helps remove heavy

shadows caused by extreme lighting angles.

(4) H i s tog ram equal izat ion: This operation adjusts for several geometry in-

dependent sources of window pattern variation, including changes in illumination

brightness and differences in camera response curves.

Notice that the same preprocessing steps must also be applied to all new

window patterns being classified at runtime.

3.2 Clus te r ing for "Face" Prototypes

We use a database of 4150 normalized canonical face patterns to synthesize 6

"face" pattern prototypes. The database contains 1067 real face patterns, ob-

tained from several different image sources. We artificially enlarge the database

to 4150 patterns by adding slightly rotated versions of the original face patterns

and their mirror images as virtual examples.
We use an elliptical version of the k-means clustering algorithm to compute

6 representative face patterns and their cluster covariance matrices from the

435

enlarged database (see [5] for details). The elliptical k-means algorithm fits full

covariance Gaussian clusters instead of isotropic Gaussian clusters to the data

samples. It approximates the "face" data distribution more closely with the same

number of clusters, because locally, the "face" data distribution can be a lot more

elongated along certain directions of the image vector space than others.

3.3 Clus te r ing for "Non-Face" P r o t o t y p e s

There are many naturally occurring "non-face" patterns in the real world that

look like faces when viewed in isolation. Figure 2 shows one such example. In

order to avoid possible misclassification of these patterns as "faces", we explic-

itly model their distribution using 6 "non-face" prototypes. These "non-face"

prototypes carve out negative regions around the "face" distribution that do not

correspond to face patterns.

Fig. 2. An example of a naturally occurring "non-face" pattern that resembles a

face. Left: The pattern viewed in isolation. Right: The pattern viewed in the

context of its environment.

We use our elliptical k-means clustering algorithm to obtain 6 "non-face"

prototypes and their cluster covariance matrices from a database of 6189 face-

like patterns. Section 5.1 elaborates on how these face-like patterns are found.

4 A 2 - V a l u e D i s t a n c e M e t r i c

Our system classifies a new window pattern based on its vector of distances to the

12 prototype centers. In this section, we define a distribution dependent 2-Value

metric for measuring the "distance" between a test pattern and a prototype

pattern. We argue in [5] that our 2-Value distance takes into account both the

detailed shape of the prototype cluster and the reliability of the shape estimate,

and is thus a reasonable and robust measure of "dis-similarity" between a test

pattern and the local data distribution near the prototype center.

The first distance value is a directionally dependent Mahalanobis distance

between the test pattern and the prototype center, in a vector sub-space spanned

by the cluster's 75 largest eigenvectors. Let x be the column vector test pattern,

/t be the prototype pattern, E75 be a 75 column matrix whose i th column is a

unit vector in the direction of the cluster's i th largest eigenvector, and W75 be

436

a diagonal matr ix of the corresponding 75 largest eigenvalues. The covariance

matr ix for the cluster's data distribution in the 75 dimensional sub-space is given
T by Z75 = (E75W75E75), and the first distance value is:

 (7 1n2 + l n JZT t + (x T - 1 l) l(X, ~) = - z75 (x -

The second distance component is a standard Euclidean distance between the

test pattern x and its projection Xp in the 75 dimensional largest eigenvector

sub-space:
V2(x, U) = II(x - x p) l / - - I I (I -E75ETr~)(x - u) l l .

It accounts for pattern differences not captured by the first component. We

assume an isotropic sample data distribution in this sub-space of smaller and

possibly less accurate eigenvectors, and hence a Euclidean distance measure.

5 T h e C l a s s i f i e r

We use a Multi-Layer Perceptron (MLP) net with one hidden layer to identify

"face" window patterns from "non-face" patterns, based on their vector of 2-

Value distance features to the 12 prototype centers. The net has 12 pairs of input

terminals (for the 12 pairs of distance values), one output unit and 24 hidden

units. The net is trained with a standard backpropagation learning algorithm

to output a '1' for "face" patterns and a '0' otherwise. Our experiments in the

next section show that the number of hidden units and network connectivity

structure do not significantly affect the classifier's performance.

5.1 Generating and Selecting Training Examples

Ideally, we would like to train our classifier with as large an example set of "face"

and "non-face" distance vectors as possible, in order to attain classification with

minimal error. Unfortunately, we must constrain the size of our training database

because of limited disk space and training time.

We build a comprehensive but tractable database of "face" and "non-face""

patterns as follows: For "face" patterns, we simply collect all the frontal face

views we can find in mugshot databases. Because we do not have access to many

large mugshot databases, our sample of "face" patterns remains manageably

small.

For "non-face" patterns, the task seems more tricky. In essence, every square

non-canonical face window pattern of any size in any image is a valid "non-face"

pattern, so the range of possible "non-face" patterns can grow intractably large

in principle. To constrain the number of "non-face" examples in our database,

we use the following "boot-strap" strategy that incrementally selects "non-face"

patterns with high information value:

(1) Start with a small and possibly incomplete set of "non-face" examples in

the training database.

(2) Train the MLP net classifier with the current database of examples.

437

(3) Run the face detector on a sequence of random images. Collect all the "non-

face" patterns that the current system wrongly classifies as "faces". Add these

"non-face" patterns to the training database as new negative examples.

(4) Return to Step 2.

At the end of each iteration, the "boot-strap" strategy enlarges the current

set of "non-face" patterns with new examples that the current system classifies

wrongly. These new examples are "useful" because they steer the classifier away

from its current mistakes.

6 R e s u l t s a n d P e r f o r m a n c e A n a l y s i s

Figure 3 shows some sample face detection results by our system. The system

operates on window sizes of 19 x 19 pixels to 100 x 100 pixels at width increments

of 120%. On a Spare 10, the algorithm takes about 3 minutes to process a

256 • 256 pixel image. It usually detects faces within -t-5 ~ of the vertical.

The system marks each "face" it finds with an appropriately sized dotted

box in the output image. Many of the faces in Figure 3 are enclosed by multiple

boxes because they have been detected either at a few different scales or at a few

slightly offset window positions. The results show that the system (1) does not

make many false positive mistakes (none in this case) even for fairly complex

scenes, (2) finds faces successfully at very different scales, and (3) detects real

faces and hand-drawn faces equally well. The current system does not detect

Geordi's face in the top image because his eyes are occluded by an opaque

metallic visor, which is atypical of face patterns in our training database.

6.1 Measur ing the Sys tem's Pe r fo rmance

To quantitatively measure our system's performance, we ran our system on two

test databases of new patterns and counted the number of correct detections

versus false alarms.

The first test database consists of 301 frontal and near-frontal high quality

face images of 71 different people with a fair amount of lighting variation. We

use this database to obtain a "best case" detection rate for our system. The

second database contains 23 cluttered images with a total of 149 face patterns.

The quality of images range from high fidelity CCD pictures to low quantization

newspaper scans. We use this database to obtain an "average case" performance

measure for our system.

For the first database, our system correctly finds 96.3% of all the face pat-

terns and makes only 3 false delects. This result is encouraging because often,

one can easily replace poorer sensors with better ones to arrive at this level

of performance. For the second database, our system achieves a 79.9% detec-

tion rate with 5 false positives. The mistakes are mostly either from low quality

newspaper scans or hand drawn pictures. We consider this behavior acceptable

because the system is merely degrading gracefully with poorer image quality.

438

Fig. 3. Some hce detection results by our system. See text for details.

6.2 A n a l y z i n g the System's Components

We conducted two additional experiments to identify the key components of

our face detection algorithm. The first experiment investigates how the classi-

fier's architecture affects our system's overall performance. To do this, we create

and test a similar system with a single perceptron unit in place of the original

moderately complex multi-layer perceptron net as a classifier.

The second experiment compares the performance of our 2-value distance

metric with three other distance measures: (1) first component only (731) of our 2-

value distance metric, (2) the second component only (732) of our 2-value distance

metric, and (3) the standard Mahalanobis distance (.s using all eigenvectors

of each cluster. To conduct this experiment, we configure and generate statistics

for three new systems, each using one of the three distance measures in place of

our 2-Value distance metric. Notice that because the three new distance measures

439

are all single-value measurements, we also have to reduce the number of classifier

input terminals from 24 to 12.

Distance Metric

Classifier 2-Val :D, :D2 A4,~

MLP 96.3% 3 91.6% 21 91.4% 4 84.1% 9

79.9% 5 85.1% 114 65.1% 5 42.6% 5

Single 96.7% 3 93.3% 15 92.3% 3 93.0% 13

Perceptron 84.6% 13185.1% 94 68.2% 5 58.6% 11

Table 1. Detection rates versus number of false positives for different classifier ar-

chitectures and distance metrics. The four numbers for each entry are: Top Left:

detection rate for first database. Top Right: number of false positives for first

database. B o t t o m Left: detection rate for second database. B o t t o m Right: num-

ber of false positives for second database.

Table 1 summarizes the results of our two experiments. Empirically, the fig-

ures suggest that while the classifier's network architecture does not signifi-

cantly affect the system's performance, our 2-Value distance metric noticeably

out-performs the other three distance measures in terms of achieving both high

detection rates and few false positive errors simultaneously.

7 Conclusion

We have successfully developed a system for finding unoccluded vertical frontal

views of human faces in images. The approach is view based. It models the

distribution of face patterns by means of a few prototype clusters, and learns

from examples a set of distance parameters for distinguishing between "face"

and "non-face" test patterns. We are currently extending the system to detect

faces over a wider range of poses instead of just near-frontal views. We stress

again, however, that our ult imate goal is to develop a general methodology for

taking on feature detection and pattern recognition tasks in multiple domains.

References

1. M. Bichsel. Strategies of Robust Objects Recognition for Automatic Identification
of Human Faces. PhD thesis, ETtt, Zurich, 1991.

2. R. Brunelli and T. Poggio. Face Recognition: Features versus Templates. 1EEE

Transactions on Pattern Analysis and Machine Intelligence, 15(10):1042-1052, 1993.

3. A. Pentland, B. Moghaddam, and T. Starner. View-based and Modular

Eigenspaces for Face Recognition. In Proc. 1EEE CVPR, pages 84-91, June 1994.

4. P. Sinha. Object Recognition via Image Invariazats: A Case Study. In Investigative

Ophthalmology and Visual Science, vol 35, pages 1735-1740, May 1994.

5. K. Sung and T. Poggio. Example-based Learning for View-based Human Face De-

tection. AIM-1521, MIT Artificial Intelligence Laboratory, December 1994.

