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Abs t rac t .  This paper presents an example-based learning approach for 

locating vertical frontal views of human faces in complex scenes. The 

technique models the distribution of human face patterns by means of 

a few view-based "face" and "non-face" prototype clusters. A 2-Value 

metric is proposed for computing distance features between test patterns 

and the distribution-based face model during classification. We show em- 

pirically that the prototypes we choose for our distribution-based model, 

and the metric we adopt for computing distance feature vectors, are both 

critical for the success of our system. 

1 Introduct ion  

Finding human faces automatically in a cluttered image is a difficult yet impor- 

tant first step to a fully automatic face recognition system. It also has many 

potential applications ranging from surveillance and census systems to human- 

computer interfaces. Human face detection is difficult because there can be huge 

and unpredictable variations in the appearance of face patterns. Because many 

of these variations are difficult to parameterize, traditional correlation-template 

pattern matching techniques [1] [2] and geometric model-based object recogni- 

tion approaches tend to perform inadequately for detecting faces. Some non- 

parametric approaches, such as view-based eigen-spaees [3] and image invariance 

schemes [4], have been recently proposed for detecting face patterns, but so far, 

they have only been demonstrated on images with little clutter. 

1.1 E x a m p l e - b a s e d  L e a r n i n g  a n d  Face  D e t e c t i o n  

In this paper, we formulate the face detection problem as one of learning to 

recognize face patterns from examples. We use an initial database of about 1000 

face mugshots to derive a view-based model for the distribution of face patterns. 

We then train a multi-layer perceptron net classifier on a sequence of "face" and 

"non-face" examples, to empirically discover a set of distance feature thresholds 

that separates "face" patterns from "non-face" patterns. Our learning-based 

approach has the following distinct advantages over existing techniques: 

(1) It depends on the distribution of real face patterns and not on domain 

specific knowledge to build face models. This immediately eliminates potential 

modeling errors due to inaccurate or incomplete knowledge. 

(2) It derives its operating parameters and thresholds automatically from a large 

number of annotated input-output  examples and not manually from a few trial 
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cases. The thresholds and parameters it arrives at are therefore statistically more 

reliable because they come from a larger and wider sample of training data. 

(3) It can be made arbitrarily robust by increasing the number and variety of 

its training examples. Both false positive and false negative detection errors can 

be easily corrected by further training with the wrongly classified patterns. 

2 System Overview and Approach 

Our view-based approach searches the image exhaustively over multiple scales 

for square patches of the human face (henceforth referred to as canonical face 
patterns) whose upper boundary lies just above the eyes and whose lower edge 

falls just below the mouth (see Figure l(a)).  At each image location and scale, 

the system classifies the local image pattern as being either '% face" or "not a 

face", based on a set of local distance feature measurements to the face model. 

Fig. 1. (a): A "canonical" face pattern and a 19 x 19 mask for eliminating 

near-boundary pixels of canonical face patterns. (b): The 12 prototype patterns 

for approximating the distribution of face patterns. The 6 patterns on the left are 

"face" prototypes. The 6 on the right are "non-face" prototypes. 

Clearly, the most critical part of our system is the algorithm for classifying 

new window patterns as "faces" or "non-faces". The rest of this paper focuses 

on the approach whose general idea is as follows: 

(1) We re-scale each window pattern to 19 • 19 pixels before classification. 

Matching with a fixed sized window simplifies our algorithm because it allows 

us to use the same classification procedure for all scales. 

(2) In the 19 • 19 dimensional image window vector space, we use a few "face" 

and "non-face" window pat tern prototypes to piece-wise approximate the distri- 

bution of canonical face patterns. These pattern prototypes serve as a view-based 

model for the class of canonical face patterns. Each prototype is encoded as a 

multi-dimensional Gaussian cluster with a centroid and a covariance matrix. 

(3) We define a set of image computations to measure the "difference" between a 

new window pattern and our view-based canonical face model. Each set of image 

measurements is a vector of directionalty dependent distance features between 

the new window pattern and the stored prototype window patterns in the 19 • 19 

pixel image vector space. 
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(4) We train a multi-layer perceptron (MLP) net to classify new window patterns 

as "faces" or "non-faces" based on their vector of distance measurements to the 

pattern prototypes. 

3 Synthesizing Pattern Prototypes 

Our approach uses 6 "face" and 6 "non-face" multi-dimensional Gaussian clus- 

ters to piece-wise approximate the distribution of canonical face patterns in the 

19 • 19 pixel image vector space. We choose a piece-wise continuous modeling 

scheme because we believe face patterns occupy a smoothly varying and contin- 

uous manifold in this vector space. Figure l(b) shows the 12 pattern prototype 

centers we synthesized for our scheme. The 6 "face" prototypes are synthesized 

from a database of canonical face window patterns, while the 6 "non-face" pro- 

totypes are derived from a similar database of non-face patterns. 

3.1 Preprocessing 

The first step of synthesizing prototypes is to normalize each sample window 

pattern in the "face" and "non-face" databases to compensate for certain sources 

of image variation: 

(1) W i n d o w  resizing: Our scheme re-scales window patterns of different sizes 

to 19 • 19 pixels before performing modeling and classification. We choose a 

19 • 19 window size to keep the dimensionality of the vector space manageable 

small, but also large enough to preserve distinctive features of face patterns. 

(2) Masking:  We use the 19 • 19 binary pixel mask in Figure l(b) to zero-out 

some near-boundary pixels of each window pattern. For "face" patterns, these 

masked pixels usually correspond to irrelevant background pixels. 

(3) I l lumina t ion  grad ien t  correct ion:  This operation subtracts a best-fit 

brightness plane from the unmasked window pixels and helps remove heavy 

shadows caused by extreme lighting angles. 

(4) H i s tog ram equal izat ion:  This operation adjusts for several geometry in- 

dependent sources of window pattern variation, including changes in illumination 

brightness and differences in camera response curves. 

Notice that the same preprocessing steps must also be applied to all new 

window patterns being classified at runtime. 

3.2 Clus te r ing  for "Face" Prototypes 

We use a database of 4150 normalized canonical face patterns to synthesize 6 

"face" pattern prototypes. The database contains 1067 real face patterns, ob- 

tained from several different image sources. We artificially enlarge the database 

to 4150 patterns by adding slightly rotated versions of the original face patterns 

and their mirror images as virtual examples. 
We use an elliptical version of the k-means clustering algorithm to compute 

6 representative face patterns and their cluster covariance matrices from the 
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enlarged database (see [5] for details). The elliptical k-means algorithm fits full 

covariance Gaussian clusters instead of isotropic Gaussian clusters to the data 

samples. It approximates the "face" data distribution more closely with the same 

number of clusters, because locally, the "face" data distribution can be a lot more 

elongated along certain directions of the image vector space than others. 

3.3 Clus te r ing  for "Non-Face"  P r o t o t y p e s  

There are many naturally occurring "non-face" patterns in the real world that 

look like faces when viewed in isolation. Figure 2 shows one such example. In 

order to avoid possible misclassification of these patterns as "faces", we explic- 

itly model their distribution using 6 "non-face" prototypes. These "non-face" 

prototypes carve out negative regions around the "face" distribution that do not 

correspond to face patterns. 

Fig. 2. An example of a naturally occurring "non-face" pattern that resembles a 

face. Left: The pattern viewed in isolation. Right: The pattern viewed in the 

context of its environment. 

We use our elliptical k-means clustering algorithm to obtain 6 "non-face" 

prototypes and their cluster covariance matrices from a database of 6189 face- 

like patterns. Section 5.1 elaborates on how these face-like patterns are found. 

4 A 2 - V a l u e  D i s t a n c e  M e t r i c  

Our system classifies a new window pattern based on its vector of distances to the 

12 prototype centers. In this section, we define a distribution dependent 2-Value 

metric for measuring the "distance" between a test pattern and a prototype 

pattern. We argue in [5] that our 2-Value distance takes into account both the 

detailed shape of the prototype cluster and the reliability of the shape estimate, 

and is thus a reasonable and robust measure of "dis-similarity" between a test 

pattern and the local data distribution near the prototype center. 

The first distance value is a directionally dependent Mahalanobis distance 

between the test pattern and the prototype center, in a vector sub-space spanned 

by the cluster's 75 largest eigenvectors. Let x be the column vector test pattern, 

/t be the prototype pattern, E75 be a 75 column matrix whose i th  column is a 

unit vector in the direction of the cluster's i th  largest eigenvector, and W75 be 
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a diagonal matr ix  of the corresponding 75 largest eigenvalues. The covariance 

matr ix  for the cluster's data distribution in the 75 dimensional sub-space is given 
T by Z75 = (E75W75E75), and the first distance value is: 

 (7 1n2  + l n  JZT t + (x T - 1  l )  l(X, ~) = - z75 (x - 

The second distance component is a standard Euclidean distance between the 

test pattern x and its projection Xp in the 75 dimensional largest eigenvector 

sub-space: 
V2(x, U) = II( x - x p ) l / - - I I (  I -E75ETr~)( x - u ) l l .  

It accounts for pattern differences not captured by the first component. We 

assume an isotropic sample data distribution in this sub-space of smaller and 

possibly less accurate eigenvectors, and hence a Euclidean distance measure. 

5 T h e  C l a s s i f i e r  

We use a Multi-Layer Perceptron (MLP) net with one hidden layer to identify 

"face" window patterns from "non-face" patterns, based on their vector of 2- 

Value distance features to the 12 prototype centers. The net has 12 pairs of input 

terminals (for the 12 pairs of distance values), one output  unit and 24 hidden 

units. The net is trained with a standard backpropagation learning algorithm 

to output  a '1' for "face" patterns and a '0' otherwise. Our experiments in the 

next section show that  the number of hidden units and network connectivity 

structure do not significantly affect the classifier's performance. 

5.1 Generating and Selecting Training Examples 

Ideally, we would like to train our classifier with as large an example set of "face" 

and "non-face" distance vectors as possible, in order to attain classification with 

minimal error. Unfortunately, we must constrain the size of our training database 

because of limited disk space and training time. 

We build a comprehensive but tractable database of "face" and "non-face"" 

patterns as follows: For "face" patterns, we simply collect all the frontal face 

views we can find in mugshot databases. Because we do not have access to many 

large mugshot databases, our sample of "face" patterns remains manageably 

small. 

For "non-face" patterns, the task seems more tricky. In essence, every square 

non-canonical face window pattern of any size in any image is a valid "non-face" 

pattern, so the range of possible "non-face" patterns can grow intractably large 

in principle. To constrain the number of "non-face" examples in our database, 

we use the following "boot-strap" strategy that  incrementally selects "non-face" 

patterns with high information value: 

(1) Start  with a small and possibly incomplete set of "non-face" examples in 

the training database. 

(2) Train the MLP net classifier with the current database of examples. 



437 

(3) Run the face detector on a sequence of random images. Collect all the "non- 

face" patterns that the current system wrongly classifies as "faces". Add these 

"non-face" patterns to the training database as new negative examples. 

(4) Return to Step 2. 

At the end of each iteration, the "boot-strap" strategy enlarges the current 

set of "non-face" patterns with new examples that the current system classifies 

wrongly. These new examples are "useful" because they steer the classifier away 

from its current mistakes. 

6 R e s u l t s  a n d  P e r f o r m a n c e  A n a l y s i s  

Figure 3 shows some sample face detection results by our system. The system 

operates on window sizes of 19 x 19 pixels to 100 x 100 pixels at width increments 

of 120%. On a Spare 10, the algorithm takes about 3 minutes to process a 

256 • 256 pixel image. It usually detects faces within -t-5 ~ of the vertical. 

The system marks each "face" it finds with an appropriately sized dotted 

box in the output image. Many of the faces in Figure 3 are enclosed by multiple 

boxes because they have been detected either at a few different scales or at a few 

slightly offset window positions. The results show that the system (1) does not 

make many false positive mistakes (none in this case) even for fairly complex 

scenes, (2) finds faces successfully at very different scales, and (3) detects real 

faces and hand-drawn faces equally well. The current system does not detect 

Geordi's face in the top image because his eyes are occluded by an opaque 

metallic visor, which is atypical of face patterns in our training database. 

6.1 Measur ing  the  Sys tem's  Pe r fo rmance  

To quantitatively measure our system's performance, we ran our system on two 

test databases of new patterns and counted the number of correct detections 

versus false alarms. 

The first test database consists of 301 frontal and near-frontal high quality 

face images of 71 different people with a fair amount of lighting variation. We 

use this database to obtain a "best case" detection rate for our system. The 

second database contains 23 cluttered images with a total of 149 face patterns. 

The quality of images range from high fidelity CCD pictures to low quantization 

newspaper scans. We use this database to obtain an "average case" performance 

measure for our system. 

For the first database, our system correctly finds 96.3% of all the face pat- 

terns and makes only 3 false delects. This result is encouraging because often, 

one can easily replace poorer sensors with better ones to arrive at this level 

of performance. For the second database, our system achieves a 79.9% detec- 

tion rate with 5 false positives. The mistakes are mostly either from low quality 

newspaper scans or hand drawn pictures. We consider this behavior acceptable 

because the system is merely degrading gracefully with poorer image quality. 
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Fig. 3. Some hce detection results by our system. See text for details. 

6.2 A n a l y z i n g  the System's Components 

We conducted two additional experiments to identify the key components of 

our face detection algorithm. The first experiment investigates how the classi- 

fier's architecture affects our system's overall performance. To do this, we create 

and test a similar system with a single perceptron unit in place of the original 

moderately complex multi-layer perceptron net as a classifier. 

The second experiment compares the performance of our 2-value distance 

metric with three other distance measures: (1) first component only (731) of our 2- 

value distance metric, (2) the second component only (732) of our 2-value distance 

metric, and (3) the standard Mahalanobis distance (.s using all eigenvectors 

of each cluster. To conduct this experiment, we configure and generate statistics 

for three new systems, each using one of the three distance measures in place of 

our 2-Value distance metric. Notice that because the three new distance measures 
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are all single-value measurements, we also have to reduce the number of classifier 

input terminals from 24 to 12. 

Distance Metric 

Classifier 2-Val :D, :D2 A4,~ 

MLP 96.3% 3 91.6% 21 91.4% 4 84.1% 9 

79.9% 5 85.1% 114 65.1% 5 42.6% 5 

Single 96.7% 3 93.3% 15 92.3% 3 93.0% 13 

Perceptron 84.6% 13185.1% 94 68.2% 5 58.6% 11 

Table 1. Detection rates versus number of false positives for different classifier ar- 

chitectures and distance metrics. The four numbers for each entry are: Top Left: 

detection rate for first database. Top Right:  number of false positives for first 

database. B o t t o m  Left: detection rate for second database. B o t t o m  Right:  num- 

ber of false positives for second database. 

Table 1 summarizes the results of our two experiments. Empirically, the fig- 

ures suggest that  while the classifier's network architecture does not signifi- 

cantly affect the system's performance, our 2-Value distance metric noticeably 

out-performs the other three distance measures in terms of achieving both high 

detection rates and few false positive errors simultaneously. 

7 Conclusion 

We have successfully developed a system for finding unoccluded vertical frontal 

views of human faces in images. The approach is view based. It models the 

distribution of face patterns by means of a few prototype clusters, and learns 

from examples a set of distance parameters for distinguishing between "face" 

and "non-face" test patterns. We are currently extending the system to detect 

faces over a wider range of poses instead of just near-frontal views. We stress 

again, however, that  our ult imate goal is to develop a general methodology for 

taking on feature detection and pattern recognition tasks in multiple domains. 
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