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ABSTRACT

In this paper, we propose a novel image similarity learning

approach based on Probabilistic Feature Matching (PFM). We

consider the matching process as the bipartite graph matching

problem, and define the image similarity as the inner product

of the feature similarities and their corresponding matching

probabilities, which are learned by optimizing a quadratic for-

mulation. Further, we prove that the image similarity and the

sparsity of the learned matching probability distribution will

decrease monotonically with the increase of parameter C in

the quadratic formulation where C ≥ 0 is a pre-defined data-

dependent constant to control the sparsity of the distribution

of a feature matching probability. Essentially, our approach

is the generalization of a family of similarity matching ap-

proaches. We test our approach on Graz datasets for object

recognition, and achieve 89.4% on Graz-01 and 87.4% on

Graz-02, respectively on average, which outperform the state-

of-the-art.

Index Terms— Similarity Learning, Probabilistic Feature

Matching, Object Recognition

1. INTRODUCTION

Similarity-based methods have proven effective in many com-

puter vision tasks, in particular object recognition in images.

A natural way to measure image similarity is to match their

features, and two images should be deemed similar if many

of the features in one image have matching features in the

other. In this paper, we consider each image as an undirected

graph and take the feature matching process as the bipartite

graph matching problem as illustrated in Fig. 1, which indi-

cates that any pair of features from two images could be possi-

bly matched. Note that this matching process could be easily

extended to other types of data, not restricted to images.

Different strategies can be utilized in the feature match-

ing process. Lyu [1] introduced a Summation Kernel (SK) to

measure the image similarity as follows:

Ksum(V1, V2) =
∑

vi∈V1

∑

vj∈V2

k(vi, vj) (1)

where V1 (resp. V2) denotes a feature set, vi ∈ V1 (resp.

vj ∈ V2) denotes a feature vector in V1 (resp. V2), and

Fig. 1. Illustration of matching two images. Each image is represented as a

collection of features of the patches. Weights (red) on the edges (green), de-

note the matching probabilities between the feature pairs so that the similarity

between the two images is obtained. This figure is best viewed in color.

k(vi, vj) denotes an arbitrary feature similarity kernel. In the

next sections, we denote k(vi, vj) as kij for short. Wallraven

et al. [2] proposed a Max-selection Kernel (MK) as shown

below:

Kmax(V1, V2) =
1

2







∑

vi∈V1

max
vj∈V2

kij +
∑

vj∈V2

max
vi∈V1

kji







(2)

Fröhlich et al. [3] proposed the Optimal Assignment Kernel

(OAK) to maximize the similarity score between two struc-

tured objects by finding exactly one-to-one matches between

the parts of these objects, defined as follows:

KOA(x, y) =

{

maxπ
∑|x|

i=1 k(xi, yπ(i)) if |y| > |x|

maxπ
∑|y|

j=1 k(xπ(j), yj) otherwise
(3)

where x (resp. y) denotes an object, xi (resp. yj) denotes a

part of x (resp. y), |x| (resp. |y|) denotes the number of the

parts of x (resp. y), and π denotes a permutation of parts.

In contrast, the novel contribution of this paper is that we

introduce a probabilistic matching strategy in the matching

process as illustrated in Fig. 1, and further propose a novel

similarity learning approach as a generalization of a family of

similarity learning approaches, including SK, MK, and OAK,



such that the similarity measure can be decided adaptive to

data. In our approach, the similarity between two images is

defined as the inner product of their feature similarities and

the corresponding feature matching probabilities, which are

learned by optimizing a quadratic formulation.

The rest of the paper is organized as follows. Section 2

explains our approach in detail. Section 3 shows our experi-

mental results for object recognition in images. We conclude

the paper in Section 4.

2. PROBABILISTIC MATCHING BASED

SIMILARITY LEARNING

Given two images X={x1, · · · , x|X|} and Y ={y1, · · · , y|Y |},

where xi ∈ X (resp. yj ∈ Y ) denotes a feature in X (resp.

Y ) and |X| (resp. |Y |) denotes the number of features in X

(resp. Y ), according to the bipartite graph matching problem,

their similarity can be defined as follows:

S(X,Y ;α,k) =

|X|
∑

i=1

|Y |
∑

j=1

αijkij (4)

where αij denotes the feature matching probability (FMP)

between features xi and yj , kij denotes their similarity, and

S(X,Y ;α,k) denotes the similarity between X and Y given

the feature matching probability function α (see Section 2.1

for details) and their feature similarity matrix k.

2.1. Feature Matching Probability Function

Intuitively, an FMP αij can be utilized to describe how likely

feature xi and yj are matched. As illustrated in Fig. 1, the

axle with black circle on the left has 0.8 FMP with the axle

with black circle on the right, while it has 0.2 FMP with the

background feature, which is quite reasonable. Notice that a

meaningful FMP should be a non-negative relative measure-

ment with normalization. Thus, the total probabilities of the

matching pairs should be equal to the smaller number of fea-

tures between two images. This constraint makes sure that

every feature with the fewer amount will find probabilistic

matches. Therefore, by considering the matching process as

a function, we give its definition as follows:

Definition (Feature Matching Probability Function). Given

two images X={x1, · · · , x|X|} and Y ={y1, · · · , y|Y |}, a

feature matching probability function (FMPF) α is defined

as α : X × Y → {R−}|X|×|Y |, where R− denotes a non-

negative real number. Letting −→x and −→y denote the two

dimensions of α, and selecting an arbitrary dimension set

H ⊆ {−→x ,−→y } from α, each FMPF will correspond to a point

in the vector space covered by the following convex set:







α |
∑

∀h∈H

α � 1,
∑

i,j

αij = min (|X|, |Y |) , 0 � α � 1







where “�” denotes the element-wise operator of “≤”.

Notice that if H = ∅, the first constraint in the convex set

above does not apply.

2.2. Probabilistic Feature Matching Learning

We would like to perform the probabilistic feature matching

between two images automatically. Therefore, we propose a

quadratic optimization formulation [4] as defined in Eqn. 5

to calculate α, where f(α;C) denotes our objective function,

α is the only variable, C ≥ 0 is a pre-defined non-negative

constant, and k is the feature similarity matrix.

max
α

f(α;C) =
∑

i,j

αijkij − C
∑

i,j

α2
ij (5)

s.t.
∑

∀h∈H

α � 1,
∑

i,j

αij = min (|X|, |Y |) ,0 � α � 1

In order to see the relationship between our approach and

some other similarity learning approaches, we need the fol-

lowing important theorems on convexity [4]:

Theorem 1. Consider max f(x) over x ∈ X , where f(x) is

convex, and X is a closed convex set. If the optimum exists,

a boundary point of X is the optimum.

Theorem 2. If a convex function f(x) attains its maximum

on a convex polyhedron X with some extreme points, then

this maximum is attained at an extreme point of X .

Based on the theorems above, we can show that in certain

cases our approach can be considered as equivalences to some

particular approaches by choosing different C and H .

• C = +∞ and H = {−→x ,−→y }: According to Thm. 1,

the learned α will be a uniform distribution, that is,

αij = 1
max(|X|,|Y |) , and by normalizing α, our learned

similarity is equivalent to the SK [1] approach.

• C = 0 and H = {−→x ,−→y }: According to Thm. 2, the

learned α will simulate a one-to-one matching process,

and the learned similarity is equivalent to the OAK [3]

approach.

• C = 0 and H = {−→x }: According to Thm. 2, the

learned α will simulate the matching process that se-

lects the biggest similarity along the −→x -dimension for

each feature in the −→y -dimension, and the learned sim-

ilarity is equivalent to
∑

vj∈V2
maxvi∈V1

kji in Eqn. 2.

Thus, by learning α along the −→x - and −→y -dimension,

respectively, our approach is equivalent to the MK [2]

approach.

Moreover, our approach has the following property:

Proposition. For two images X and Y , both the sparseness

of α and their similarity S(X,Y ;α,k) will decrease mono-

tonically with increasing C in Eqn. 5.



Proof. Considering C1 > C2 ≥ 0 and their corresponding

α1 and α2 calculated using Eqn. 5, we have f(α1;C1) ≥
f(α2;C1) and f(α2;C2) ≥ f(α1;C2). Putting them to-

gether, we have

C1α
′
2α2−C1α

′
1α1 ≥ α′

2k−α′
1k ≥ C2α

′
2α2−C2α

′
1α1 (6)

where α1, α2 and k are vectorized, and ′ denotes the transpose

operator. Then we get

(C1 − C2)(α
′
2α2 − α′

1α1) ≥ 0 (7)

Since C1 > C2 ≥ 0, then α′
1α1 ≤ α′

2α2, which indicates that

a smaller C will lead to an α with larger sparseness. Besides,

we have

S(X,Y ;α2,k)− S(X,Y ;α1,k)

= α′
2k− α′

1k ≥ C2(α
′
2α2 − α′

1α1) ≥ 0 (8)

Therefore, S(X,Y ;α,k) will decrease monotonically with

the increase of C.

This property simplifies the adjustment of C in the cross-

validation for different data so that our approach can be adap-

tive to the data.

2.3. Classification with Support Vector Machines

In general, there is no guarantee that the similarity matrix gen-

erated by our approach is a valid kernel, whereas theoretically

support vector machines (SVMs) are utilized with kernels for

classification. However, in practice, an arbitrary similarity

matrix can be involved in an SVM by adding a small positive

number to the entries along the diagonal when it is not valid,

as did in Eqn. 9, where |λmin| denotes the absolute value of

the minimum eigenvalue of the similarity matrix K, and I de-

notes the identity matrix.

K ′ = K + |λmin|I, if λmin < 0 (9)

3. EXPERIMENTS

We tested our approach on Graz-01 [5] and Graz-02 [6]

datasets to perform the “object & non-object” binary clas-

sification, with performance measured by Equal Error Rate

(EER). Graz-01 is a challenging dataset with two object

categories (bike: 373 images, person: 460 images) and a

background category (270 images), because they vary greatly

in object scale, pose and illumination. Compared to Graz-01,

Graz-02 can be considered as an improved version with much

more challenge, and comprises 3 object categories (bike: 365

images, person: 311 images, car: 420 images) and a back-

ground category (380 images). The size of each image in

both datasets is either 640×480 or 480×640 pixels.

In our experiments, all the images were converted into

gray scale, and we utilized the dense sampling technique [7]

to sample the images so that each patch consists of 10×10

pixels. For each patch, we employed the SIFT [8] descriptor

to represent it, and then used k-means to generate a code-

book with 200 codewords so that each descriptor can be rep-

resented by the closest codeword in the feature space. Finally,

by counting the occurrence of each codeword in the cells of

the 3×3 grid, we created 9 histograms to represent each im-

age. The RBF-kernel with χ2 distance measurement was used

to compare the similarity of two histograms, that is,

kij = exp

{

−
d

∑

n=1

(vi,n − vj,n)
2

vi,n + vj,n

}

(10)

where d is the number of dimensions of histograms vi and

vj . The penalty parameter in SVM was fixed to 104. All the

results here were averaged after 50 runs. To simplify the nota-

tions, we use PFM1, PFM2 and PFM3 to denote our approach

with H = {−→x ,−→y }, H = {−→x } or H = {−→y }, and H = ∅,

respectively.

3.1. Graz-01

For the training-test data selection, we followed the setup

in [9]. Specifically, we randomly selected 100 images in the

positive class and 50 in each negative class (including the

background) as our training set, and performed the test on

similarly distributed data sets consisting of half the number

of the training images per category.

Fig. 2 shows our performance on Graz-01. In general,

PFM1 performs best, while PFM3 performs worst, and PFM1

is much more stable with the increase of C than the other two,

but there is no evidence that indicates what is the best C for

this dataset. We also list the best performance of each PFM in

Table 1 and compare them with other state-of-the-art results.

Clearly, all of our results outperform the others.

Table 1. Comparison results between different approaches on Graz-01 (%)

Bike Person Ave.

SPK [9] 86.3±2.5 82.3±3.1 84.3

PDK [10] 90.2±2.6 87.2±3.8 88.7

PFM1 (C=0) 90.6±5.3 88.2±4.6 89.4

PFM2 (C=5) 89.6±4.9 88.5±4.6 89.0

PFM3 (C=+∞) 89.6±4.8 87.9±5.1 88.8

3.2. Graz-02

We followed the experimental setup in [6] for the training-test

data selection. Specifically, for each object category, we ran-

domly selected 150 positive and 150 negative (50 for each

non-object class, including the background) images as the

training data, and selected 75 positive and 75 negative (25 for

each non-object class, including the background) with similar

distribution of the training data as the test data, respectively.



(a) PFM1 (with H = {−→x ,−→y }) (b) PFM2 (with H = {−→x } or H = {−→y }) (c) PFM3 (with H = ∅)

Fig. 2. Performance comparison on Graz-01 dataset between different PFM with different C.This figure is best viewed in color.

(a) PFM1 (with H = {−→x ,−→y }) (b) PFM2 (with H = {−→x } or H = {−→y }) (c) PFM3 (with H = ∅)

Fig. 3. Performance comparison on Graz-02 dataset between different PFM with different C.This figure is best viewed in color.

Fig. 3 shows our performance on Graz-02. Compared to

Fig. 2, similar observations can be made. Therefore, H =
{−→x ,−→y } seems the best choice among the three for our PFM.

Also, Table 2 lists the best results using different PFM in com-

parison with some other state-of-the-art results, and all of ours

outperform the others significantly.

Table 2. Comparison results between different approaches on Graz-02 (%)

Bike Person Car Ave.

Boost.+SIFT [6] 76.0 70.0 68.9 71.6

Boost.+Comb. [6] 77.8 81.2 70.5 76.5

PDK+SIFT [10] 86.7 86.7 74.7 82.7

PDK+hybrid [10] 86.0 87.3 74.7 82.7

PFM1+SIFT (C=5) 88.9 88.1 85.2 87.4

PFM2+SIFT (C=10) 88.0 87.9 83.6 86.5

PFM3+SIFT (C=+∞) 87.7 87.8 82.6 86.0

4. CONCLUSION

In this paper, we propose a novel image similarity learning

approach based on Probabilistic Feature Matching (PFM). In

our approach, the similarity between two images is defined

as the inner product between the feature similarities and their

corresponding matching probabilities, which are learned data-

dependently by solving a quadratic optimization problem. We

also prove that the image similarity and the sparsity of the fea-

ture matching probability distribution will decrease monoton-

ically with the increase of parameter C in the quadratic for-

mulation. Essentially, our approach is the generalization of

a family of similarity measurement approaches, including the

Optimal Assignment Kernel, the Max-selection Kernel, and

the Summation Kernel. In our experiments, we tested our ap-

proach on Graz datasets for object recognition, and our results

outperformed the state-of-the-art. On average, we achieved

89.4% on Graz-01 and 87.4% on Graz-02, respectively.
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