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Learning Impedance Control
for Robotic Manipulators

Chien-Chern Cheah and Danwei Wang

Abstract—Learning control is a concept for controlling dynamic
systems in an iterative manner. It arises from the recognition
that robotic manipulators are usually used to perform repetitive
tasks. Most researches on the iterative learning control of robots
have been focused on the problem of free motion control and
hybrid position/force control where the learning controllers are
designed to track the desired motion and force trajectories. The
iterative learning impedance control of robotic manipulators,
however, has been studied recently. In this paper, an iterative
learning impedance control problem for robotic manipulators is
formulated and solved. A target impedance is specified and a
learning controller is designed such that the system follows the
desired response specified by the target model as the actions are
repeated. A design method for analyzing the convergence of the
learning impedance system is developed. A sufficient condition for
guaranteeing the convergence of the system is also derived. The
proposed learning impedance control scheme is implemented on
an industrial selective compliance assembly robot arm (SCARA)
robot, SEIKO TT3000. Experimental results verify the theory and
confirm the effectiveness of the learning impedance controller.

Index Terms—Convergence analysis, impedance control, itera-
tive learning algorithm, robot force control.

I. INTRODUCTION

M OST of today’s industrial manipulators are used for
tasks such as materials transfer, spray-painting, and

spot welding, of which operations can be adequately handled
by simple position control strategies. To expand the feasible
applications of robots, it is necessary to control not only
the motion but also the forces of interacting between the
manipulator and the environment. Assembly, polishing, and
deburring are typical examples of such tasks. Several control
laws have been developed for simultaneous control of both
motion and force [31], [38] of robotic manipulators. Despite
the diversity of approaches, it is possible to classify most of
the design procedures as based on two major approaches:

1) impedance control [19];
2) hybrid position/force control [29].

A number of researchers have proposed different implemen-
tation of hybrid position/force control and impedance control.
When the structures and parameters of the robot dynamics
model are known precisely, many model-based control theories
and design methods, e.g., [19], [28], [36], [39] can be used to
design nonlinear controllers for simultaneous motion and force
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control. However, due to parametric uncertainties, it is difficult
to derive the full description of the dynamics. Furthermore,
because of the nonlinearity of the dynamics, the identification
and estimation techniques [7], [26], [30] could not be easily
deployed.

Recently, there have been many studies in the topic of
learning control for controlling of robotic systems in an
iterative manner. In this paper, learning controllers are referred
to the class of control systems that generate a control action
in an iterative manner to execute a prescribed action which
is defined in [4], [31]. A recent survey by Arimoto can be
found in [31]. This control concept arises from the recognition
that robotic manipulators are usually employed to perform
repetitive tasks [4], [15]. Learning control schemes are easy
to implement and do not require exact knowledge of the
dynamic model. Several learning motion control laws [2], [4],
[6], [15], [18], [24], [32], and learning Hybrid Position/Force
control laws [1], [9], [12], [22], [37] have been developed
for iterative learning control of robotic manipulators. The
feedforward control inputs are learned such that the system
tracks the desired motion and force trajectories as the actions
are repeated. The iterative learning impedance control for
robotic manipulators has been developed recently with some
analytical and experimental results [10], [34], [35].

The concept of active control of a manipulator’s interac-
tive behavior is formally treated as an aspect of impedance
control [19]. Hogan [19] stresses the necessity of control
of the manipulator impedance based on the assertion that
it is not sufficient to control position and force variables
alone. Impedance control does not attempt to track motion
and force trajectories but rather to regulate the mechanical
impedance [19] specified by a target model. Impedance control
provides a unified approach to all aspects of manipulation [19].
Both free motion and contact tasks can be controlled using a
single control algorithm. It is unnecessary to switch between
control modes as task conditions change. The nature of the
trajectory learning formulation has prohibited the research into
the impedance control problem because in impedance control,
a target impedance is specified rather than the trajectory. There
exists, however, another nonclassical approach of neural-
network learning impedance control methods [5], [14], [17],
[20], [21], [33]. However, unlike iterative learning approach
[31], it is difficult to provide a theoretical framework for
analyzing the learning system, guaranteeing its convergence
and guiding its applications using such formulations.

In this paper, an iterative learning impedance control prob-
lem for robotic manipulators is formulated and solved. In
contrast to most of the iterative learning controller designs
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in the literature, our approach allows the performance of the
learning system to be specified by a reference model (or target
impedance) in addition to the reference trajectory. A target
impedance [19] is specified and the feedforward control input
is learned such that the system follows the desired response
specified by the target model as the actions are repeated. A
design method for analyzing the convergence of the learning
impedance control system is developed. A sufficient condition
for guaranteeing the convergence of the learning impedance
control system is also derived. In the experiment, an in-
dustrial selective compliance assembly robot arm (SCARA)
robot, SEIKO TT3000, is used to verify the theory and
to evaluate the feasibility and performance of the proposed
learning impedance controller. A single learning controller was
implemented without the need to switch the learning controller
from non contact to and from contact tasks as needed in
most of the learning controllers in the literature. Experimental
results showed that the proposed learning impedance controller
reduced the impedance error dramatically as the operations are
repeated.

The remainder of this paper is organized as follows.
Section II formulates the robot dynamic equations and control
problem. Section III presents the learning impedance control
for robotic manipulators, Section IV presents the application
of the proposed controller to an industrial robot, and Section V
concludes this paper. A preliminary version of the work in
this paper was also presented in [10].

II. ROBOT DYNAMIC EQUATION AND PROBLEM FORMULATION

The equation of motion for the constrained robotic manipu-
lator with degrees of freedom, considering the contact force
and the constraints, is given in the joint space as follows [25]:

(1)

where denotes the joint angles of the manipulator
at the th operation, is the robot inertia matrix
which is symmetric and positive definite for all ,

contains the centrifugal Coriolis and gravita-
tional forces, is the interaction forces/moments
associated with the constraints, denotes the control
inputs and is the operation interval.

It is well known that when the robot’s end-effector contacts
the environment, a task space coordinate system defined with
reference to the environment is convenient for the study of
contact motion [25]. Let be the task space vector
defined by [25]

(2)

where is generally a nonlinear transforma-
tion describing the relation between the joint and task space.
Then, the derivatives of are given as

(3)

where is the Jacobian matrix. It is
assumed that the robotic manipulator is operating in a finite
workspace such that is nonsingular and therefore the

mapping between and is one-to-one by applying
the implicit function theorem [27]. The equation of motion
can therefore be expressed in the task space as [25]

(4)

where

Clearly, in the case where the task space is the joint space,
we have

(5)

and hence . It is important to note that is
a symmetric and positive definite matrix [30]. We consider
the stiffness relation between and at the contact
point be dominated by

(6)

where is a symmetric and positive definite
stiffness matrix that describes the environment stiffness. The
vector can be seen as representing the location
to which the contact point would return in the absence
of contact force. Note that in this paper, we assume that the
environment stiffness and the static position are
unknown. The specifications of the impedance control problem
are given in terms of a reference motion trajectory and a
desired dynamic relationship between the position error and
the interaction force. Impedance control does not attempt to
track motion and force trajectories but rather to control motion
and force by developing a relationship between interaction
forces and manipulator position [19], that is, the mechanical
impedance. The target impedance [19] is specified as

(7)

where , , and are positive definite matrices
which specify the desired dynamic relationship between the
reference position error and the interaction force and

, , are the reference acceleration,
velocity, and position, respectively. For learning impedance
control design, we assume that , , and are cho-
sen such that , , and

are symmetric matrices. For instances, when all
the matrices are diagonal matrices, the multiplication of the
diagonal matrices will also be diagonal and symmetric.

The objective of Learning Impedance Control design is to
develop an iterative learning law such that the system response
satisfies the behavior of the specified target impedance (7) for
all as the actions are repeated [10], [11]. That is,
as

(8)
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where

(9)

is defined as the impedance error.
Remark 1: In the conventional iterative learning control

formulation, the controller is designed to track a desired
trajectory as the action is repeated. In general [31]

as (10)

where is the motion and/or force trajectory. In our
learning approach, the control objective can be specified by a
target impedance (or reference model) as seen from (8) and (9).
Furthermore, since the desired motion and force trajectories
cannot be derived from the reference model (7) because
and are unknown, the conventional trajectory learning
control cannot be applied directly for learning the desired
model explicitly from the desired trajectories.

Remark 2: From (9), the reference trajectory error
can be written in -domain or Laplace domain as

(11)

Therefore, in the special case of free motion or non contact
task where the contact force is zero, the reference trajectory
error also converges to zero in addition to the convergence of
the reference model error because

(12)

Hence, the learning impedance control scheme can be applied
to both contact and noncontact tasks. Using the learning
impedance approach, a unified learning controller can be
developed for both contact and non contact tasks without the
need to switch the learning controllers from non contact to and
from contact tasks for learning control of robotic manipulator.
This is important since the current iterative learning control
designs provide methods to control robots during contact and
free motion separately. From a practical point of view, most
tasks involve a transition from free motion to contact motion
and every contact task ends with a transition from contact to
free motion. Therefore, when these different control schemes
are applied to the robots, the learning algorithms are needed
to switch from one control to another and therefore the overall
control is discontinuous in nature.

III. L EARNING IMPEDANCE CONTROL

In this section, we present the learning impedance controller
for robotic manipulators. We suppose that a feedback control
law [25] has been designed for stability of the closed-loop
system as

(13)

where , , are feedback
and compensator gains to be chosen, is a

feedforward learning control input, and is an
intermediate state variable. In this control law, a dynamic
compensator is introduced and a learning control input

is added and updated according to an iterative rule, so
that the system response is identical to the behavior of the
target impedance specified by (7) as the action is repeated.
This iterative learning control law is proposed as

(14)

where

(15)

is an intermediate reference model error and and
are positive constants. The dynamic compensator is

introduced as

(16)

where , , are the feedback
gains to be defined and is a positive constant to be chosen.
Without the introduction of described by (16) in the
control laws (13) and (14), the resulting learning system is a
PI-type learning system [2]. The uniform boundedness result
of the tracking errors of the PI-type learning system can be
analyzed as in [2], [3] using the passivity concept. Since
the feedback system described by (16) is strictly passive, the
stability of the interconnected system with the feedback control
laws (13) and (16) can also be studied using passivity theorem
[16]. Another useful theorem for studying the stability of this
interconnected system is the application of small gain theorem
[16].

From (15), differentiate with respect to time, we have

(17)

Substitute (15) and (16) into the above equation to eliminate
result in

(18)

where , , and in (16) are chosen as
, , and .

Therefore, by choosing the compensator gains, , and
appropriately, the system response converges to that specified
by the target impedance (7) if and converge to zero
for all . Alternatively, from (11), we have

(19)

The learning impedance control problem can be restated as
that of designing a learning controller so that

as (20)

where is the inverse Laplace transformation of
and is defined as the indirect target impedance error. From
(18) and (19), we have

(21)
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Since (21) is stable and strictly proper linear system with
the input and output , from the theory of linear
system [16], if converges to zero for all , the
indirect target impedance error converges to zero for
all .

To guarantee the convergence of the learning impedance
control system, the controller gains , , , , , and

have to be chosen carefully. This is made precise in the
following Theorem:

Theorem: Consider the learning control systems given by
(4), (6), (13), (14), and (16) with the target impedance specified
by (7). Let the feedback gains and compensator gains, ,

, , , and be chosen as

(22)

where is a positive constant and and are constants
chosen to satisfy the following conditions:

(23)

where ,
, , ,

,
, denotes the norm bound for and

are constants to be defined. Then, a sequence of
control inputs will be generated such that the desired response
specified by the target impedance (7) is reached. That is

(24)

for all as .
Proof: Refer to the Appendix.

Remark 3: Equation (23) states the sufficient conditions
for the convergence of the target impedance error. Note that
several terms in (23) of the Theorem are inversely proportional
to and . Hence, increasing , decreases these terms.
Therefore, can be chosen such that, , and 0.

Remark 4: Notice that the iterative learning impedance
scheme described by (14), (15), and (16) does not require the
measurement or estimation of the force derivative as in [23]
or the acceleration as in [1], [9], and [13].

Remark 5: Suppose that ,
are defined using the coefficient matrices of the

desired model in (7) and are chosen as diagonal such that

(25)

where is the damping factor and is the undamped natural
frequency. For illustration purpose, if 0, the desired

model is given by

(26)

Then, from the definition of in the theorem, we have

(27)

for chosen to be zero. Hence, for a system that is sufficiently
damped so that , we have . If system is lightly
damped such that, , we have and hence
the maximum value of decreases with decreasing damping
factor. From (23), we can deduce that a higher controller gain
is needed for a desired system response with light damping.
This is because for such a system, a high overshoot arises and
hence a higher controller gain is required to suppress it.

Similarly, in the presence of contact force, the desired model
can be expressed by

(28)

Therefore, in the case of very stiff environment, the target
impedance is a lightly damped system which required a higher
controller gain to guarantee the convergence of the learning
impedance system.

Remark 6: In paper [34] and [35] by Wang and Cheah,
another impedance learning control scheme is developed to
tackle the same problem. In comparison, the impedance learn-
ing controller in [34] and [35] uses the impedance error
directly in the iterative learning law for updating . While
in the approach developed in this paper, the impedance error

is incorporated in an indirectly manner. In particular,
does not appear directly in the set of controller equations

(13)–(16) and the target impedance for learning is realized in
(18). Furthermore, a discrete time scheme corresponding to
the approach in [34] and [35] has been developed in [8].

IV. EXPERIMENT

In a practical robot system, many disturbances are present.
Although the robustness analysis of the learning control system
to certain practical issues has been developed [2], [18], [31],
implementing the proposed learning schemes in real time
experiments allows the investigation of the robustness and
the feasibility of the actual implementations. In this section,
the proposed learning impedance controller is applied to an
industrial robot and experimental results are presented.

A. Experimental Setup

The robot used in this experiment is the industrial robot
SEIKO TT3000 as shown in Fig. 1. This robot is the SCARA
type manipulator with three degrees of freedom as illustrated
in the schematic diagram of Fig. 2. The first joint is a prismatic
joint, the second and third joints are revolute joints.

The dynamics model of the robotic arm [25] can be de-
scribed by (4) as explained in Section II. The parameters of
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Fig. 1. The experimental setup.

Fig. 2. A SCARA robot.

the SCARA robot can be detailed as

(29)

where

Fig. 3. Block diagram of the experimental system.

(30)

and , , and are the masses of link one, two, and
three, respectively, in kilograms, and are the length of
link two and three, respectively, in meters, andis the constant
acceleration due to gravity in meter per second.

The hierarchical structure of the robot control system is
shown in Fig. 3. At the top of the system hierarchy is the
robot supervisory Computer using a PC 486 and at the lower
level are the multiprocessors using a VME bus-based system.
The lower level system is used for real time data collection
and control. This VME bus-based system consists of the host
computer MVME 147 and the target computer MVME104.
The MVME 147 is a MC68030 based system with 4 MB
DRAM and a 25 MHz system clock and MVME104 is a
MC68010 based system with 512 kB of RAM and a 10
MHz system clock. The MVME104 is also responsible for
input/output operations using four channels for the encoder
inputs and four channels for the digital to analog converters.



CHEAH AND WANG: LEARNING IMPEDANCE CONTROL FOR ROBOTIC MANIPULATORS 457

Three encoders are employed for position measurement of
each joint and a differentiator is used to estimate the velocity
from the position measurements. The pulses per revolution for
encoder two and three are 600 and 800, respectively. For the
prismatic joint, one pulse equals 0.010 44 mm. To measure the
contact force, a force sensor made by Lord is mounted on the
end-effector of the robot.

B. Experimental Results

To effectively verify the proposed learning impedance con-
trol law, the end-effector was set to follow a path which
involved free motion tracking, transition from free motion to
contact motion, contact motion on the constraint plane with
compliance, transition from contact motion to free motion, and
finally free motion tracking again as illustrated in Fig. 4. Here,
the joint space is chosen as the task space since the contact
task in this experiment can be conveniently described by the
joint axis 1 (or axis) as shown in Figs. 2 and 4. Therefore

(31)

Mathematically, the task can be specified by the reference
model (7) as

(32)

where the reference trajectories
are described by the following equations as given in (33),
shown at the bottom of the page. Here, is specified
in meters, and are specified in radians. The
sampling frequency was 244 Hz and the period of the
whole operation was 3600/ s. In this experiment, a steel ball
is attached to the force sensor and hence the frictional force
along the constraint plane is negligible. In another words

(34)

Fig. 4. End-effector path.

The impedance learning control law which described by
(13), (14), and (16) were applied to the robotic system with
the controller gains set as

(35)

For joint two and three, 4, 1 were chosen and
was calculated as . For the independent

joint one, 1, 1.5 were chosen and was calculated
as . The compensator gains , , and

were calculated based on (22). The impedance error was
calculated as

(36)

and the experimental results of the impedance errors, the
trajectory errors and the contact force are
shown in Figs. 5–11. In the first trial, i.e., 0,
was also set to zero for all and hence the
controller is a feedback law with no learning control. As the
operation repeated, the impedance errors decreased as shown
in Figs. 5–7. From Figs. 8–10, the results also showed that
the trajectory tracking errors decreased when the impedance
errors decreased. It should be noted that in Fig. 8, the reference
trajectory error for joint one converged to a steady state value
described by (11) in the presence of contact force. Notice
also that the impedance errors converged even though the
contact points were changing at every iteration as shown by

for

for

for

for

for

for

for
(33)
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Fig. 5. The impedance error of joint one.

the contact force in Fig. 11. The experimental results illustrate
the validity of the theory presented in Section III and show
that the learning impedance controller reduces the impedance
error tremendously. These results also illustrate the superiority
of learning control as compared to no learning control on the
first trial.

V. CONCLUSION

An iterative learning impedance control problem is for-
mulated and solved for robotic manipulators. In contrast to
most of the iterative learning controller designs in the liter-
ature, whereby a reference trajectory is given and a learning
algorithm is designed to make the trajectory tracking error
converges to zero as the action is repeated, our approach allows
the performance of the learning system to be specified by a
target impedance in addition to the reference trajectory. Given
a target impedance, the learning controller is able to learn
and eventually drives the closed loop dynamics to follow the
response of the target impedance as the actions are repeated. A
design method for analyzing the convergence of the learning
impedance system is developed. A sufficient condition is also
derived to guarantee the convergence of the learning controller.

The proposed learning impedance controller was applied
to control of an industrial robot SEIKO TT3000 with three

degrees of freedom. Experimental results verified the proposed
theory and illustrated the robustness of the learning controller.
A single learning controller was implemented without the need
to switch the learning controller from non contact to and
from contact task as needed in most of the iterative learning
controllers in the literature. The development of this learning
impedance control law should lead to further research and
applications in learning control and force control for robot
applications.

APPENDIX

Proof of Theorem:For clarity of the proof, the depen-
dence of the system parameters on time is implied unless
otherwise specified. Equation (7) can be rewritten as

(37)

where , , and .
From (6) and (37), we have a desired state and
a desired force as

(38)

where

(39)
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Fig. 6. The impedance error of joint two.

Similarly, from (16), we can define a desired intermediate state
value corresponding to the desired state as

(40)

where , , and are chosen as in (22) of the theorem. The
desired state exists but is unknown since is an
unknown desired force because and are unknown. Here,
the definitions of the desired state and force are for analysis
and are not used in the control law in actual implementation.
From (18), the desired value of and corresponding to
the desired model is given by 0 and 0, respectively.
Now, with the feedback gains , also chosen as in the
theorem, we have the feedback control law in (13) given by

(41)

From (4) and (6), the dynamic model can be written as

(42)

where ( )
( ) ( ). The interconnection of the passive robotic
system [3] with a strictly passive feedback system (16) does
not disturb the stability of the system as a result of the Passivity

Theorem [16]. Alternatively, the stability of the system can
be analyzed using Small Gain Theorem [16]. Therefore, the
boundedness of the velocity variable is ensured and ,

are local Lipschitz continuous [2]. Substituting (15)
and (41) into (42), we have

(43)

Therefore, the desired control input corresponding to the
desired state is described by

(44)

where we note that
and hence

(45)

and

(46)
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Fig. 7. The impedance error of joint three.

Subtracting (43) from (44), we have the error dynamic equa-
tion given by

(47)

where ,
. Similarly, from

(16) and (40), we have

(48)

where , , , and
. Furthermore, from (6) and (39), we have

(49)

Therefore, substitute (49) into (48) results in

(50)

where ,
. From (46), (47), and (50), we have

(51)

which implies that

(52)

where ,
, and

. Let us define an index function as

(53)

for all . We assume that a exists at such
that

(54)

where , for all . For example, if
, we have

(55)

From (14) and (15), we have

(56)
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Fig. 8. The reference trajectory error of joint one.

Define , we have, from (53) and (56), that

(57)

For simplicity of the following presentation, the dependence
of the functions on their arguments is implied. Substitute (52)
into the above equation, and integrating by parts, we have

(58)

where . Integrating (50) gives

(59)

where . Therefore, from

(46) and (59), we have

(60)

where , . Note
that , , , and can be chosen such that ,

, and are nonzero. Let
and substituting (60) into the second term of (58), we have

(61)
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Fig. 9. The reference trajectory error of joint two.

Similarly, substituting (59) and (60) into the last term of (58),
we have

(62)

where

(63)

Adding (61) and (62) with each corresponding terms and
substitute back into (58), we have

(64)

where

(65)

From (64) and (65), by integrating by parts, we note that

(66)

(67)

(68)

since , , and are symmetric matrices. Note the
fact of the following inequality:

(69)

where is a constant to be defined. Therefore,
by partitioning the term in (65) into

, substituting the inequality
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Fig. 10. The reference trajectory error of joint three.

(69) and (66)–(68) into it, we arrive at

(70)

where

(71)

Now, let us rewrite the second to fourth terms of (70) as

which is nonpositive if is chosen such that

; where denotes the norm bounds for ,

, and . Now, since the first

to fourth terms of (70) are nonpositive, therefore is

negative semi-definite if is nonnegative.

From (63) and (71), we have (72), shown at the bottom of

(72)
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Fig. 11. The contact force.

the previous page, where

and are the Lipschitz constants of the functions
and , respectively, , , and are the norm
bounds for , , and , respectively,
and . Using Sylvester’s criterion,
taking determinant of the matrix in (72) and its successive
principle minors, we can show that if is chosen to satisfy

condition (23) of the Theorem, where ,
then 0 and hence 0. This
implies that converges to a nonnegative constant be-
cause is bounded. Therefore as .
Furthermore, for all because

(73)

This implies that 0 for all because
0 for all . From (9) and (18), we have

(74)

Therefore, the impedance error converges to zero such that

(75)

as for all .
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