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Abstract

An important task in image processing and neuroimaging is to extract quantitative information 

from the acquired images in order to make observations about the presence of disease or markers 

of development in populations. Having a low-dimensional manifold of an image allows for easier 

statistical comparisons between groups and the synthesis of group representatives. Previous studies 

have sought to identify the best mapping of brain MRI to a low-dimensional manifold, but have 

been limited by assumptions of explicit similarity measures. In this work, we use deep learning 

techniques to investigate implicit manifolds of normal brains and generate new, high-quality 

images. We explore implicit manifolds by addressing the problems of image synthesis and image 

denoising as important tools in manifold learning. First, we propose the unsupervised synthesis of 

T1-weighted brain MRI using a Generative Adversarial Network (GAN) by learning from 528 

examples of 2D axial slices of brain MRI. Synthesized images were first shown to be unique by 

performing a cross-correlation with the training set. Real and synthesized images were then 

assessed in a blinded manner by two imaging experts providing an image quality score of 1–5. The 

quality score of the synthetic image showed substantial overlap with that of the real images. 

Moreover, we use an autoencoder with skip connections for image denoising, showing that the 

proposed method results in higher PSNR than FSL SUSAN after denoising. This work shows the 

power of artificial networks to synthesize realistic imaging data, which can be used to improve 

image processing techniques and provide a quantitative framework to structural changes in the 

brain.
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1. INTRODUCTION

An important task in image processing and neuroimaging is to extract quantitative 

information from the acquired images in order to make observations about the presence of 

disease or markers of development in populations. Having a low-dimensional representation 

of an image allows for easier statistical comparisons between groups. Gerber et. al showed 

that a low-dimensional, non-linear manifold can effectively represent the variability found in 

brain anatomy [1]. The mapping of a brain image into a manifold and vice versa can help 

construct priors that span the entire variability spectrum of a normal human brain. Many 

groups have sought to identify the best brain representation, such as building a template or 

atlas [2], linear mappings [3], Isomap [1], or regressions based on underlying parameters 

such as size or shape of regions of interest [4]. However, these approaches are limited, first 

in that the volumetric ROI measures do not provide a comprehensive mapping to the subject 

space. Second, a linear representation does not account for nonlinear effects present in the 

human brain such as aging [5]. Lastly, a generative nonlinear mapping such as Isomap 

require explicit similarity measures and can only generate images from the manifold by 

interpolating from examples, resulting in overly smoothed images. We posit that the ideal 

manifold mapping would learn a naive representation using the entire image and from this 

manifold generate images that are of comparable quality as the learning set.

Recently, deep learning approaches like deep autoencoders and convolutional neural 

networks have provided a new mechanism for learning a manifold representation of data [6, 

7]. These approaches calculate non-linear functions between inputs and can either be 

supervised, in the case of approaches like deep convolutional networks, or unsupervised, in 

the case of autoencoders [8]. Deep learning approaches are generally based on neural 

networks, where there are a series of layers either sparsely or densely connected between 

them. In this work, we propose a method of implicit manifold learning of brain MRI through 

two common image processing tasks: image synthesis and image denoising.

Past research on image synthesis has focused on two problems: increasing image resolution 

and inter-modality image generation. Image super-resolution seeks to learn the map from 

low-resolution images to high resolution images [9]. Similarly, inter-modality image 

synthesis seeks to generate one modality from another, as in the case of CT from MRI, to 

avoid excess radiation or impractical sequences [10–12]. Nevertheless, image synthesis is a 

form of manifold learning from one image space to another. Previous work in this field has 

resulted in images that look near-realistic, but have not been validated for image quality by 

imaging experts. The second use case for manifold learning is image denoising. This tool is 

ubiquitously used in image processing to improve the performance of registration and 

segmentation algorithms by increasing the signal-to-noise ratio. In manifold learning, image 

denoising allows for a better mapping from image space to the manifold. Therefore, the 

distance metric in manifold space can better discriminate differences between brain 

representations.

In this work, we use deep learning techniques to explore the manifold of normal brains and 

generate new, high-quality images. We explore the implicit manifold by addressing the 

problems of image synthesis and image denoising as important tools in manifold learning. 
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To do so, we use propose the use of Generative Adversarial Networks (GANs), which have 

shown to produce high-resolution, high-fidelity images in an unsupervised manner in the 

field of computer vision [8, 13]. By training two coupled networks, a generator network, 

which synthesizes images that resemble the training set, and a discriminator network, which 

learns to classify an image as real or fake, we are able to produce high-fidelity images that 

closely resemble acquired images. We also propose the use of skip-connected autoencoders 

for image denoising, which have been shown to perform well in this task in the field of 

computer vision [14]. The connections between convolutional layers in the autoencoder 

preserve structural features to increase resolution. We show that this denoising technique 

outperforms current state-of-the art denoising software FSL SUSAN. Together, these two 

tools help develop a mapping to an implicit brain MRI manifold in order to generate realistic 

MRI images that span the domain of a normal brain.

2. METHODS

2.1 Dataset

The image synthesis GAN and the denoising autoencoder experiments were conducted on 

528 T1-weighted brain MRI images from healthy controls (ages 29–94 years old, mean of 

67.9 years old) as part of the Baltimore Longitudinal Study of Aging (BLSA) study, which is 

a study of aging operated by the National Institute of Aging [15]. MR images were acquired 

on a Phillips 3T scanner using an MPRAGE sequence and with 1mm isotropic voxel 

resolution. All subjects were affine-registered to MNIs-space and intensity-normalized. For 

computation efficiency, the single midline axial slice was chosen for each subject to train the 

model. The dimensions of all slices were 220 × 172 voxels.

2.2 Generative Adversarial Networks for Image Synthesis

The architecture of the generator and discriminator used in our GAN model is based on [13]. 

The input for the generator is a one-dimensional vector of uniform noise with values 

between −1 and 1. The first step is a dense layer that reshapes increases the dimensionality 

of the input vector. Then, we use a series of upsampling, 2D deconvolution of increasing 

filters, and batch normalization layers to restore the image to the size of the training set 

(Figure 1). Each deconvolutional layer consists of a kernel size of 3 pixels and a stride of 1 

pixel. All layers used ReLU activation functions.

The discriminator takes as inputs both image sets: the real images and the synthesized 

images, as well as the corresponding labels. Instead of generating an image, the 

discriminator learns an abstract representation following an inverse network architecture: 4 

2D-convolutional layers of increasing filter size along with LeakyReLU and Dropout layers 

after each convolution (Figure 1). The convolution has a kernel size of 3 pixels and a stride 

of two pixels to decrease the dimensionality. The purpose of the Dropout and LeakyReLU 

layers is to avoid overfitting to the training set [13]. The last layer is a dense layer with one 

node and a sigmoid activation function, which acts as a binary classifier for each input. By 

coupling the generator and the discriminator, the GAN will maximize the classification 

accuracy of true image versus synthetic image, while also forcing the generator the produce 

more realistic images with each epoch.
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This network was trained for 1500 epochs using the Adam optimizer with a learning rate of 

0.0001. The training set consisted of 528 noise vectors, while the testing set consisted of 100 

new noise vectors. An image correlation was performed between the synthesized images and 

the testing set to ensure that the network was not learning the null manifold and synthesizing 

examples from training. Next, we validated the quality of synthesized images with two 

raters, a neuroradiologist and an imaging expert, who scored image quality 1–5 on a random 

deck of 100 true and 100 synthesized images.

2.3 Denoising Autoencoder

First, noisy images were generated by adding Gaussian noise within a mask of the brain and 

skull to the 2D slices of our dataset. Three different noisy images were generated for each 

subject with SNR of 1, 10, and 100. Three separate instances of the proposed autoencoder 

network were trained for each level of noise. The proposed network takes as input a noisy 

image and encodes it into a high-dimensional representation through a series of 2D-

convolutions with increasing filters (Figure 2). This representation is then returned to the 

original image using 2D-deconvolution. The goal of this network is to minimize the mean 

squared error between the denoised image and the original image. In order to avoid 

smoothing and preserve the structural features, we add the feature output from two 

convolutional layers to its corresponding deconvolutional layers as proposed by [14].

We validate this denoising technique by comparing it to FSL SUSAN v5.0. First, we 

perform a grid search to find the optimal parameters of brightness threshold and kernel size 

in SUSAN working on the noisy images with SNR of 10. Once optimized, these parameters 

were used to denoise the noisy images with SNR of 1 and 100. PSNR was calculated for the 

input noisy images, SUSAN images, and the proposed method.

3. RESULTS

3.1 Brain MRI Synthesis

The proposed network is able to generate realistic brain images that closely resemble the 

training set. Figure 3 shows a correlation matrix between training images and the images 

synthesized from training noise. A representative synthesized image, as well as three real 

images with highest correlation values are shown in Figure 3. The real images with high 

correlation show several structural differences from the synthesized images, such as 

ventricle size or gyral patterns, suggesting that this network is not simply reconstructing 

examples from the training set.

Validation of the synthesized images by two separate raters shows an average quality score 

of 4.9 for the real image and a quality score of 3.9. However, Figure 4 shows the histogram 

distribution of scores between real and synthetic images by each rater. In the case of both 

raters, there is substantial overlap in the distribution of scores, resulting in many synthetic 

images given scores 3 or higher and real images with a score of 2 or lower.
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3.2 Image Denoising

Our proposed method is able to denoise images better than current state-of-the-art algorithm 

FSL SUSAN. Figure 5 shows that high-fidelity image reconstruction is achieved when the 

SNR is over 10. To validate the results, PSNR was measured in the denoised image from our 

method as well as with FSL SUSAN. The proposed method showed a greater PSNR 

compared to FSL SUSAN using the Wilcox rank sum test (p < 0.001) for all three levels of 

noise.

4. DISCUSSION & CONCLUSION

We show that the proposed method is able to generate images of brain MRI that closely 

resemble those in the training set. We showed that our method does not simply replicate the 

null set by learning an example from the training images. Instead, this technique generates 

new brain images that belong to the manifold of brain MRI slices. Moreover, we were able 

to show that the generated images can be rated with comparable quality as real images. Of 

note, the first rater, a neuroradiologist, mentioned that despite comparable quality, the 

synthetic images were immediately given away by anatomic abnormalities such as largely 

asymmetric left and right caudate. Similarly, the second rater, a neuroimaging expert, 

noticed brighter intensities near the center of the image compared to the boundaries in the 

synthetic images. This would immediately be noticed after acquisition by the technician and 

reported as a hardware issue. These comments represent challenges in image synthesis: 

anatomic accuracy and signal quality.

In the case of manifold learning, anatomic accuracy could be attained by imposing structural 

restrictions, such as the inter-layer connections used in the autoencoder or symmetry 

connections within layers. This leads to a more refined notion of the normal brain manifold. 

If our method can produce realistic images that are not anatomically viable, then further 

work is needed to refine the subset that truly represents possible MRI images. However, 

exploration of these unrealistic synthesized images may shed a light on possible structural 

and functional variants in brain anatomy found in healthy individuals or disease. Secondly, 

the problem of signal quality is essential to manifold learning, since it allows for better 

distinction between subjects. Physical restrictions can again be applied to make the image 

intensity homogenous and realistic. Alternatively, this might represent artifact found in the 

training data that is not observed in single images, but highlighted by its synthesized 

representatives. In the task of image denoising we show that our method is superior to FSL 

SUSAN across all SNR levels. Image fidelity is recovered at higher SNR, but smoothing 

effects are seen in SNR of 1. Further work would require denoising 3D brain volumes, but 

this work may encounter resource challenges due to the depth of the network and the high 

dimensionality of the problem.

It is remarkable that the two uses of image synthesis and image denoising achieved 

promising results while using a dataset of only 528 images. This is probably due to having a 

relatively homogeneous training set in terms of acquisition parameters and demographics, 

aimed at solving a simple problem. However, the deep learning field has shown that results 

improve remarkably with over 10,000 training examples [8]. The work presented here would 

show better results if the respective networks were trained with 3D brain volumes from 
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subjects of all ages, from different centers, and with multiple acquisition parameters. In fact, 

including this information as contextual features in the training process would further 

increase image fidelity. Using these tools, the construction of a comprehensive normal brain 

manifold would allow for quantitative exploration of structural and functional diseases that 

can be easily implemented into clinical practice.
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Figure 1. 
Pipeline and network architecture for Generative Adversarial Network used for image 

synthesis. The generator is a 2D deconvolutional neural network that takes noise as input 

and generates a 2D image of the brain. The discriminator is a convolutional neural network 

that takes real and synthetic images and learns to classify them.
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Figure 2. 
Denoising Autoencoder Network. This network consists of a convolutional neural network 

of increasing filter size, followed by a deconvolutional neural network of decreasing filter 

size. It takes a noisy image as the input and returns the denoised image.

Bermudez et al. Page 9

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Correlation map between synthesized images and real images. Representative examples a 

synthetic image (top left) and three real images with the highest correlation values: Real 

Image A (rho = 0.76), Real Image B (rho = 0.77), and Real Image C (rho = 0.78).
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Figure 4. 
Histograms of image quality score provided by imaging expert. Rater #1 (above) is a 

neuroradiologist and Rater #2 (below) is an imaging expert.
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Figure 5. 
Image denoising results. The left column shows representatives of noisy input images at 

different SNR levels of 1, 10, and 100. The right column shows the denoised result with the 

proposed method. The graph shows PSNR of the input image, the output of FSL SUSAN, 

and the output of the proposed method. Our method shows higher reconstructed PSNR 

across all levels of noise (p < 0.01).
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