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Abstract

We propose a method of moments (MoM) algo-

rithm for training large-scale implicit generative

models. Moment estimation in this setting en-

counters two problems: it is often difficult to de-

fine the millions of moments needed to learn the

model parameters, and it is hard to determine

which properties are useful when specifying mo-

ments. To address the first issue, we introduce a

moment network, and define the moments as the

network’s hidden units and the gradient of the net-

work’s output with respect to its parameters. To

tackle the second problem, we use asymptotic the-

ory to highlight desiderata for moments – namely

they should minimize the asymptotic variance of

estimated model parameters – and introduce an

objective to learn better moments. The sequence

of objectives created by this Method of Learned

Moments (MoLM) can train high-quality neural

image samplers. On CIFAR-10, we demonstrate

that MoLM-trained generators achieve signifi-

cantly higher Inception Scores and lower Fréchet

Inception Distances than those trained with gradi-

ent penalty-regularized and spectrally-normalized

adversarial objectives. These generators also

achieve nearly perfect Multi-Scale Structural Sim-

ilarity Scores on CelebA, and can create high-

quality samples of 128×128 images.

1. Introduction

The method of moments (MoM) is an ancient principle of

learning (Pearson, 1893; 1936). At its heart lies a simple

procedure: given a model with parameters θ, estimate θ such

that the moments — or more generally feature averages —

of the model match those of the data. While the technique

is simple and yields consistent estimators under weak con-

ditions, other properties of the moment estimator are less

desirable. Moment estimators are often biased, sometimes
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lie outside the parameter space (such as negative probabili-

ties), and, unless the model is in an exponential family, are

less statistically efficient than maximum likelihood estima-

tors. It is perhaps this last property that has relegated the

method of moments to a niche technique.

There are, however, situations in which moment estima-

tion is preferable to maximum likelihood estimation (MLE).

One is when MLE is more computationally challenging

than MoM. For example, one can scale training of Latent

Dirichlet Allocation to large datasets by moment estima-

tion using the first three order moments (Anandkumar et al.,

2012a). Second, for latent variable models more generally,

maximum likelihood estimation using the EM algorithm

results in a local optimum, while MoM enjoys stronger for-

mal guarantees (Anandkumar et al., 2012b). Finally, one

can use moment estimation to determine model parameters

in settings where likelihoods are unnatural. Instrumental

variable estimation, an example of MoM, is used to learn

parameters in supply and demand models (Wright, 1928).

We study another scenario: when data come from unknown

or difficult-to-capture likelihood models. Data such as im-

ages, speech, or music often arise from complicated distri-

butions, and for image data in particular, models based on

likelihoods often yield low-quality samples. Researchers

interested in generating more realistic samples have shifted

their efforts to training neural network samplers with al-

ternative losses. They have studied training these implicit

generative models with the Wasserstein distance (Arjovsky

et al., 2017), Maximum Mean Discrepancy (MMD) (Li et al.,

2015; Dziugaite et al., 2015; Sutherland et al., 2016), and

other divergences (Nowozin et al., 2016; Mao et al., 2016).

While direct minimization of these distances or divergences

– namely Wasserstein (Salimans et al., 2018), and MMD (Li

et al., 2015; Dziugaite et al., 2015), Cramér (Bellemare et al.,

2017) – in pixel space has led to poor sample quality, indi-

rect minimization using adversarial training (Goodfellow

et al., 2014) dramatically improves samples.

We pursue an alternative strategy: we explicitly define our

moments and train them so that the moment estimators are

statistically efficient. This choice creates two practical prob-

lems. The first is that traditional neural samplers, such as

Deep Convolutional Generative Adversarial Networks (DC-

GANs) (Radford et al., 2015), have millions of parameters,

and typically one needs at least one moment per parameter
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to train the model. Second, it is not obvious how to choose

or train moments so that they are statistically efficient.

To address the first issue, we introduce a moment network,

whose activations and gradients constitute the set of mo-

ments with which we train the generator. To tackle the

second problem, we appeal to asymptotic theory to deter-

mine desiderata for moments (namely that they minimize

the asymptotic variance of estimated model parameters) and

explicitly specify and learn moments to train the generator.

It is this theory that is used in the literature of the generalized

method of moments in econometrics to reweight moments to

make estimators more statistically efficient (Hansen, 1982;

Hall, 2005).

We make the following contributions:

• We demonstrate that method of moments can scale to neu-

ral network models with tens of millions of parameters.

• We highlight the importance of statistical efficiency in

method of moments and provide a method for learning

moments such that moment estimators minimize asymp-

totic variance.

• We show that implicit generative models trained with

our algorithm, the Method of Learned Moments, generate

samples that are as good as, or better than, models that

use adversarial learning, as measured by standard metrics.

2. The Method of Learned Moments

2.1. A Review of the Method of Moments

Suppose our data are drawn i.i.d. from xi ∼ p∗, and our

samples s are drawn i.i.d. from a model pθ, whose parame-

ters θ ∈ R
n we wish to learn. Method of Moments (MoM)

estimation requires us to define feature functions Φ(x) ∈ R
k

and an associated moment function m(θ) := Epθ(s)[Φ(s)].

The moment estimator θ̂N matches the moment function

with the feature average over the data:

m(θ) =
1

N

N
∑

i=1

Φ(xi) θ = θ̂N

If pθ
d
= p∗ for some θ∗, the moments exist, and m(θ) 6=

m(θ∗) ∀θ 6= θ∗, this feature matching will yield a consis-

tent estimator of θ∗. When we have access to the likelihood,

we can recover the maximum likelihood estimate by set-

ting Φ(x) = ∇θ log pθ(x) and noting that the expected

value of the score function is zero at θ∗. Since maximum

likelihood estimators are asymptotically efficient, they are

generally preferable to their moment counterparts (Van der

Vaart, 1998, Ch. 8).

With implicit generative models (Mohamed and Lakshmi-

narayanan, 2016), we no longer have explicit access to the

likelihood. This precludes straightforward application of

maximum likelihood. Instead, we have indirect access to pθ
through a parametric sampler gθ(z) ∼ pθ. MoM estimation,

however, is still applicable by replacing the moment func-

tion m(θ) := Epθ(s)[Φ(s)] with m(θ) := Ep(z)[Φ(gθ(z))],
where z is a draw from a prior distribution p(z), such as a

Gaussian or uniform distribution. If the generative model

is sufficiently expressive to model the data distribution, the

same regularity conditions on Φ will ensure a consistent

estimator of generator parameters θ.

While consistency is guaranteed, the asymptotic efficiency

argument of maximum likelihood implies that the specifica-

tion of features Φ(x) affects the quality of the learned model

parameters. One desirable aspect of the moment-matching

framework is a developed asymptotic theory that provides

large-sample behavior of the moment estimator. Intuitively,

it tells us that our estimated generator parameters after N
datapoints is roughly distributed as a Gaussian with mean

θ∗ and variance V/N. Minimizing V makes estimation of

generator parameters more data-efficient and depends on

the quality of Φ(x). The following theorem allows us to

connect our choice of moments with its asymptotic variance.

Theorem 1 (Asymptotic Normality of Invertible Mo-

ment Functions). Let m(θ) = Ep(z)[Φ(gθ(z))] be

a one-to-one function on an open set Θ ⊂ R
d

and continuously differentiable at θ∗ with nonsingular

derivative G = ∇θEp(z)[Φ(gθ∗(z))]. Then assuming

Ep(z)[‖Φ(gθ∗(z))‖2] < ∞, moment estimators θ̂N exist

with probability tending to one and satisfy

√
N(θ̂N − θ∗)→ N (0, G−1ΣG−T)

Σ := cov(Φ(gθ∗(z)))

Proof. See Theorem 4.1 in Van der Vaart (1998)

Minimizing this asymptotic covariance requires balancing G
and Σ. G asserts that one should maximize the difference in

features between the optimal generator parameters and those

a small distance away, while Σ expresses that one should

minimize the covariance of the features for the optimal

generator parameters.

While this theorem requires the restrictive condition of in-

vertible moment functions, the theorem in this ideal setting

allows us to design statistically efficient moments. More-

over, in section 2.2.1 we later relax the assumptions of

invertibility while showing the design choices still hold.

To obtain better moments, we will explicitly create para-

metric moments and optimize those moments to be more

statistically efficient. This approach introduces two hurdles:

1) defining millions of sufficiently different moments and

2) creating an objective to learn desirable moments. Our

practical contribution comprises how we solve these two

issues.
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Figure 1. Illustration of method of learned moments architecture.

2.2. From Theory to Practice

2.2.1. MOMENT SPECIFICATION

Moment specification is an exercise in ensuring consistency

of the moment estimator. The assumption in Theorem 1

that the moment function is invertible is rather restrictive.

One can instead weaken it to require identifiability: m(θ) =
Ep∗(x)[Φ(x)] iff θ = θ∗. Even this condition, however,

is difficult to verify in practice. We thus resort to a local

identifiability assumption used in econometrics: that there

are more moments than model parameters, and that G is full

rank (Hall, 2005, Ch. 3). For linear models, this ensures

global identifiability, and for nonlinear ones, this heuristic

tends to work well in the literature.

Explicitly specifying moments for neural samplers seems

especially daunting, however, since generally one needs

at least as many moments as sampler parameters for mo-

ment matching to yield a consistent estimator of the model

parameters.1 For the DCGAN architecture with batch nor-

malization, depending on the resolution of the dataset, the

number of feature maps, and kernel size, one would need

up to 20 million moments.

Our solution is to create a moment network fφ(x) and define

moments as:

Φ(x) = [∇φfφ(x), x, h1(x) . . . hL−1(x)]
T

where hi(x) are the activations for layer i. hL(x) is im-

plicitly included in the gradient. As long as the moment

network has as many parameters as the generator, there are

enough moments to train the model. Although we cannot

ensure that G is full rank, we typically scale the moment

network to produce between 1.5 and 5 times as many mo-

ments as generator parameters. We use both the gradients

and activations since they encode different inductive biases.

We discuss those biases in Section 2.5.

1Moreover, neural samplers also suffer from identifiability is-
sues. For example, one can express the same function by permuting
nodes and associated parameters. We assume that, given an initial-
ization θ0, only one θ∗ is achievable using gradient descent, but
we leave a more rigorous argument for future work.

Since the moment function is not invertible, we replace

the moment-matching objective with the squared error loss

between moments of the data and samples:

LG(θ) =
1

2

∥

∥

∥

∥

∥

1

N

N
∑

i=1

Φ(xi)− Ep(z)[Φ(gθ(z))]

∥

∥

∥

∥

∥

2

2

(1)

Figure 1 illustrates our setup. In practice, we take Monte

Carlo estimates of the sampler expectation. The change

in objective function and Monte Carlo estimate induce a

change in the asymptotics of this modified moment esti-

mator. We address the effect of these changes in Section

2.3.

2.2.2. LEARNING EFFICIENT MOMENTS

It may seem plausible that given enough moments parame-

terized by random φ, the underlying objective is sufficiently

good in practice to train neural samplers. Unfortunately,

as we show in section 4, sample quality is poor. Theorem

1 allows us to diagnose the problem. G, the Jacobian of

the moment estimator with respect to the optimal generator

parameters is not sufficiently “large”. From the definition

of the Jacobian:

G(θ−θ∗) = Ep(z)[Φ(gθ(z))]−Ep(z)[Φ(gθ∗(z))]+o(‖θ−θ∗‖)

For θ near the optimum, maximizing the difference in ex-

pected features also maximizes the “directional Jacobian”

G. One does not expect, however, that moments produced

for random φ to maximize this difference. This motivates

learning φ.

Of course, since we do not have access to θ∗, exact com-

putation of the asymptotic variance components G and Σ
is impossible. Under the assumption that the generator is

sufficiently expressive to represent the data distribution,

then p(x)
d
= p(gθ∗(z)), Ep(z)[Φ(gθ∗(z))] = Ep(x)[Φ(x)]

and Σ = cov[Φ(x)]. We make a first approximation of

maximizing this directional Jacobian:

G(θ − θ∗) ≈ Ep(z)[Φ(gθ(z))]− Ep(x)[Φ(x)]

In early experiments optimizing this difference, moments

became correlated and as a result the estimator of θ was no

longer consistent. Thus, we make a second approximation.

Inspired by the work of Jaakkola and Haussler (1999) in

extracting feature vectors from auxiliary models for use in a

linear SVM classifier, Tsuda et al. (2002) proposed the gra-

dient of the log-odds ratio of a probabilistic binary classifier

as a model-dependent feature. The authors empirically and

theoretically show improved binary classification (and thus

separability).

Applying this idea to our method, we perform binary

classification on real images and our samples. Denoting
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Dφ(x) = P (y = 1|x) as the probability that x is a real

image, then the tangent of posterior odds is:

∇φ log
P (y = 1|x)
P (y = −1|x) = ∇φ log

σ(fφ(x))

1− σ(fφ(x))
= ∇φfφ(x)

where σ is the logistic sigmoid function. When the log-

odds ratio is included in the feature, the resulting kernel

K(x, y) = Φ(x)TΦ(y) is known as Tangent of Posterior

Odds Kernel.

To help control Σ, we add a quadratic penalty on the squared

norm of the minibatch gradient, so that the average squared

moment is close to 1. The moment objective is now:

LM (φ) = Ep(x)[logDφ(x)] + Ep(z)[log(1−Dφ(gθ(z)))]

+ λ

(‖Ep(x)[∇φfφ(x)]‖2
k

− 1

)2

We do not include regularization on the hidden units as they

represent a small percentage of our moments and its regular-

ization yielded no difference in performance. A more cor-

rect penalty term is
(

1
k
Ep(x)[‖∇φfφ(x)‖2]− 1

)2
(to make

sure the second moments are close to 1), but we found no

performance benefit from the extra computational cost.

The upshot of learning moments is that each parameteri-

zation of fφ, subject to regularity conditions, produces a

consistent estimator of θ. On the other hand, each set of

moments is not necessarily asymptotically efficient, as they

rely on poor estimates of G. So, we learn better Φ iter-

atively (usually every 1,000-2,000 generator steps), and

then match those moments. Algorithm 2.5 describes the

proposed method.

2.3. Refinement of Asymptotic Theory

Note that while we defined the asymptotics for the feature-

matching objective and used that to learn moments, our

loss is actually the squared error objective in Equation 1.

Although the same tradeoff applies to that objective, its

asymptotic variance is somewhat more complicated. To

develop the asymptotics of that expression, for clarity let us

define the moment function:

mN (x1,...,N ,Φ, θ) =
1

N

N
∑

i=1

Φ(xi)− Ep(z)[Φ(gθ(z))]

The asymptotics of the weighted squared loss function:

LG(θ) = mN (x1,...,N ,Φ, θ)TWmN (x1,...,N ,Φ, θ)

are:

Theorem 2 (Asymptotic Normality of Squared Error Func-

tions). Under the consistency and asymptotic normality

conditions in Appendix B.1, the estimator satisfies:
√
N(θ̂N − θ∗)→ N (0, VSE)

VSE := (GTWG)−1GTWΣWG(GTWG)−1

where Σ := cov(Φ(gθ∗(z))).

Proof. Theorem 3.2 of Hall (2005)

When W ∝ Σ−1, then

√
N(θ̂ − θ∗)→ N (0, (GTΣ−1G)−1)

It can be shown that this is the optimal weighting matrix.

The inverse of this matrix is known as the Godambe Informa-

tion Matrix (Godambe, 1960) and serves as a generalization

of the Fisher Information Matrix.

Of course, the above theorem presupposes that we can

analytically calculate Ep(z)[Φ(gθ(z))]. In implicit gen-

erative modeling, however, we only have access to
1
K

∑K
k=1 Φ(gθ(zk)). It turns out we only pay a constant

factor penalty for sampling. More specifically, suppose our

moment function is now:

m̂N (x1,...,N ,Φ, θ) =
1

N

N
∑

i=1

Φ(xi)−
1

T (N)

T (N)
∑

k=1

Φ(gθ(zi,k))

where T (N) is the number of samples used to estimate

generator moments for N points in the dataset. Then the

asymptotic variance of this method, known as the simulated

method of moments (Hall, 2005, Ch. 10), is:

Theorem 3 (Asymptotic Normality of Simulated Method

of Moments). Suppose that
T (N)
N
→ K as N → ∞. As-

suming the conditions in Appendix B.2, then θ̂N satisfies.

√
N(θ̂N − θ∗)→ N

(

0,

(

1 +
1

K

)

VSE

)

Proof. See Duffie and Singleton (1993)

2.4. Computational Considerations

The gradient for the squared-error objective is:

∇θLG(θ) =
1

K

∑

i

JT

i m̄(x,Φ, θ)

where Ji := ∇θΦ(gθ(zi)) is a Jacobian matrix and

m̄(x,Φ, θ) = 1
N

∑N
n=1 Φ(xi)− 1

K

∑K
i=1 Φ(gθ(zi)).

When using only gradient features, one can speed up gra-

dient computation by ∼ 20% by using a Hessian-vector

product-like trick (Pearlmutter, 1994; Schraudolph, 2002).

Note that Hessian-vector products are defined as:

Hv =

[

Hθθ JT

J Hφφ

]

[v]
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Algorithm 1 Method of Learned Moments

Input: Learning rate α; number of objectives No; number

of moment training steps Nm; number of generator

training steps Ng; norm penalty parameter λ
Initialize generator and moment network parameters to θ

and φ respectively

for n = 0, . . . , No do

for n = 1, . . . , Nm do

dφ ← ∇φLM (φ)
φt+1 ← φt − α · AdamOptimizer(φt, dφ)

Calculate 1
N

∑

i Φ(xi) over the entire dataset.

for n = 1, . . . , Ng do

dθ ← ∇θLG(θ)
θt+1 ← θt − α · AdamOptimizer(θt, dθ)

Let v be defined as a partitioned vector as follows:

v =

[

0
m̄(x,Φ, θ)

]

Then: Hv =

[

JTm̄(x,Φ, θ)
Hφφm̄(x,Φ, θ)

]

Performing a Hessian-vector computation only through the

moment network provides the desired gradients.

2.5. Moment Architectures and Inductive Biases

When choosing a particular moment architecture, we implic-

itly specify the inductive biases of our features. Researchers

typically design such architectures such that the forward

pass encodes properties such as translational invariance and

local receptive fields. These are properties of the hidden

units. Gradients, however, often encode far different prop-

erties. For the convolutional moment architectures used in

our experiments, gradient features encode global properties

of the data. To see this, note that the output of a convolu-

tion is yl,m,n =
∑

a

∑

b

∑

c φa,b,c,nxl+a,m+b,c. Its partial

derivatives are
∂yl,m,n

∂φa,b,c,n
= xl+a,m+b,c. Applying chain rule

gives us the partial derivative with respect to o = fφ(x)

∂fφ(x)

∂φa,b,c,n

=
∑

l

∑

m

∂fφ(x)

∂yl,m,n

xl+a,m+b,c

Tying weights, which helps us encode local properties of the

image in the forward pass, instead gives us global properties

in the backward pass. Hence, we augment gradient features

with hidden units to balance both local and global structure.

3. Connection to Other Methods

3.1. Maximum Mean Discrepancy

The method of moments probably bears the closest relation-

ship Maximum Mean Discrepancy (MMD)2. One can con-

2We assume the Reproducing Kernel Hilbert Space (RKHS)
version of MMD; i.e., the function class is F = {f |‖f‖H ≤ 1}.

sider method of moments as embedding a probability distri-

bution into a finite-dimensional vector. MMD, on the other

hand, embeds a distribution into an infinite-dimensional vec-

tor. By enforcing φ ∈ L
2, one can calculate this “infinite-

moment” matching loss as sum of expectations of kernels:

MMD2(θ) =
∞
∑

i=1

(Ep(x)[φi(x)]− Ep(z)[φi(gθ(z))])
2

= E[K(x, x′)]−2E[K(x, gθ(z))]+E[K(gθ(z), gθ(z
′))]

Furthermore, if the kernels are characteristic, then MMD2

defines a squared distance (Gretton et al., 2012). Method

of moments, on the other hand, is only able to distinguish

between probability distributions specified by the model.

Despite robust theory, sample quality has lagged behind ad-

versarial methods, especially if radial basis function (RBF)

kernels are used. An explanation perhaps lies in the analysis

of MMD2 loss as spectral-domain moment matching.

Proposition 1. Suppose the kernel function K(x, y) =
K(x− y) is real, shift-invariant, Bochner integrable, and

without loss of generality K(0)=1. Then:

Ep(x,x′)[K(x, x′)]− 2Ep(x,y)[K(x, y)] + Ep(y,y′)[K(y, y′)]

= Ep(w)[(Ep(x)[cos(ω
Tx)]− Ep(y)[cos(ω

Ty)])2]

+ Ep(w)[(Ep(x)[sin(ω
Tx)]− Ep(y)[sin(ω

Ty)])2] (2)

where p(ω) is a probability measure specified by the kernel.

Proof. See Appendix C.1

Crucially, for radial basis function kernels, p(ω) ∝
exp(− 1

2σ
2‖ω‖2). For high-dimensional data, unless the

data lie on a spherical shell of appropriate radius, then

one likely needs many samples to accurately approximate

MMD2 distance.

It may be the poor spectral properties of the RBF kernels

that have led to poorer samples. More recent work has

focused on other kernels – such as sums of RBF kernels at

different bandwidths (Sutherland et al., 2016) and rational

quadratic kernels (Bińkowski et al., 2018) – and indeed

using those kernels improved sample quality. In fact, the

proposed Coulomb GAN (Unterthiner et al., 2017) shares a

deeper relationship with MMD. It directly minimizes MMD

loss using a version of the rational quadratic kernel known

as the Plummer kernel to estimate f , and further introduces

a discriminator to model the scaled witness function f∗. The

upshot is that the generator loss approximates a high-sample

biased estimate of MMD loss; see Appendix C.2 for details.

3.2. Adversarial Training

Recent work (Liu et al., 2017) has shown that in practical

settings, many GAN objectives are better expressed as gen-
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eralized moment matching as discriminators have limited

capacity. Given this viewpoint, can asymptotic theory tell

us anything about the statistical efficiency of adversarial

networks?

Unfortunately, since there are an “infinite” number of mo-

ments, we cannot directly apply the above asymptotic theory.

We do note that the inner maximization step indirectly “max-

imizes” G. For clarity, consider the inner maximization step

of the Wasserstein GAN:

L(φ) = min
θ

max
φ

Ep(x)[fφ(x)]− Ep(z)[fφ(gθ(z))]

Under the assumption that the generator at θ∗ is suffi-

ciently expressive to model the data distribution, then

p(x)
d
= p(gθ∗(z)), Ep(z)[fφ(gθ∗(z))] = Ep(x)[fφ(x)] and:

E[fφ(gθ(z))]− E[fφ(x)] ≈ E[∇θfφ(gθ∗(z))T(θ − θ∗)]

While MoLM optimizes a directional Jacobian of many mo-

ments, adversarial training optimizes a directional derivative

for a single moment.

Similarly, one can think of discriminator penalties – such

as gradient penalties in Wasserstein GANs (Gulrajani et al.,

2017), the DRAGAN penalty (Kodali et al., 2017), and av-

erage second moment penalty Fisher GANs (Mroueh and

Sercu, 2017) – as terms to control Σ. Of the three, Fisher

GAN most directly controls the second moment by placing

a penalty on f2
φ , but with respect to a mixture distribution of

data and samples. That penalties such as the gradient penalty

improve other adversarial objectives suggests a deeper con-

nection to controlling Σ.

Also implied by adversarial training is that it matches at

most one moment per generator step; due to space con-

straints, we defer discussion of asymptotics to Appendix

B.3.

It is perhaps the connection to statistical efficiency, rather

than the choice of a particular distance, that explains the suc-

cess of adversarial training. It may also explain why direct

minimization of Wasserstein distance in the primal yields

much poorer samples than minimization in the dual. Devel-

oping this hypothesis may better explain why adversarial

training works so well.

3.2.1. MOMENT MATCHING IN ADVERSARIAL

NETWORKS

Moment matching has also found its way into adversarial

training. Salimans et al. (2016) introduced feature match-

ing of activations to stabilize GAN training. Mroueh et al.

(2017) match mean and covariance embeddings of a neural

network. Mroueh and Sercu (2017) also matches mean em-

beddings, but constrains the singular value of the covariance

matrix of a mixture distribution between data and samples

Table 1. Scores for different metrics for generators trained with

random moments/MoLM. For Inception, higher scores are better;

for FID, lower scores are better; and for MS-SSIM, scores closer

to .379 are better.
Metric/Dataset CelebA CIFAR-10

Inception Score - 2.10/6.99

FID - 160.3/33.8

MS-SSIM .444/.378 -

to be less than one. Li et al. (2017) attempts to learn in-

vertible and adversarial feature mappings such that one can

use an RBF kernel for MMD. Salimans et al. (2018) and

Bellemare et al. (2017) also learn adversarial feature map-

pings in combination with Wasserstein and Energy distance,

respectively. Most of these proposals, however, introduce

too few moments to train a generator, and require frequent

updates of features. The possible exception is MMD GAN,

which tries to learn an invertible feature map that can be

used with a kernel distance. Invertiblility is only enforced

through regularization, and the feature mapping is likely not

invertible in practice.

4. Experimental Results

We evaluate our method on four datasets: Color MNIST

(Metz et al., 2016), CelebA (Liu et al., 2015), CIFAR-10

(Krizhevsky, 2009), and the daisy portion of ImageNet (Rus-

sakovsky et al., 2015). We complement the visual inspection

of samples with numerical measures to compare this method

to existing work. For CelebA, we use Multi-Scale Structural

Similarity (MS-SSIM) (Wang et al., 2003) to show sam-

ple similarity within a single class. Higher scores typically

indicate mode collapse, while lower indicate higher diver-

sity and better performance. Numbers lower than the test

set may imply underfitting. For CIFAR-10, we include the

standard Inception Score (IS) (Salimans et al., 2016) and

Fréchet Inception Distance (FID) (Heusel et al., 2017).

We aim to answer three questions: 1) does learning moments

improve sample quality, 2) what is the effect of including

gradient and hidden unit features, and 3) how does sample

quality compare to GAN alternatives?

We use convolutional architectures for both our generator

and moment networks. To directly compare this algorithm

to other methods, unless otherwise noted, we use a DCGAN

generator. Direct comparisons using the same moment archi-

tecture as a discriminator makes less sense, however, since

the set of moments used for adversarial learning come from

an output of a network while our method uses low- and high-

level information. Thus, we modify the architecture from a

standard discriminator, though we only add size-preserving

convolution before each stride-two layer of a DCGAN. For

details of the specific architectures and hyperparameters

used in all our experiments, please see Appendix A in the

supplementary material. The models considered here are all
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Figure 2. Top row are images from the the dataset (from left to right: Color MNIST, CIFAR-10, CelebA, and the Daisy portion of

ImageNet at 128×128 resolution). The middle are samples trained with random moments. The bottom are sampled trained with MoLM.

unconditional.

To answer the first question – does learning moments im-

prove sample quality –, we refer to Figure 2, which high-

lights the importance of learning moments. While random

moments allow the generator to learn some structure of dig-

its on Color MNIST, those moments are not sufficiently

good to learn implicit generative models on other datasets.

The sample quality is much higher for learned moments

on all datasets. We also provide quantitative evidence for

CIFAR-10 and CelebA: Table 1 shows a better Inception

Score and Fréchet Inception Distance for learned moments

compared to random moments on CIFAR-10, and a better

MS-SSIM score on CelebA.

For the second question – what is the effect of including

gradient and hidden unit features – we refer to Figure 4.

For this experiment, we again focused on CIFAR-10 due to

more robust metrics compared to other datasets. We tried

four types of Adam hyperparameters, and two architectures.

Across the board, we found that merely using activations did

not work, which is not surprising as activations constitute

roughly one-tenth the number of moments needed to train

the generator.3 Using only gradient features allows the

model to learn more realistic samples. Using both, however,

substantially improve IS and FID.

Finally, we compare Method of Learned Moments to Gen-

erative Adversarial Networks, and find MoLM performs as

well as, if not better than, its GAN counterparts. On CelebA,

shown in Table 2, the Multi-Scale Structural Similarity is

as good as, or better than GAN alternatives. Admittedly,

this metric is flawed as it only measures sample diversity

and not quality of samples. At worst, however, the sample

diversity of MoLM is comparable to GANs and the test set.

We find similar results on CIFAR-10. We try two convolu-

tional architectures: the DCGAN, and one – denoted “Conv.”

– recently introduced in Miyato et al. (2018). As shown in

Table 3, MoLM significantly outperforms gradient penalty

and spectrally-normalized GANs on both Inception Score

and Fréchet Inception Distance using the Conv. architecture.

It also outperforms MMD alternatives using the DCGAN

3Please refer to Figure 5 in the Supplementary Material for
samples for different types of moments.
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Figure 3. Left pane is Inception Score vs. and right is Fréchet Inception Distance vs. number of objectives solved for different size

moment networks. For random moments, there is only a single objective but uses the same number of generator steps.

Arch. β1 β2 No. Chan.

A 0.5 0.9 768

B 0.5 0.9 1024

C 0.5 0.999 768

D 0.5 0.999 1024

E 0.9 0.9 768

F 0.9 0.9 1024

G 0.9 0.999 768

H 0.9 0.999 1024

Figure 4. Inception Score and FID for different moment architectures and learning rates (right third). FID scores for just hiddens were not

included because covariance matrix of the inception pool3 layer encountered rank deficiency.

Table 2. Multi-Scale Structural Similarity Results on CelebA for different methods.

Method GAN GAN-GP DRAGAN WGAN-GP MoLM (ours) Test Set

MS-SSIM .381 .387 .383 .378 .378 .379

architecture, though the comparison is not entirely fair as

the kernel sizes are different. Moreover, these latter results

are fairly robust to increasing size of the moment network,

shown in Figure 3. Inception Score and Fréchet Inception

Distance also does not collapse over time.

To illustrate that the method can scale to higher-resolution

images, we generate examples from the daisy portion of

ImageNet at 128×128 resolution. GANs currently perform

conditional image generation on the full dataset; unfortu-

nately, no such conditional version of MoLM currently ex-

ists. This preliminary result, however, demonstrates the

promise of the algorithm.

5. Discussion

We introduce a method of moments algorithm for training

large-scale implicit generative models. We highlight the

importance of learning moments and create a stable learning

algorithm that performs better than adversarial alternatives.

The current algorithm, however, leaves some room for im-

provement. For example, the moment architectures, slightly

modified from discriminator architectures used in adversar-

ial learning, are likely suboptimal. Moreover, the current

Table 3. Comparison of Inception Scores (IS) and FID using 5,000

generated images(-5K) and 50,000 generated images (-50K) for

different convolutional architectures. b from (Miyato et al., 2018).

◦ from (Li et al., 2017). Coulomb GAN d from (Unterthiner et al.,

2017). Different methods are grouped by generator architecture.

Arch. Method IS FID-5K/50K

4×4

Conv.

GAN-GP b 6.93 ± .11 37.7/-

WGAN-GP b 6.68 ± .06 40.2/-

SN-GAN b 7.58 ± .12 25.5/-

MoLM-1024 7.55 ± .08 25.0/20.3

MoLM-1536 7.90 ± .10 23.3/18.9

5×5

DCGAN

MMD-RBF ◦ 3.47 ± .03 -/-

MMD-GAN ◦ 6.17 ± .07 -/-

Coul. GAN d - -/27.3

4×4
MoLM-768 7.56 ± .05 31.4/27.3

DCGAN

learning of moments relies on a binary classification heuris-

tic that can almost certainly be improved.

Finally, a connection between adversarial learning and statis-

tical efficiency seems to exist, and exploring this relationship

may help us better understand the quiddity of GANs.
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