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Background: Alzheimer’s disease (AD) is di�cult to diagnose on the basis

of language because of the implicit emotion of transcripts, which is defined

as a supervised fuzzy implicit emotion classification at the document level.

Recent neural network-based approaches have not paid attention to the implicit

sentiments entailed in AD transcripts.

Method: A two-level attention mechanism is proposed to detect deep semantic

information toward words and sentences, which enables it to attend to

more words and fewer sentences di�erentially when constructing document

representation. Specifically, a document vector was built by progressively

aggregating important words into sentence vectors and important sentences into

document vectors.

Results: Experimental results showed that ourmethod achieved the best accuracy

of 91.6% on annotated public Pitt corpora, which validates its e�ectiveness in

learning implicit sentiment representation for our model.

Conclusion: The proposed model can qualitatively select informative words and

sentences using attention layers, and this method also provides good inspiration

for AD diagnosis based on implicit sentiment transcripts.

KEYWORDS

Alzheimer’s disease, attention, deep learning, feature extraction, machine learning

1. Introduction

Alzheimer’s disease (AD) is a progressive degeneration of the brain and is irreversible

(Mattson, 2004), and early diagnosis and intervention are essential as there is currently no

optimal method to cure AD. A previous study (Mueller et al., 2018) showed that the first sign

of the disease is the deterioration of language; therefore, early diagnosis based on language

has gradually become a research hotspot. With the development of artificial intelligence

(AI), natural language processing (NLP), and machine learning technology, diagnosing AD

through these new technologies is possible, and AI technology based on language may be

used as a preliminary diagnosis tool for people with cognitive impairment, which is indeed a

text classification problem in the NLP area.

Emotion recognition (text classification) can be classified into three levels according to

previous studies (Medhat et al., 2014; Yadollahi et al., 2017), namely, the aspect, sentence, and
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document levels (Xu et al., 2015; Yadollahi et al., 2017), as shown in

Figure 1. Meanwhile, texts at the document level can be classified

as explicit or implicit emotions. Explicit sentiment refers to the

obvious emotional words used to express sentiment polarity, and

the classification model can extract these key emotional words

and provide a large weight to perform the classification task

accurately. Unlike explicit expressions, implicit sentiment analysis

indicates that the sentences have no obvious emotional words but

can still convey a clear sentiment polarity in the context (Russo

et al., 2015). The model cannot extract these important emotional

words for text classification correctly, which may lead to worse

classification performance.

Reviews of explicit and implicit sentiments are presented

in Table 1. In explicit expression, words such as “lovely”,

“beautiful”, “bad”, and “like” have an obvious feeling

tendency that can be captured toward a particular aspect

by the classification model. Implicit sentiments may express

emotions that cannot be easily found, such as irony, anger,

and depression. According to a previous study (Xu et al.,

2015), approximately 30% of reviews contain implicit aspects

of emotional classification. For example, the sentence “We

cannot bite the dog anymore when bitten by a mad dog”

obviously expresses a sense of irony and negativity. “Sales

of your company in a year cannot match us for a month”

also expresses a negative meaning that indicates a poor sale.

“The waiter poured water over me and walked away” means

poor service, and although it contains no opinion words,

it can be clearly interpreted as negative. These sentences

must extract deep semantic information to be correctly

classified. However, the text in this study is clearly different

from explicit and implicit expressions as it does not have any

emotional words or tendencies. An example of our transcripts is

presented below.

FIGURE 1

Classification of emotional recognition (blue is the character of the transcripts in this study).

The scene is in the in the kitchen. Themother is wiping dishes

and the water is running on the floor, a child is trying to get a boy

is trying to get cookies outta out a jar and he’s about to tip over

on a stool. The little girl is reacting to his falling, it seems to be

summer out, the window is open.

The text above is an example of our dataset that has no

emotional words and only a description of a picture. The famous

Boston Diagnostic Aphasia Examination (Chen et al., 2019) was

used for AD diagnosis. However, our text is an implicit expression

and cannot convey a clear sentiment polarity in the context.

In addition, humans cannot even judge emotional polarity from

the text. Thus, texts with these characteristics are called “fuzzy

emotions”. Though an implicit expression in the text, humans

can judge the emotional polarity of the text, which is called

“obvious emotion” in the implicit document. Fuzzy emotional

document classification includes unsupervised, supervised, and

semi-supervised methods. In this study, transcripts from voice

recordings for AD diagnosis were supervised by the fuzzy implicit

emotion classification at the document level. Sentiment analysis

classification is shown in Figure 1.

For the classification of implicit transcripts with a long

document in this study, the text lacks emotional words and context-

dependent features. Compared with the explicit classification

task, it is more difficult to perform classification tasks for

fuzzy implicit text because it lacks obvious emotional words

and polarity, and a deep-learning model cannot extract effective

features from the transcripts, although extracting the features of

fuzzy implicit documents is essential for AD diagnosis. In this

study, a classification model combining the attention mechanism

of words and sentence levels was designed in view of the

dependence of implicit expression in contextual content. Not

all words and sentences in the text are equally relevant to the
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TABLE 1 Reviews containing explicit and implicit sentiments.

Explicit expression What a lovely girl!

It’s a beautiful day. I like it.

The service of this hotel is bad, I must

complain.

Implicit expression Yeah, we can’t bite the dog anymore when

bitten by a mad dog.

Sales of your company in a year cannot

match us for a month.

The waiter poured water over me and walked

away

Bold means obvious emotional words.

final classification, and previous deep learning models paid little

attention to words and sentences with different levels of importance

for the classification correctly. Specifically, the bidirectional gated

recurrent unit (GRU) was used to obtain vectors from the

transcript, and an attention mechanism based on word and

sentence levels was used to extract deep semantic features for

better representation. Experiments showed that the accuracy on

public Pitt datasets with five-cross validation was 91.6%, which is

a competitive performance compared with other similar studies.

2. Related work

2.1. Implicit sentiment classification

Many studies have mentioned the presence of implicit

sentiments in text classification. For example, Toprak et al. (2010)

and Russo et al. (2015) proposed implicit polarity (polar facts) and

provided a corpus with an implicit sentiment. Choi and Wiebe

(2014) proposed a+/- EffectWordNet lexicon to recognize implicit

sentiment, assuming that sentiment analysis was related to states

and events which had a positive or negative effect on the entity.

Deng and Wiebe (2014) detected implicit sentiment via inference

over explicit expressions and the so-called goodFor/badFor events.

Memory networks (Tang et al., 2016; Chen et al., 2017; Wang et al.,

2018), graph neural networks (Sun et al., 2019; Zhang et al., 2019;

Wang et al., 2020), and pretrained knowledge (Xu et al., 2019;

Rietzler et al., 2020; Dai et al., 2021) were all used to capture aspect-

related information from the text. Meanwhile, some studies used

the attention mechanism, which was first proposed by Bahdanau

et al. (2014) for machine translation, to extract implicit sentiment.

It usually has better performance as it can extract the importance

of different parts in texts. For example, a study by He et al. (2018)

used syntax information from a dependency tree to enhance the

attention-based model. The studies by Toprak et al. (2010) and

Zehra et al. (2021) used different attention mechanisms to identify

aspect-related contexts. In the study by He et al. (2018), two

methods were proposed to improve attention effectiveness. First,

they introduced an attention model that incorporates syntactic

contents into the attention mechanism. Second, they proposed

a method for target representation that could better capture the

semantic meaning of the opinion target. In a study by Tang et al.

(2020), a dependency graph enhanced a dual-transformer network

with a dual-transformer structure to support the reinforcement

of graph-based representation learning. Ma et al. (2017) proposed

an interactive attention network to learn the relationship between

contexts and targets, which is mainly based on the concept that

both contexts and targets should be treated specifically. Wang

et al. (2016) proposed an attention-based long short-term memory

(LSTM) network for aspect-level text classification and obtained

state-of-the-art performance on SemEval 2014 datasets. However,

these studies are all implicit classifications with obvious emotions,

and to the best of our knowledge, there are no studies of

fuzzy implicit emotion classification other than those in the AD

diagnosis area.

2.2. AD diagnosis based on acoustic and its
transcripts

There are three main methods to recognize AD and MCI

from normal control (NC) in this area. The first method

uses traditional machine learning methods in combination with

manual feature extraction, which needs professional knowledge

to extract effective features. Although the explanation of this

method is better, the performance is just maybe passable. The

second approach uses deep learning models to recognize AD

and MCI, the performance of which is usually better than

the first method. However, the interpretability is not better as

deep learning is a “black” box and it is difficult to understand

the meaning of the features extracted automatically. The third

approach is a combination of the first two methods and may

further improve the performance of deep learning. It highlights the

important linguistic or phonetic features in participant language

description tasks, which may have a significant guide for AD

clinical diagnosis.

The first method uses manual conventional, phonetic, and

linguistic feature extraction as key factors. For example, the study

by Luz S. (2017), to the best of our knowledge, was the first to

employ speech datasets exclusively for analysis without transcripts,

extract low-level acoustic features, such as speech rate, vocalization

events, and the number of utterances, use Bayesian classifiers

to train on low speech datasets extracted from the recordings,

and achieve 68% accuracy in classifying AD and elderly controls.

Fraser et al. (2016) extracted 42 mel-frequency cepstral coefficient

(MFCC) features (Chen et al., 2014) from Pitt datasets and is the

first study to carry out an acoustic-prosodic analysis. Another study

by Roark et al. (2011) employed automatic speech recognition

(ASR) and natural language processing (NLP) to classify MCI

and healthy participants; the extracted features included pause

frequency and duration. Finally, the SVM classifier obtained the

best AUC of 0.861 by combining linguistic features, automated

speech, and cognitive test scores. Jarrold et al. (2014) extracted

41 features, including the mean and standard deviation of the

duration of pauses, speech rate, and consonants and vowels. The

datasets included nine AD patients, 13 semantic dementia patients,

nine healthy controls, nine frontotemporal dementia patients, and

eight progressive nonfluent aphasia patients. Zehra et al. (2021)

extracted speech rate (Luz, 2013) and graph-based features by

encoding patterns from Carolina Conversations Collection (Pope

and Davis, 2011) and used the logistic regression classifier to
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FIGURE 2

The model architecture of the attention network.

obtain an accuracy of 85% when distinguishing AD from non-

AD participants. Toth et al. (2018) found that a pause could not

be detected reliably by human annotators, whereas using an ASR

system improved the effectiveness. They analyzed the speech of 48

MCI and 38 healthy controls and extracted acoustic features such

as the length of utterance, hesitation ratio, filled pauses, and speech

tempo. Finally, ASR-extracted features in combination with a

Random forest classifier manifested the best results (75% accuracy).

For example, Antonsson et al. (2021) quantitatively measured the

semantic ability, used the Support Vector Machine (SVM) classifier

to recognize AD, and finally obtained the best area under the curve

(AUC) of 0.93. Clarke et al. (2013) measured 286 linguistic features

to train the SVM classifier, and the final accuracy obtained was

50–78% for MCI vs. HC, 59–90% for AD vs. HC, and 62–78% for

AD+MCI vs. HC. Meanwhile, the study found that the speech task

impacts the accuracy of AD detection more than the length of the

sample. R’mani and James (2021) investigated the use of x-vector

and i-vector methods (Snyder et al., 2018) that were linguistic

features for tackling AD detection and phonetic features devised

originally for speaker identification and yielded 85.4% accuracy in

AD detection with Random Forests and SVM. Shamila et al. (2021)

used the Carolinas Conversations Collection Classification Model

(Pope andDavis, 2011), investigated conversational features such as

pauses, dysfluencies, overlaps, and other elements for AD detection,

and finally achieved the best accuracy of 90% in Alzheimer’s

Dementia Recognition through Spontaneous Speech (ADReSS)

datasets. Zehra et al. (2021) developed acoustic and linguistic

features by combining a regularized logistic regression classifier,

achieving an accuracy of 85.4% on DementiaBank datasets.

Deep learning models for AD recognition by the second

method include Convolutional Neural Networks (CNN), Recurrent

Neural Networks (RNN), LSTM, and Transformer and BERT. For

instance, in the study by Fritsch et al. (2019), the n-gram language

model was enhanced by creating a neural network language

model with LSTM and finally obtained an accuracy of 85.6%. A

study by Chen et al. (2019) proposed a network based on the

attention mechanism composed of GRU and CNN modules and

finally obtained a state-of-the-art accuracy of 97% in distinguishing
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individuals with AD from NC. Balagopalan et al. (2021) used a

pretrained BERT model to recognize AD from NC with ADReSS

datasets and achieved an accuracy of 83.33%, thus outperforming

the performance of acoustic and linguistic features manually.

Guo et al. (2021) trained a BERT model on DementiaBank and

ADReSS datasets with different sizes and demonstrated that more

datasets can obtain a better performance than minor datasets

relatively. Meghanani et al. (2021) compared two approaches for

AD recognization—one method employed the fastText model

and the other used the CNN model. The performance of the

fastText model outperformed the CNN model and achieved the

best accuracy of 83.3% in classification.

The third method can combine the advantage of the first two

methods—deep learning models combined with acoustic features

or linguistic features can manually improve the performance of

the model further. For example, the champion of the Interspeech

challenge in 2020 (Yuan et al., 2020), the world’s premier conference

on speech research, combined the Baidu ERNIE model and

pause information with three different sizes (extracted with Penn

Phonetics Lab Forced Aligner) and finally achieved the best

accuracy of 89.6%. From this study, we can conclude that pause is

an important and distinguishing feature of AD recognition. Pranav

and Veeky (2021) employed a deep learning model in combination

with the acoustic and linguistic features on ADReSS (78 AD vs.

78 HC) datasets and DementiaBank datasets, respectively. The

performance of the model that combines linguistic features was

better than the model that combines the acoustic features, with

accuracies of 88% and 73%, respectively. This method, to the best

of our knowledge, is the most promising research direction of

the future.

3. Attention network

3.1. GRU-based sequence encoder

GRU is a variant structure of LSTM (Hochreiter and

Schmidhuber, 1997), which can effectively solve the problem of

gradient vanishing or explosion in recurrent neural networks

and, thereby, preserve the remote memory ability of LSTM and

simplify its structure. GRU can capture the dependence of words in

sentences and hence is widely used in text classification, machine

translation, and other tasks. GRU mainly includes two types of

gates: the update gate and the reset gate. The update gate replaces

the forget gate and the input gate in LSTM and the reset gate stores

the information that may be forgotten easily.

3.2. Model structure

The attention mechanism (Vaswani et al., 2017) can select

the most valuable information from texts. In the field of

automatic language processing, such as machine translation and

text classification, it can not only improve the performance of the

model but also visualize the internal valuable information of the

text. For text classification, the attention mechanism highlights the

importance of words and sentences in the final classification. The

entire model structure includes four parts: a word encoder, word

attention, sentence encoder, and sentence attention. The structure

of the model is illustrated in Figure 2.

3.2.1. Word encoder
We embedded words into vectors through an embedding

matrixWe, which is used to obtain the annotation by summarizing

information from two directions for words; therefore, it can

incorporate contextual contents. Bidirectional GRU can obtain

information representation of whole sentences from two directions.

Suppose there are L sentences in document si, like [s1,s2,...,sL],

the input of the model is the words in the joint set of all the

sentences si with i ∈ [1, L] in the transcripts. Every sentence

includes Tiwords; wit is the tth word in the ith sentence. The

word was mapped into vector xit through an embedding matrix,

We [Eq.(1)]. The implicit vector hit was obtained by calculating

the bidirectional GRU [Eq.(2)]. Full-text information can be fully

obtained through a bidirectional calculation.

xit =Wewit , t ∈ [1,T] (1)

Ehit =
−−→
GRU(xit), t ∈ [1,T] (2)

Ehit =
←−−
GRU(xit), t ∈ [1,T] (3)

hit = [Ehit , Ehit] is the final word vector that summarizes the

information of the entire sentence centered on wit . The input is

the words in the joint set of all sentences si with i ∈ [1, L] in the

transcript, like [s1, s2,. . . , sL].

3.2.2. Word attention
Not all words contribute equally to the representation of a

sentence. Thus, we introduce an attention mechanism to extract

informative words that are important to the meaning of a sentence

and integrate them into the representation of sentence vectors.

sit = tanh(Wwhit + bw) (4)

mit = softmax(sit
T tw) (5)

pi =
∑

t

mithit (6)

where tw is a high-level representation of the sentence vector and

can be learned iteratively; it is initialized randomly and learned

jointly during the training process. The hidden layer vector was

further represented by a multilayer perceptron, that is, we obtained

the representation of sit as a hidden representation of hit . The

importance of words was measured by calculating the similarity

between sit and the context word vector tw and then standardizing

it using the softmax function to obtain a normalized weight matrix

mit ; that is, we calculated the importance of the word vector sit and

obtained the important weight mitthrough the softmax function.

Finally, we calculated the sentence vector representation pias the

weighted sum of words.

Frontiers in AgingNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1122799
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnagi.2023.1122799

TABLE 2 Demographics of Pitt datasets.

CTRL (242) Possible/probable
AD (256)

Age (years) 65.2 (7.8) 71.8 (8.5)

Education (years) 14.1 (2.4) 12.5 (2.9)

Gender (male/female) 86/156 90/166

Mini-mental state exam 29.1 (1.1) 18.5 (5.1)

3.2.3. Sentence encoder
Similarly, we used bidirectional GRU to encode the sentence

vector si.

Ehi =
−−→
GRU(si), i ∈ [1, L] (7)

Ehi =
←−−
GRU(si), i ∈ [L, 1] (8)

where hi focuses on sentence si and summarizes neighboring

sentences around sentence i, hi = [Ehi, Ehi].

3.2.4. Sentence attention
To highlight the contribution of important sentences to the

representation of a document, the importance of sentences can be

measured using the attention mechanism and the sentence-level

context vector sw.

si = tanh(Wwhi + bw) (9)

mi = softmax( si
Tsw) (10)

p =
∑

t

mihi (11)

where p is a document vector that summarizes the information of

the sentences in a document. The process of sentence attention

is initialized randomly and learned jointly during the entire

training process.

3.2.5. Document classification
The document vector p is a high-level representation of the

document and can be used as a feature for text classification.

t = softmax(wp+ b) (12)

The loss function in this study is a negative log-likelihood of

correct labels.

Loss = −
∑

d

log tdj (13)

where j is the label of document d. Finally, the output of the

model is a binary classification result obtained by using the

softmax function.

FIGURE 3

Cookie theft picture.

TABLE 3 Relationship between the predicted and true classes.

True class

Predicted class Positive Negative

Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

4. Experiments

4.1. Pitt corpus

We performed experiments on the public Pitt Corpus of the

DementiaBank (https://sla.talkbank.org/TBB/dementia/English/

Pitt) (Becker et al., 1994), which was gathered longitudinally on

a yearly basis. The datasets consisted of radio recordings and

transcripts corresponding to the ratio of spontaneous picture

description tasks produced by patients with AD and cognitively

normal subjects. They were required to describe the cookie theft

picture (shown in Figure 3) from the Boston Aphasia Examination

(Chen et al., 2019), and the participants were all speakers of

English. The transcripts of the voice recordings were gathered

as part of Alzheimer’s and related dementia studies by the

University of Pittsburgh School of Medicine. Every audio file had

an associated transcript, allowing for acoustic and lexical analyses

in parallel; the speech sample was recorded and then manually

transcribed at the word level using codes for the human analysis

of transcripts (CHAT) coding system (MacWhinney, 2021). Every

transcript came with morphosyntactic analysis automatically,

such as repetition markers, description of tense, and standard

part-of-speech tagging. Note that we removed utterances that had

accompanying dysfluency annotations, morphological analysis,

POS tags, and other associated information, leaving only pure

text contents; as the deep learning model does not need to extract

features manually, we aimed to create a fully automated system

that does not need the participation of human annotators. After

data preprocessing, 498 participants were enrolled in this study,

including 242 normal controls and 256 people with possible and
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TABLE 4 AD vs. CTRL classification scores(%) on Pitt datasets.

Method Embedding Classifier Precision Recall Accuracy AUC F1

Antonsson et al. (2021) Semantic features SVM - - - 0.93 -

Clarke et al. (2013) 286 Linguistic features - - - 50–78 for MCI vs. HC, 59–90 for AD vs.

HC, and 62–78 for AD+MCI vs. HC

- -

R’mani and James (2021) x-vectors and i-vectors

features (Roark et al., 2011)

Random Forests

and SVM

- - 85.4 - -

Zehra et al. (2021) Hand-Craft acoustic and

linguistic features

Logistic Regression - - 85.4 - -

Becker et al. (1994) 35Hand-Crafted Feature Logistic Regression

(LR)

- - 81.92 - -

Yancheva and Rudzicz (2016) 12Cluster-Based

Features+LS&A

Random Forest 80.00 80.00 80.00 - 80.00

Sirts et al. (2017) Cluster+PID+SID Features LR 74.4± 1.5 72.5

± 1.2

- - 72.7± 1.2

Hernández-Domínguez et al.

(2018)

105Hand-Crafted Features SVM 81.00 81.00 79.00 - 81.00

Li et al. (2019) 185Hand-Craft Features LR - - 77 - -

Fraser et al. (2016) Info and LM Features SVM - - 75 - 77

Fritsch et al. (2019) n-gram NNLM+LSTM - - 85.6 - -

Balagopalan et al. (2021) - BERT - - 83.33 - -

Guo et al. (2021) - BERT - - 82.1 - -

Meghanani et al. (2021) - FastText - - 83.3 - -

Karlekar et al. (2018) POS-tagged data CNN-RNN - - 91.1 - -

Orimaye et al. (2018) n-grams D2NN - - 88.9 - -

Pan et al. (2019) GloVe Word Embedding

Sequence

BiLSTM|GRU

Hierarchical

Attention

84.02 84.97 - - 84.43

Yuan et al. (2020) Encoding of pauses+ERNIE

Embedding

ERNIE - - 89.6 - -

Tristan and Saturnino

Analysis (2021)

Word cooccurrence graphs Machine Learning - - 66.7 - -

Roshanzamir et al. (2021) BERTBase LR 90.31±7.36 76.52

±8.06

84.46±6.31 - 82.72±7.21

Roshanzamir et al. (2021) BertLarge LR 90.57± 3.18 84.34

± 7.58

88.08± 4.48 - 87.23± 5.20

Pranav and Veeky (2021) Linguistic features Deep learning - - - 88 -

Our method GRU Softmax - - 91.6 - -
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probable AD, and their corresponding transcripts were obtained.

We divided the datasets into training sets, validation sets, and

testing sets in a ratio of approximately 8:1:1. Therefore, the final

number of the three datasets was 400, 50, and 48, respectively.

Demographic information is shown in Table 2.

4.2. Model configuration and structure

Documents were split into sentences, and every sentence

was tokenized using StanfoCoreNLP (Manning et al., 2014).

For word embedding, three methods were used to obtain the

best performance in this study, i.e., word2vec from Google

(Mikolov et al., 2013), Glove (https://nlp.stanford.edu/projects/

glove/) including four word2vec files (50d, 100d, 200d, and

300d) from Stanford University, and FastText (https://fasttext.cc/

docs/en/crawl-vectors.html) from Facebook. Glove and Fasttext

needed a shorter training time, while word2vec required a longer

time. Finally, the word embeddings were pretrained on Stanford’s

publicly available 100-dimensional Glove for better performance

after comparison. We obtained the word embeddings on the

training and validation splits and then used them to initialize We.

The number of GRU units was set to 100 and the dense layer

dimension at the word level was set to 50. The proposed model was

trained on a fixed 10 epochs and evaluated on the validation sets

at every epoch. Word weight and context weight were initialized

randomly according to a normal distribution (mean= 0, std= 0.1).

Similarly, sentence weight and context weight were also initialized

randomly according to a normal distribution with mean and std

being 0 and 0.1, respectively. Word bias and sentence bias were

initialized randomly in the training stage. We applied an Adam

optimizer with a 0.01 learning rate; the dropout to the output of all

the functional layers was used, and the dropout rate was set to 0.35

for all the layers. All the aforementioned parameters were trained

on the training sets and the best model was selected based on the

accuracy of the validation sets. All the aforementioned parameters

can be applied to the other models.

4.3. Results and analysis

In this study, we evaluated the effectiveness of our model with

a five-fold cross-validation. That is, four sets were used as training

sets and one as the test set, the results of which were summarized,

and the average value was calculated. The relationship between the

actual and predicted classes is presented in Table 3 and the metric

formulas of accuracy, precision, recall rate, and F1 score are shown

in Eq. (18)–(21).

Accuracy =
TN + TP

TN + FP + FN + TP
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1 =
2TP

2TP + FP + FN
(17)

FIGURE 4

Result of the confusion matrix.

TABLE 5 Ablation study on our model.

Method Accuracy Drop

Our Model 91.6 -

(-Word) 90.2 1.4

(-Sentence) 89.3 2.3

Table 4 shows the performance of the studies with Pitt datasets in

this area. Of course, these datasets may include different subsets

of the Pitt Cookie Theft corpus, and the results summarized in

Table 4 are not always comparable. In addition, these articles are

not exhaustive because of our limited ability. Of all the studies in

Table 4, the first set of studies (Becker et al., 1994; Clarke et al.,

2013; Yancheva and Rudzicz, 2016; Sirts et al., 2017; Hernández-

Domínguez et al., 2018; Fraser et al., 2019; Li et al., 2019; Antonsson

et al., 2021; R’mani and James, 2021; Zehra et al., 2021) used

a feature extraction + machine learning method, and the best

accuracy was 85.4%. The second set of studies (Karlekar et al.,

2018; Orimaye et al., 2018; Fritsch et al., 2019; Pan et al., 2019;

Balagopalan et al., 2021; Guo et al., 2021; Meghanani et al.,

2021) used deep learning methods, of which the best accuracy

was 91.1% (Karlekar et al., 2018). The rest of the studies (Yuan

et al., 2020; Pranav and Veeky, 2021; Roshanzamir et al., 2021;

Tristan and Saturnino Analysis, 2021) used deep learning models

in combination with acoustic features or linguistic features. The

study by Yuan et al. (2020) obtained the best accuracy of 89.6%,

the highest in Interspeech 2020. Our method obtained the best

accuracy of 91.6%, which is 0.5% higher than the best performance

of the study by Karlekar et al. (2018). The image of the confusion

matrix of our study is shown in Figure 4, and only two AD and two

NC in 48 testing sets were not recognized correctly.
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FIGURE 5

An example of AD and NC from Pitt dataset. (A) Prediction AD. (B) Prediction NC.
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4.4. Ablation study on attention network

We validated the effectiveness of every part by ablation study, as

illustrated in Table 5. First, removing the word level (-Word) leads

to a 1.4% performance drop for Pitt datasets. Similarly, removing

the sentence level (-Sentence) leads to a 2.3% performance drop,

which is more significant than removing the word level. From the

ablation experiment, we can demonstrate that the word level and

sentence level are essential to our model.

4.5. Visualization of attention features

We normalized the word weight by sentence weight to make

sure that only important words in important sentences are

emphasized because of the hierarchical structure. To validate that

our proposed model can select formative words and sentences, we

visualized the contextual attention features shown in Figure 5. Each

line is a sentence; green denotes the word weight and red denotes

the sentence weight. The study by Liu and Yuan (2022) indicates

that a general and integral expression for normal should include

the following seed words: boy, girl, woman, cookie, stool, sink,

overflow, fall, window, curtain, plate, cloth, jar, water, cupboard,

dish, kitchen, garden, take, wash, reach, attention, and see. In

the AD group, we found three problems in linguistic expression.

For the first one, our model only referred to a few seed words

such as “boy”, “girl”, “mother”, “floor”, and “window”, and the

description was much shorter compared to that of the NC group.

The participant cannot describe the picture completely which

affects the adequacy of discourse information to some extent. For

the second one, our model localized the key colloquial words such

as “uh”, and “um”; the study by Yuan et al. (2020) indicates that

people with AD use more “uh” and “um” than NC. There is usually

a pause after “uh” and “um” and the participant may not find

appropriate words or sentences to express himself, which finally

influences verbal fluency. For the third one, our model accurately

localized personal pronouns such as “he” and “she”, as well as

the corresponding sentences, which means that people with AD

may have a word-finding difficulty and can only use he or she

to replace, which finally influences the sentence expression and

meaningful output.

In the normal group, our model selected more seed words, such

as scene, kitchen, mother, dish, water, garden, boy, girl, mother,

window, curtain, breeze, water, and their corresponding sentences,

indicating a rich vocabulary and integrated semantic expression. In

addition, some attributive words that our model selected include

“little”, “short”, “gentle”, and “almost”, manifesting a sufficiency of

discourse information and the coherence of discourse.

5. Conclusion

Many studies on AD diagnosis using language focused on

the deep learning method (Liu et al., 2021, 2022; Chen and Liu,

2022) as the traditional feature extraction method is blind, lacks

integrity, and has a relatively worse performance comparedwith the

deep learning method. Meanwhile, with the development of deep

learning, new methods such as contrast learning, unsupervised

learning, and multimodal feature fusion can be used to differentiate

AD from normal controls.

This study used the deep learning method combined with the

attention mechanism to identify important words in a sentence

to form sentence representation and important sentences in

a document, which formed the representation of the whole

document. We combined contextual features with the attention

mechanism and studied the classification of implicit effective

sentences based on the bi-GRU model and attention mechanism.

Of course, the encoder of bi-GRU in our model can be replaced

by other models, such as RNN and LSTM. Owing to the difference

in expression between implicit and explicit texts, the proposed

model can learn fuzzy implicit sentiment with contextual attention

features to improve classification performance. Compared with the

general classification model, our model can extract more valuable

information based on word and sentence levels. Experimental

results on public Pitt datasets show the superiority of our model

to other classification models in AD diagnosis. Meanwhile, deep

learning models are considered “a blind box” (Meghanani et al.,

2021), the interpretability of which is not better than that of

the machine learning method as we cannot obtain the feature

information that humans can understand from these models.

However, our work can be visualized further as we may select

more informative words and sentences that affect the classification

effect, which may provide some references for the detection

and rehabilitation of cognitive dysfunction sufferings from the

perspective of linguistics.

However, our model may ignore some potential risks. For

example, the corpus we used may contain recordings taken over

multiple visits from the same patient, which might bias the model

because the training sets and testing sets may be from the same

patient. To eliminate this bias, the studies (Luz et al., 2020, 2021),

for example, employed the one-to-one matching approach and

propensity score matching strategy, respectively. The datasets of

the ADReSS challenge in 2010 were created precisely for avoiding

this and other potential sources of bias (such as gender and age). In

our future study, we will take effective measures to eliminate these

potential biases.
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