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Abstract

We address the false response influence problem when

learning and applying discriminative parts to construct the

mid-level representation in scene classification. It is often

caused by the complexity of latent image structure when

convolving part filters with input images. This problem

makes mid-level representation, even after pooling, not

distinct enough to classify input data correctly to cate-

gories. Our solution is to learn important spatial pooling

regions along with their appearance. The experiments

show that this new framework suppresses false response and

produces improved results on several datasets, including

MIT-Indoor, 15-Scene, and UIUC 8-Sport. When combined

with global image features, our method achieves state-of-

the-art performance on these datasets.

1. Introduction

Finding discriminative parts [23] to construct mid-level

representation is one of the main streams in scene classi-

fication. Discriminative parts, such as beds in bedroom,

washing machines in laundry, and other distinct compo-

nents, are important to identify scenes. They are generally

more useful than simultaneously considering all pixels in

an image. State-of-the-art results are yielded using this

strategy, as described in [4].

These advanced methods learn a set of discriminative

parts (filters). Given an image, response map are computed

by filtering in a convolution way. To consider spatial

information, mid-level representation is built upon the part

response map, similar to Spatial Pyramid Matching (SPM)

[12]. The constructed mid-level representation is the input

to discriminative classifiers, e.g., SVM.

In this framework, we observe a common issue. That

is, part learning in the first step could produce many false

responses, which adversely influence mid-level representa-

tion construction.

Take the images in Figure 1 as examples. The “screen”

filter is learned from the images of “movie theater” cate-

gory. When applying the part filter to the images in (a)-

(b) selected from categories “movie theater” and (c) from

“florist” by convolution, respective region-level responses

are obtained. All resulting maps in (d)-(f) contain many

high response points in the “screen” region. It is also

noticeable that the many false responses are produced on

“non-screen” pixels.

To generate mid-level representations based on these

response maps, several systems pool and concatenate these

responses in spatial pyramids (3×2 spatial pooling in Fig-

ure 1(j)). The mid-level representation is shown as Fa −Fc

in (j). This routine possibly takes false responses into

account and suffers from two drawbacks.

First, because the false responses in (d)-(f) are strong

and clutter in image space, the concatenated response

histograms Fb and Fc in (j) have high cross-correlation

in many dimensions though images (b) and (c) are from

different categories. Second, histograms Fa and Fb are

different in many dimensions though the images (a) and (b)

are from same category. Thus it is not that easy to classify

images correctly into corresponding categories due to the

negative impact of false responses.

Note these are not special cases. In fact, most discrim-

inative parts are not similarly semantic as the “screen”.

Filters learned from these parts are more likely to generate

false responses than the semantic ones. We examine many

results output from this framework, the false responses

generally affect discriminative power of image represen-

tation. Pre-defined spatial pooling strategies, like SPM,

are empirically designed and could leave out these false

responses in image representation. When the classification

framework such as SVM is performed to classify images, a

lot of misclassification errors are caused. At the very root,

false response is neglected after learning discriminative

parts and constructing mid-level representation in many

systems.

We address this issue in this paper by introducing

important spatial pooling regions (ISPRs) visualized in

Figure 1, which are learned jointly with discriminative part

appearance in a unified optimization framework. For the

examples in Figure 1, our response maps are processed with

the learned ISPRs to form the score maps shown in (g)-(i).
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Figure 1. False response influence in scene classification. (a)-(b) Images in categories “movie theater”. (c) Image in categories “florist”.

(d)-(f) Part response maps resulted from convolution of part filter “screen” and corresponding HoG maps. (g)-(i) Score maps after our

ISPR process. (j) Mid-level representation by applying 3 × 2 pooling to (d)-(f). (k) Representation by applying max pooling to (g)-(i). In

(j) and (k), Fa-Fc are representations corresponding to images (a)-(c) respectively.

False responses in (d)-(f) are suppressed in the results (g)-

(i). Now, even a simple max pooling performed on them

can make the final scores sufficiently different as shown in

(k), good for categorizing novel images into correct scene

classes.

Our contribution is twofold. First, we provide a new

insight of spatial pooling to achieve discriminative mid-

level representation. Second, a joint model to learn part ap-

pearance and ISPR is proposed. In the learning framework,

ISPR can tap the potential of classifiers by suppressing false

response in training samples.

We apply our method to scene classification on MIT-

Indoor [23], 15-Scene [12] and UIUC 8-Sport [14] datasets.

Experimental results show that our new mid-level represen-

tation enhances classification accuracy in general. More-

over, state-of-the-art performance is yielded by combining

our mid-level representation with improved Fisher vector

(IFV) [22], which is a global image feature.

2. Related Work

Discovering discriminative parts is an effective tech-

nique for scene classification. The term “discriminative

part” was originally introduced in object recognition [5].

As explained in [23], scene can also be regarded as a

combination of parts, which are called regions of interest

(ROI). Because discriminative parts provide powerful rep-

resentation of scene, exploiting them drew much attention

recently.

This type of methods can be understood in three ways.

First, distinct power of learned parts is used to alleviate

visual ambiguity. Recent work [8, 24, 15, 16, 27, 17]

discovered parts with specific visual concepts – that is, the

learned part is expected to represent a cluster of visual

objects. Second, unsupervised discovery of discriminative

parts is dominating. Though handcrafted part filters are

easier to comprehend, unsupervised frameworks [17, 28,

9, 10, 13, 20, 21, 25, 37] are more practical and efficient

especially for large volume data.

Third, mid-level representation is employed to enhance

the discriminative power in classification [2, 15, 16, 37].

State-of-the-art methods [27, 17, 8] discover discriminative

parts and part responses obtained from convolution. They

are concatenated as mid-level representation applied to

discriminative classifiers. As described in [35], mid-level

representation constructed with part responses maintains

fine-grained power to discriminate a large set of inter and

intra categories. Decent results manifest that this type of

representation is an advantageous substitution or comple-

mentarity of traditional low-level ones [12, 22, 3, 18, 19,

31, 34].

Noticing that previous methods still ignore the adverse

impact of false response when constructing image represen-

tation, we develop a new scheme with better suppression of

false response in order to generate more discriminative mid-

level representation.

3. Our Model

We describe the joint model of part appearance and ISPR

in this section.

3.1. Importance of Spatial Pooling Regions

The false response problem described in Section 1 can

be understood in another way. For the images shown in

Figure 2, useful visual cues include the projection screen

and stage in order to label images as belonging to movie

theaters. The chairs are repetitive texture and light may vary

wildly in different images. They are not that distinct even

for human to identify a theater scene.
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Figure 2. Discriminative part location modeling. (a) Screen structure learned from category “movie theater”. These specific discriminative

parts are mostly located within several clusters illustrated in (b).

Therefore, even if the discriminative part, e.g., the

screen, has been correctly and statistically learned from

data, when applying it to new images, those unrelated but

structurally diversified environmental objects could mistak-

enly yield high response. In our experiments, this problem

is ubiquitous.

Our solution is to eliminate the influencing structure

by knowing statistically where false response could be

produced. An observation experiment conducted by us is

to plot centers of all discriminative parts in training data

in a normalized image space, as shown in Figure 2(a). It

is intriguing that most centers are located within a few

clusters, as shown in Figure 2(b). Discriminative parts in

other scene categories, such as beds in bedroom and the

stage in concert hall, form similar patterns.

These patterns provide us with spatial clusters of part’s

occurrence. It implies that parts have higher chances to

occur within clusters. In other words, the locations far away

from the clusters primarily correspond to false response.

By modeling and learning spatial clusters, we develop an

adaptive method to infer responses in image space and make

pooling more robust against incorrect input.

3.2. Model of Important Spatial Pooling Region
(ISPR)

According to the above mentioned properties, our ISPRs

should cover several clusters where discriminative parts

frequently appear. Given Θi(pc
i ) denoting the ith cluster

centered at pc
i , the overall important pooling region is

⋃

i=1,...,k

Θi(pc
i ), (1)

where k is the number of clusters and
⋃

is the union

operator. We model Θi(pc
i ) in the pixel level as

φ(p, pc, σ) = exp(−
||p − pc||2

σ
), (2)

where p and pc are 2D coordinates of the part and its

cluster center respectively. σ is the parameter controlling

the coverage of ISPR. φ(p, pc, σ) denotes the potential of

part appearing in location p.

With Eq. (2), we use a mixture model to update the union

process in Eq. (1) as

Φ(p, pc, σ) =

k∑

i=1

di · φd(p, pc
i , σi), (3)

where di is the weight of each ISPR.

3.3. Joint Model of Appearance and ISPR

Given a discriminative part, the occurrence of this part

is affected by the appearance at certain locations besides

the spatial clusters. The appearance is evaluated by the

convolutional response of part filter [8, 15, 16, 27, 17, 37,

35]. Together with the above ISPR term, our joint model of

part’s occurrence at location p in image I is formulated as

f(I, p) = F · H(I, p)
︸ ︷︷ ︸

Appearance Term

+ Φ(p, pc, σ)
︸ ︷︷ ︸

ISPR Term

. (4)

F · H(I, p) is the appearance term in convolution to obtain

the response map. F is the part filter vector and H(I, p) is

the feature vector extracted from location p in image I .

Because structure of scenes varies spatially, we involve

root filter similar to that of [5] to capture the global struc-

ture. The root filter is convolved with each input image to
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Figure 3. Construction of mid-level representations for scene classification.

localize global scene appearance. The locations of ISPRs

are fixed with respect to the root filter. In addition, we

note that scene can be recognized by several discriminative

parts. With the above settings, we further adapt Eq. (4) to

the multi-part version as

f(I, P ) =
n∑

i=0

Fi · H(I, pi) +
n∑

i=1

k∑

j=1

dij · φ(pi, p
c
ij , σij),

(5)

where

φ(pi, p
c
ij ,σij) = exp(−

||pi − pc
ij − p0||2

σ
),

P = [p0, ..., pn], and p0 and F0 are the 2D coordinates and

vector of the root filter. The locations of ISPRs, which are

denoted as pc
ij in Eq. (5), take p0 as origin. n and k are

the numbers of parts and the center corresponding to the

ith part. dij and σij are weight and coverage modeling the

jth cluster corresponding to the ith part. pc
ij is the central

location of the jth cluster corresponding to the ith part. The

component φ(pi, p
c
ij , σij) defined in Eq. (2) is modified to

the one in Eq. (5) by involving the reference location p0.

3.4. Construct Mid-level Representation

In this paper, we use HoG [3] as an operator. Figure 3

visualizes two main processes of applying our model to

mid-level representation construction.

The first step is feature pooling. Note the ith part filter

in Figure 3 is denoted as Fi in Eq. (5). The locations of

root filter p0 and part filter pi are computed by maximizing

Eq. (5) (described in Section 4) over P . “Feature pooling”

extracts values A and S based on their definition: A = Fi ·
H(I, pi) and S =

∑k

j=1
dij ·φ(pi, p

c
ij , σij). This step is

equivalently visualized as extracting A and S from pi in the

response and ISPR maps respectively. To deal with parts

in diverse scales, we apply the multiple-scale scheme by

resizing the image into different scales and repeating the

pooling on the resized images. For each part filter, there are

several pairs of A and S extracted in this manner.
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Algorithm 1 Inference and Learning

1: Input: positive sample images {I+

1
, ..., I+

u }; negative

sample images {I−1 , ..., I−v }; threshold δ; maximum

buffer size MSIZE.

2: Initialize β and ω; D− = ∅.

3: repeat

4: D+ = ∅.

5: for t = 1 to u do

6: P = arg max
P

f(I+
t , P ).

7: D+ = D+ ∪ (1, I+
t , P ).

8: repeat

9: for t = 1 to v do

10: while ∃(−1, I−t , P ) /∈D−, f(I−t , P )≥δ do

11: D− = D− ∪ (−1, I−t , P ).
12: if |D−| > MSIZE then

13: break

14: D = D+ ∪ D−.

15: β = argmin
β

LD(β).

16: for t = 1 to v do

17: while ∃(−1, I−t , P ) ∈ D−, f(I−t , P ) < δ do

18: D− = D− \ (−1, I−t , P ).
19: until β converges

20: ω=argmax
ω

∑m

h=1

∑n

i=1

∑k

j=1
dj · φ(phi, p

c
ij , σij).

21: until ω and β converge

22: Output: β and ω.

The second step is feature concatenation. The first step

is repeated by enumerating all the part filters. As for each

part filter, there are A and S, we concatenate all these

sets of values into a feature vector, which is the mid-level

representation of the image as visualized in Figure 3.

The scene image representation is finally fed into SVM.

Assume the number of part filters is N . The step of feature

pooling is performed on R scales of one image. Then the

dimensionality of the image representation is 2NR.

4. Inference and Learning

Parameters in Eq. (5) include positions of part and root

filters P , root and part filters Fi, weights dij , positions of

centers pc
ij , and σij . Two parameters, i.e., β and ω, group

the above parameters except P into two sets. β and ω are the

model parameters to be learned. In this section, we describe

inference and learning of these unknown parameters. As

shown in Algorithm 3.3, inference of P and learning of β
are performed in an iterative manner. With fixed P and β,

we estimate ω.

Inference of P P groups the locations of root and part

filters in Eq. (5). To infer it, we follow Relabel Positive and

Mine Hard Negative Samples described in [5]. Obtaining

P+ of each positive sample image I+ is equivalent to

optimizing

P+ = arg max
P

f(I+, P ) (6)

over P using dynamic programming. On the other hand,

to obtain parameters P− of each negative sample image

I−, we set a threshold δ and extract any P− if f(I−, P−)
exceeds δ.

Learning β β groups parameters including filters Fi and

weights dij . Eq. (5) can be expressed as a dot product:

Fβ(I, P ) = β · ψ(I, P ), (7)

where β and ψ(I, P ) are vectors defined as

β =[F0, · · · , Fn, d11, · · · , d1k, · · · , dn1, · · · , dnk],
(8)

ψ(I, P ) =[H(I, p0), · · · , H(I, pn),

φ(p1, p
c
11, σ11), · · · , φ(p1, p

c
1k, σ1k), · · · ,

φ(pn, pc
n1, σn1), · · · , φ(pn, pc

nk, σnk)]. (9)

Since parameters P and ω are fixed in this step, vector

ψ(I, P ) does not change. Learning parameters β becomes

minimizing the objective function

LD(β) =
1

2
||β||2+C

m∑

h=1

max(0, 1 − yh · Fβ(Ih, Ph)),

D = {(y1, I1, P1), ..., (ym, Im, Pm)} (10)

over β using gradient descent. In Eq. (10), m is the number

of samples, yh is the binary label of image Ih, and constant

C controls the relative weight in regularization.

Learning ω ω groups parameters, spatial coordinates of

centers pc
ij , and σij as

ω = {ωij|i = 1, 2, ..., n, j = 1, 2, ..., k}, (11)

where ωij = [pc
ij , σij ]. Eq. (5) can be treated as function

Gω(I, P ) with respect to ω. The solution of ω is obtained

by maximizing the objective function in Eq. (5), which

reduces to

LE(ω) =

m∑

h=1

Gω(Ih, Ph) (12)

over ω, where E = {(I1, P1), · · · , (Im, Pm)}. Note that ω
reflects ISPRs in scene categories of positive samples. We

denote by m the number of positive samples, Ih the hth

positive sample image, and by Ph the position parameters

of the hth image. Not related to ω, all appearance terms
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described in Eq. (12) are safely ignored. With these

algebraic operations, we update optimization to

ω∗ = arg max
ω

m∑

h=1

n∑

i=1

k∑

j=1

dj · φ(phi, p
c
ij , σij). (13)

Since each pair of ωij is independent, the solution boils

down to estimation of parameters for each ωij by coordinate

ascent, which alternatively optimizes pc
ij and σij .

Alternating Algorithm The training framework is

sketched in Algorithm 3.3. Lines 4-7 implement relabel

positive samples. Lines 9-13 implement mine hard negative

samples. We exploit a fixed buffer D− to store negative

samples. Lines 14-15 are to compute parameter β. After

updating β, lines 16-18 remove negative samples from

buffer D− if their scores are smaller than the threshold δ.

Line 20 describes estimation of parameter ω.

5. Experiments

We evaluate our method on three public datasets, i.e.,

MIT-Indoor [23], 15-Scene [12] and UIUC 8-Sport dataset

[14]. Average classification accuracy and per-category

accuracies are reported.

We set the number of part filters to 8 for each scene

category. The number of ISPRs is set to 4 for each part

filter. Though flexibly setting the numbers of parts and

ISPRs can further enhance the classification accuracy, these

numbers are enough to achieve satisfactory performance in

our experiments. In addition, ISPRs are applied to 15 scales

for each image in different resolutions.

5.1. MIT-Indoor Dataset

MIT-Indoor dataset contains 15,620 indoor scene images

in 67 scene categories. Each category in this dataset

has about 80 training and 20 testing images. 67 part

models (8 part filters in each part model) are trained for

the construction of mid-level representation. It means that

the total number of part filters is 67×8=536. Following the

calculus of feature dimensionality described in Section 3.4,

we construct 2×536×15=16,080 dimension mid-level rep-

resentation for each image.

We compare single-feature approaches. Table 1 lists the

performance of previous single-feature approaches [23, 4,

8, 15, 27, 17, 20, 21, 25, 37, 38, 33] and ours, together

with the accuracies. Our method yields the accuracy of

50.10%, which outperforms other approaches except “mode

seeking” [4].

Though the accuracy achieved by “mode seeking” [4]

is higher than ours, our mid-level representation proves to

be an excellent complementarity to existing image repre-

sentation, such as IFV [22]. We use the implementation

Method Accuracy(%)

ROI [23] 26.05

MM-scene [38] 28.00

DPM [20] 30.40

CENTRIST [33] 36.90

Object Bank [15] 37.60

RBoW [21] 37.93

Patches [27] 38.10

Hybrid-Parts [37] 39.80

LPR [25] 44.84

BoP [8] 46.10

VC [17] 46.40

VQ [17] 47.60

Mode Seeking [4] 64.03

ISPR (our approach) 50.10

Table 1. Average classification accuracy of single-feature ap-

proaches on the MIT-indoor dataset.

Method Accuracy(%)

DPM + GIST-color + SP [20] 43.10

Hybrid-Parts + GIST-color + SP [37] 47.20

Patches + GIST + SP + DPM [27] 49.40

VC + VQ [17] 52.30

BoP + IFV [8] 63.10

Mode Seeking + IFV [4] 66.87

ISPR(our approach) + IFV 68.50

Table 2. Average classification accuracy of state-of-the-art ap-

proaches fusing multiple features and our mid-level representation

combining IFV on MIT-indoor dataset.

of IFV in toolkit [30]. By combining IFV and our mid-level

representation, we compare this scheme with other methods

[20, 4, 37, 27, 17, 8], which also apply multiple features

to scene classification. Table 2 shows the difference – our

solution achieves 68.50% accuracy.

5.2. 15-Scene Dataset

15-Scene dataset [12] contains 4485 images of 15 scene

categories. Since these images describe different indoor and

outdoor scenes, the variety is large enough to evaluate the

generality of our approach. Following the training/testing

split as [12], 10 random splits of data are taken. In each

split, 100 random images per category are used for training

and the rest are for testing. Totally there are 15×8=120 part

filters in this experiment. The dimensionality of the mid-

level representation is 2×120×15=3,600.

We compare our approach with state-of-the-arts in Ta-

ble 3. Our framework reaches classification accuracy of

85.08%. The combination of our mid-level representation

and IFV achieves accuracy as high as 91.06%. In addition,

Figure 4 shows per-category accuracies in the confusion

matrix.
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Method Accuracy(%)

GIST-color [19] 69.50

RBoW [21] 78.60 ± 0.70

Classemes [29] 80.60

Object Bank [15] 80.90

SP [12] 81.40

SPMSM [11] 82.30

LCSR [26] 82.67 ± 0.51

SP-pLSA [1] 83.70

CENTRIST [33] 83.88 ± 0.76

HIK [32] 84.12 ± 0.52

VC + VQ [17] 85.40

LMLF [2] 85.60 ± 0.20

LPR [25] 85.81

Hybrid-Parts + GIST-color + SP [37] 86.30

CENTRIST + LLC + Boosting [36] 87.80

RSP [7] 88.10

LScSPM [6] 89.75 ± 0.50

ISPR(our approach) 85.08 ± 0.01

IFV [30] 89.20 ± 0.09

ISPR(our approach) + IFV 91.06 ± 0.05

Table 3. Average classification accuracies on 15-Scene dataset.

Figure 4. Confusion matrix (in %) of our mid-level representation

combining IFV on 15-Scene dataset. Only the rounded rates not

lower than 1 % are shown.

5.3. UIUC 8-Sport dataset

UIUC Sport dataset [14] contains 8 sport categories. Fol-

lowing the training/testing split in [14], we take 10 random

splits of data. For each split, we select 70 training images

and 60 testing images in each category. There are 8×8=64

part filters learned in our system. The dimensionality of the

mid-level representation is 2×64×15=1,920.

Method Accuracy(%)

GIST-color [19] 70.70

MM-Scene [38] 71.70

Graphical Model [14] 73.40

Object Bank [15] 76.30

Object Attributes [16] 77.88

CENTRIST [33] 78.25 ± 1.27

RSP [7] 79.60

SP [12] 81.80

SPMSM [11] 83.00

Classemes [29] 84.20

HIK [32] 84.21 ± 0.99

LScSPM [6] 85.30

LPR [25] 86.25

Hybrid-Parts + GIST-color + SP [37] 87.20

LCSR [26] 87.23 ± 1.14

VC + VQ [17] 88.40

ISPR(our approach) 89.50 ± 0.59

IFV [30] 90.80 ± 0.12

ISPR(our approach) + IFV 92.08 ± 0.23

Table 4. Average classification accuracies on UIUC 8-Sport

dataset.

Figure 5. Confusion matrix (in %) of our mid-level representation

combining IFV on UIUC 8-Sport dataset. Only the rounded rates

not lower than 1 % are shown.

Table 4 shows we get the competitive accuracy 89.50%.

When combining our mid-level representation with IFV,

it further goes to 92.08%. Figure 5 shows per-category

performance in the form of confusion matrix.

6. Conclusion

We have presented a useful model that utilizes part

appearance and spatial configuration for improving scene

classification. ISPR proposed in this framework encourages
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spatial pooling to be performed more adaptively to resist

false response. Spatial information extracted from ISPR

also enhances the discriminative power of mid-level repre-

sentation in classification. We have evaluated our method

on several representative datasets. Jointly using low-level

features and our new model results in high classification

accuracy.
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