
1

Learning Improvement Heuristics for Solving
Routing Problems

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, Andrew Lim

Abstract—Recent studies in using deep learning to solve
routing problems focus on construction heuristics, the solutions
of which are still far from optimality. Improvement heuristics
have great potential to narrow this gap by iteratively refining a
solution. However, classic improvement heuristics are all guided
by hand-crafted rules which may limit their performance. In this
paper, we propose a deep reinforcement learning framework to
learn the improvement heuristics for routing problems. We design
a self-attention based deep architecture as the policy network
to guide the selection of next solution. We apply our method
to two important routing problems, i.e. travelling salesman
problem (TSP) and capacitated vehicle routing problem (CVRP).
Experiments show that our method outperforms state-of-the-
art deep learning based approaches. The learned policies are
more effective than the traditional hand-crafted ones, and can be
further enhanced by simple diversifying strategies. Moreover, the
policies generalize well to different problem sizes, initial solutions
and even real-world dataset.

I. INTRODUCTION

Routing problems, e.g., Travelling Salesman Problem (TSP)
and Capacitated Vehicle Routing Problem (CVRP), are a class
of combinatorial optimization problems with numerous real-
world applications. Although we solve them regularly in daily
life, achieving satisfactory results is still challenging, due
to their NP-hardness. Classical approaches to routing prob-
lems could be categorized into exact methods, approximation
methods, and heuristics [1], [2]. Exact methods are often
designed based on the branch-and-bound framework, which
have the theoretical guarantee of finding the optimal solution,
but practically limited to small instances for their exponential
complexity in the worst case [3], [4]. Approximation meth-
ods can find suboptimal solutions with probable worst-case
guarantees in polynomial time, but they may only exist for
specific problems and still be of poor approximation ratios
[5], [6]. In practice, heuristics are the most commonly applied
approaches for solving routing problems. Despite lacking
theoretical guarantee on the solution quality, heuristics often
can find desirable solutions within reasonable computational
time [7], [8], [9]. However, the development of heuristics
requires substantial trial-and-error, and the the performance in
terms of solution quality is highly dependent on the intuition
and experience of human experts [10].

Recently, there is a growing trend towards applying deep
learning (DL) to automatically discover heuristic algorithms
for solving routing problems. The underlying rationale comes
from two aspects: 1) a class of problem instances may share
similar structures, and differ only in data which follows a
distribution; 2) through supervised or reinforcement learning
(RL), DL models can discover the underlying patterns of

a given problem class, which could be used to generate
alternative algorithms that are better than the human designed
ones [11]. A popular family of methods consider the process
of solving routing problems as a sequence generation task,
and leverage the sequence-to-sequence (Seq2Seq) models [12],
[13]. Based on elaborately designed deep structures such as
recurrent neural network (RNN) [14], [15], [16] and attention
mechanism [17], [18], [19], these methods are able to learn
heuristics that can produce high-quality solutions.

Though showing promising results, as will be reviewed later,
most of the existing DL based methods focus on learning
construction heuristics, which create a complete solution in-
crementally by adding a node to a partial solution at each
step. Despite being comparatively fast, their results still have a
relatively large gap to the highly-optimized traditional solvers
in terms of objective values. To narrow this gap, they often
rely on additional procedures (e.g. sampling or beam search)
to improve solution quality, which have limited capabilities
since they rely on the same trained construction policy.

In this paper, rather than learning construction heuristics, we
present a framework to directly learn improvement heuristics,
which improve an initial solution by iteratively performing
neighborhood search based on certain local operator, towards
the direction of improving solution quality [20], [21], [22].
Traditional improvement heuristics are guided by hand-crafted
search policies, which require substantial domain knowledge
to design and may bring only limited improvements to the
solutions. In contrast, we exploit deep reinforcement learning
to automatically discover better improvement policies. Specif-
ically, we first present a RL formulation for the improvement
heuristics, where the policy guides the selection of next
solution. Then, we propose a novel architecture based on
self-attention to parameterize the policy, by which we can
incorporate a large variety of commonly used pairwise local
operators such as 2-opt and node swap. Finally, we apply the
RL framework to two representative routing problems, i.e. TSP
and CVRP, and design an actor-critic algorithm to train the
policy network.

Extensive results show that our method significantly outper-
forms existing DL based ones on TSP and CVRP. The learned
policies are indeed more effective than traditional hand-crafted
rules in guiding the improvement process, and can be fur-
ther enhanced by simple ensemble strategies. Moreover, the
policies generalize reasonably well to different problem sizes,
initial solutions and even real-world dataset. Note that similar
to previous works [17], [23], our aim is not to outperform
highly optimized and specialized traditional solvers, but to
present a framework that can automatically learn good search

ar
X

iv
:1

91
2.

05
78

4v
2

 [
cs

.A
I]

 1
0

M
ay

 2
02

0

2

heuristics without human guidance on different problem types,
which is of great practical value when facing real-world
problems and little domain knowledge is available.

II. RELATED WORK

The application of deep neural networks to solve routing
problems starts from the seminal work of Pointer Network
[14], which is a RNN based Seq2Seq model and trained in a
supervised way to solve TSP. On top of it, Bello et al. proposed
to use RL to train Pointer Networks in [15] without the need of
using optimal solutions to label the training samples, which
is costly to obtain for NP-hard problems. Nevertheless, the
RNN based encoder in Pointer Network inevitably embeds
the sequential information of input, which the output sequence
should be insensitive to. Therefore, Nazari et al. [16] proposed
to linearly map the information of each node to high dimen-
sional space with shared parameters, and solved CVRP and
its variant where customers emerge dynamically.

Inspired by the Transformer architecture [24], Kool et al.
[17] replaced the RNN based sequential structures in Seq2Seq
models with the attention modules in both the encoder and
decoder, and achieved better performances on both TSP and
CVRP. Similarly, the permutation invariant pooling in the
Transformer architecture was adopted in [18] to solve multiple
TSP. The attention based mechanism was also applied for
embedding in [19], but its performance relies on an additional
2-opt based local search.

Different from the Seq2Seq paradigm, Khalil et al. [10]
adopted deep Q-Network to train a node selection heuristic
that works within a greedy algorithm framework for solving
TSP, where the internal states are represented using a Graph
Neural Network (GNN) [25]. In [26], GNN is also used to
learn normalized embeddings, which is used to reconstruct
adjacent matrix of TSP graph, in supervised way.

All the above methods learn construction heuristics that only
output one solution, and are able to outperform traditional
non-learning based construction heuristics by a large margin.
However, the solution quality is still quite far from opti-
mality. Independently from our work, a NeuRewriter model
was proposed recently in [23], which also learns a type of
improvement heuristic. On CVRP, it outperforms [17], the best
method of learning construction heuristics. However, it needs
to train two policies to separately decide the rewritten region
and solution selection, and relies on complex node features and
customized local operations. In contrast, our method involves
only one policy network, and uses only raw features and
typical local operators that are commonly applied to routing
problems. Empirically, our method outperforms NeuRewriter
both in solution quality and generalization capability.

III. PRELIMINARIES

Formally, an instance of routing problems can be defined on
a graph with a set of n nodes V = {1, . . . , n}. Each v ∈ V
has features x(v). A solution s = (s1, . . . , sI) is a tour, i.e. a
sequence of nodes with length I , with each element si (i ∈
{1, ..., I}) being a node in V . A feasible tour should satisfy

Fig. 1: Three typical pairwise operators for routing problems
(left: node swap operator exchanges two locations; middle:

2-opt replaces two links by reversing a segment of locations;
right: relocation puts one location after another location)

problem-specific constraints, which can be defined as follows
for TSP and CVRP.
TSP. The tour visits each node exactly once, hence I = n.
CVRP. Another node vd called depot is added to V . The
original n nodes represent customers, each with demand δ(v).
We define δ(vd) = 0. The tour consists of multiple routes
(r1, . . . , rM), M > 1. Each route rm starts from vd, and visits
a subset of customers Rm in sequence. Each customer must
be visited exactly once but vd could be visited multiple times,
hence I > n+ 1. Additionally, the total customer demand on
each route can not surpass the given capacity D.

Let c(si) be the coordinate of the ith location in s. Follow-
ing previous research, we focus on minimizing the Euclidean
distance of the tour s, denoted as f(s).
Improvement Heuristics. Starting from an initial solution s0,
improvement heuristics iteratively replace the current solution
st at step t with a new solution st+1 picked from neighborhood
N (st), towards the direction of minimizing f . The most
important parts of improvement heuristics are: 1) the local op-
erator that defines a specific operation on st, and accordingly
yields N (st); 2) the policy used to pick st+1 from N (st);
3) the rules of solution replacement or acceptance; 4) the
termination conditions. Different combinations of the above
aspects lead to different schemes of improvement heuristics.
For example, hill climbing with the best-improvement strategy
picks from N (st) the solution s̄t+1 with the smallest f ,
replaces st with s̄t+1 only if f(s̄t+1) < f(st), and terminates
when no such solution exists.

For routing problems, various local operators have been
proposed [2]. In this paper, we focus on pairwise operators,
which transform a solution st to st+1 by performing operation
l on a pair of nodes (sit, s

j
t), i.e. st+1 = l(st, (s

i
t, s

j
t)). The

typical pairwise operators are 2-opt which reverse the node
sequence between sit and sjt , node swap which exchanges sit
and sjt , and etc. Particularly, Figure 1 illustrates node swap,
2-opt and relocation, which are typical pairwise operators for
solving routing problems. In general, pairwise operators are
fundamental and can be extended to more complex ones. For
example, 3-opt and 4-opt can be decomposed into multiple
2-opt operations [27].

Traditional improvement heuristics use hand-crafted so-
lution picking policies, which require substantial domain
knowledge to design and could be limited in performance.
For example, given the operators, the greedy improvement
heuristics (e.g. hill climbing) could quickly get stuck in the
local minimum. In this paper, we use deep RL to automatically
learn high-quality solution picking policies that work in a

3

simple scheme with the following parts: 1) pairwise operators;
2) the “always accept” rule, i.e. the solution picked by the
policy will always be accepted, to avoid being stuck in local
minimum; 3) a user-specified maximum step T to stop the
run. The best solution found in the process is returned after
termination. We will show in the experiments that even with
this simple scheme, our method can learn high-quality policies
that outperform existing deep learning based methods. On
the other hand, our method can be extended to guide more
complex schemes (e.g. simulated annealing, tabu search). In
addition, our method can potentially be applied to other com-
binatorial problems with sequential solution representations,
e.g. scheduling. We plan to tap these potentials in the future.

IV. THE METHOD

We first formulate the process of improvement heuristics as
a RL task, and then introduce a self-attention based policy net-
work, followed by the training algorithm. Finally, we provide
the details of applying our method to TSP and CVRP.

A. RL Formulation

In this paper, we assume the problem instances are sampled
from a distribution D, and use RL to learn the solution picking
policy for the improvement heuristic as we introduced above.
To this end, we formulate the underlying Markov Decision
Process (MDP) as follows:
State. The state st represents a solution to an instance at time
step t, i.e. a sequence of nodes. The initial state s0 is the initial
solution to be improved.
Action. Since we aim at selecting solution within the neigh-
borhood structured by pairwise local operators, the action at
is represented by a node pair (sit, s

j
t), meaning that this node

pair is selected from the current state st.
Transition. The next state st+1 is derived deterministically
from st by a pairwise local operator, i.e. st+1 = l(st, at).
Taking 2-opt as an example, if st = (..., sit, s

i+1
t ..., sj−1

t , sjt ...)
and at = (sit, s

j
t), then st+1 = (..., sjt , s

j−1
t ..., si+1

t , sit...).
Reward. Our ultimate goal is to improve the initial solution
as much as possible within the step limit T . To this end, we
design the reward function as follows:

rt = r(st, at, st+1) = f(s∗t)−min{f(s∗t), f(st+1)}, (1)

where s∗t is the best solution found till step t, i.e. the
incumbent, which is updated only if st+1 is better, i.e.
f(st+1) < f(s∗t). Initially, s∗0 = s0. By definition, the reward
is positive only when a better solution is found, otherwise
rt = 0. Hence, the cumulative reward (i.e. return) to maximize
is expressed as GT =

∑T−1
t=0 γtrt, where γ is the discount

factor. When γ = 1, GT = f(s0) − f(s∗T), which is exactly
the improvement over the initial solution s0.
Policy. Starting from s0, the stochastic policy π picks an action
at at each step t, which will lead to st+1, until reaching the
step limit T . This process is characterized by a probability
chain rule as follows:

P (sT |s0) =

T−1∏
t=0

π(at|st). (2)

Fig. 2: The architecture of policy network (left: node
embedding; right: node pair selection)

Remark. Note that in the above MDP, we do not define the
terminal states. This is because we intend to apply the trained
policy with any user-specified step limit T , in the sense of
an anytime algorithm. Hence, we consider the improvement
process as a continuing task, and set γ < 1. Also note that the
agent is allowed to experience states with poorer quality than
the incumbent. Though these “bad” transitions have the lowest
immediate reward (0), higher improvement could be gained in
the long term which follows the principle of RL.

B. Policy Network

To learn the stochastic policy π in Equation (2), we pa-
rameterize it as a neural network πθ, where θ refers to the
trainable parameters. As visualized in Figure 2, the network
comprises two parts, which learn node embedding and node
pair selection, respectively. The former part elegantly embeds
the nodes in sequence. The latter part adopts the compatibility
computation in self-attention to produce a probability matrix of
selecting each node pair. Thereby, each element in the matrix
refers to the probability of selecting the corresponding node
pair for local operation.
Node Embedding. Given the current state1 s = (s1, . . . , sI),
the features x(si) of each node si are first projected to
embeddings hi by a shared linear transformation lp0, with
output dimension dm = 128. But linear mapping alone cannot
capture the position of each node in s, which is important since
s is a sequence. Hence we add dm-dimensional sinusoidal
positional encodings pe(i, ·) to node embeddings, refining
them as hi = hi+pe(i, ·). The sinusoidal positional encodings
are a group of vectors defined by sine and cosine functions.
In particular, pe(i, ·) is defined as below:

pe(i, d) = sin(i/10000
bd/2c
dh), if dmod 2 = 0 (3)

pe(i, d) = cos(i/10000
bd/2c
dh), if dmod 2 = 1 (4)

1Step index t is omitted here for better readability.

4

where i is the location of node si in sequence and d is the
dimension. b·c and mod means floor and modulo function.
We also tried relative positional encoding (with embeddings
of adjacent nodes added), but it performs worse than the
sinusoidal one. To advance the node embeddings hsi , they are
further processed by self-attention layer and fully-connected
layer, each of which followed by residual connection and batch
normalization. This is repeated N times for better feature
extraction of the sequence, though the dimension of node
embeddings keep dh when output from each layer.

To derive better feature representations for policy learning,
the above position-aware node embeddings are successively
processed by N (N = 3) blocks with the same structure but
different parameters. In each of them, we feed the embeedings
to a self-attention layer, followed by a fully connected layer.
After each of the two layers, skip connection [28] is applied,
followed by batch normalization [29].

Self-attention layer. Self-attention transforms node embed-
dings through message passing and aggregation among nodes
[25], [30]. We use single-head self-attention here, since the
multi-head version does not lead to significant improvement
in our experiments. Given the input matrix Ha = [ha1 , . . . , h

a
I]

with columns being node embeddings, the output of self-
attention is computed as:

H̃a = Va · softmaxc(
KT
a Qa√
dk

), (5)

where Qa = W qHa, Ka = W kHa, and Va = W vHa

are the query, key, and value matrix of Ha, respectively.
W q ∈ Rdq×dm , W k ∈ Rdk×dm and W v ∈ Rdv×dm are all
trainable parameters. Normally, dq = dk, and dv determines
the output dimension. In our model, dq = dk = dv = 128.
The softmaxc(·) is a column-wise softmax function so that the
output of Equation (5) is the transformed node embeddings,
i.e. H̃a = [h̃a1 , . . . , h̃

a
I].

Fully connected layer. This layer transforms each node
embedding independently with shared parameters. Here we
only involve one 512-dimensional hidden sublayer with ReLU
activation function. Input and output dimensions retain 128.
Node Pair Selection. Given node embeddings oi generated by
the previous part, we aggregate them by max-pooling to get
the graph embedding, i.e. og = max({o1 . . . , oI}). We then
refine the node embeddings by converting oi into hci following
hci = lp1(oi) + lp2(og), where both lp1 and lp2 are linear
projections that keep embedding size as 128. In doing so, the
global graph information of an instance is effectively fused
into its nodes. Then, we further process the node embeddings
through a compatibility layer and a masked softmax layer to
get the probability of selecting node pairs.

Compatibility layer. Inspired by [24], in which the compat-
ibility effectively represents the relations between words in
sentences, we adopt it to predict the node pair selection in
a solution. While various compatibility functions have been
proposed [31], [32], here we use a multiplicative version for
better computational efficiency [24]. Given node embeddings
Hc = [hc1, . . . , h

c
I], it is computed as the dot product of the

query and key matrices, i.e. Y = KT
c Qc, where Kc and Qc

are computed in a similar way to Ka and Qa in Equation (5),

and the compatibility matrix Y ∈ RI×I reflects the scores of
picking each node pair.

Masked softmax layer. With certain preprocessing, softmax
is applied to the compatibility matrix such that:

Ỹij =

{
C · tanh(Yij), if i 6= j,
−∞, if i = j,

(6)

P = softmax(Ỹ), (7)

where in Equation (6), we limit the values in the compatibility
matrix within [−C,C] by a tanh function; following [15], we
set C = 10 to control the entropy of Ỹij ; we also mask the
diagonal elements, since picking pairs of same node is not
meaningful. Therefore, the element pij in P represents the
probability of selecting (si, sj) for local operation. Rather than
greedily picking the node pair with the maximum probability,
we sample the probability matrix P for pair selection in both
training and testing.

C. Training Algorithm

We adopt the actor-critic algorithm with Adam optimizer
to train πθ, which is a kind of policy gradient method, based
on the REINFORCE [33] with extra trainable critic network
updated by bootstrapping. The actor is the policy network
we designed above. The critic vφ is used to estimate the
cumulative reward at each state. Our design of vφ is similar
to that of actor, except that: 1) mean-pooling is used to obtain
graph embedding; 2) the fused node embeddings are processed
by a fully connected layer similar to the one used in policy
network, but with single-value output. We use n-step return
for efficient reward propagation and bias-variance trade-off
[34]. Additionally, since we do not define terminal state, it
is necessary to bootstrap the value from the time limit state,
such that the policy for the continuing task can be learned
correctly [35]. The complete algorithm is given in Algorithm
1, in which lines 5 to 17 process a batch of instances in parallel
and accumulate their gradients to update the networks.

D. Deployment

In this paper, we solve two representative routing problems,
i.e. TSP and CVRP. Keeping most of our approach the same,
we specialize it for each problem as follows:
TSP. Given a solution, the node feature is a 2-dimensional
vector that contains the node coordinate, i.e. x(si) = c(si).
Other parts keep the same as introduced above. To avoid
solution cycling, the node pair selected at the previous step
is masked to forbid the local operation to be reversed.
CVRP. Unlike TSP, solutions to CVRP have varying lengths
caused by the times of visiting depot, even with the same
number of customers. This makes it hard for batch training,
and requires additional operations in each step to determine
the number and positions of depots in the next solution. To
resolve this issue, we add multiple dummy depots to the end
of initial solutions, such that: 1) we can process a batch
of instances using solutions with the same length; 2) the
number and positions of depot in a solution (sequence) can
be learned automatically, e.g. st = (vd, s

1, s2, vd, . . .) can be

5

ALGORITHM 1: n-step actor-critic (continuing task)
Input: actor network πθ with trainable parameters θ; critic

network vφ with trainable parameters φ; number of
epochs E , batches B ; step limit T .

1 for e = 1, 2, · · · , E do
2 generate M problem instances randomly;
3 for b = 1, 2, · · · , B do
4 retrieve batch Mb; t← 0;
5 while t < T do
6 reset gradients: dθ ← 0; dφ← 0;
7 ts = t; get state st;
8 while t− ts < n and t 6= T do
9 sample at based on πθ(at|st);

10 receive reward rt and next state st+1;
11 t← t+ 1;
12 end
13 R = vφ(st);
14 for i ∈ {t− 1, . . . , ts} do
15 R← ri + γR; δ ← R− vφ(si);
16 dθ ← dθ +

∑
Mb

δ∇logπθ(ai|si);
17 dφ← dφ+

∑
Mb

δ∇vφ(si);
18 end
19 update θ and φ by dθ

|Mb|(t−ts)
and dφ

|Mb|(t−ts)
20 end
21 end
22 end

turned into st+1 = (vd, vd, s
2, s1, . . .) by 2-opt, with st+1

being equivalent to (vd, s
2, s1 . . .). To better reflect the local

structure, we define the node feature as a 7-dimensional vector
x(si) = (c(si−1), c(si), c(si+1), δ(si)), i.e. the coordinates of
a node and its immediate left and right neighbors in s, along
with its demand.2 Lastly, we mask the node pairs in the matrix
P that result in infeasible solutions, as well as the one selected
at the previous step.

V. EXPERIMENTAL RESULTS

The instances used in our experiments are Euclidean TSP
and CVRP with 20, 50 and 100 nodes, respectively. We call
them TSP20, CVRP20, etc. for convenience. We generate the
instances following [17], [23], where the coordinates of each
node are randomly sampled in the unit square [0, 1] × [0, 1],
with a uniform distribution. For CVRP, the demand of each
customer is uniformly sampled from {1, . . . , 9}; the capacity
D is 30, 40 and 50 for CVRP20, 50 and 100, respectively.
More details are as follows.
TSP. In each training epoch for TSP, 10,240 random instances
are generated on the fly and split into 10 batches. Training
starts from random initial solutions, with mean tour distance
of 8.48, 19.54 and 37.41 for TSP20, 50 and 100. As men-
tioned, we model improvement heuristics as continuing tasks.
However, we only train the agent for a small step limit T=200,
since the rewards in the early stages are more dense. We will
show later that the trained policies generalize well to unseen
initial solutions and much larger T in testing. We set γ to
0.99, and n for n-step return to 4.
CVRP. Due to limited GPU memory, we only generate 3,840
instances in each epoch, also split into 10 batches. The initial

2We define the left neighbor of s1 as sI , and the right neighbor of sI as
s1, respectively.

solutions are created using the nearest insertion heuristic
adopted in [23], with mean tour distance of 7.74, 13.47 and
20.36 for CVRP20, 50 and 100, which are far from optimality.
We add dummy depots to the initial solutions, elongating them
to the same length I∗=40, 100, and 125 for CVRP20, 50 and
100.3 Empirically, for CVRP20, we set T=360 and n=10; for
CVRP50 and CVRP100, we set T=480 and n=12. For all
sizes, we set γ to 0.996.

We train 200 epochs for all problems, with initial learning
rate 10−4 and decaying 0.99 per epoch for convergence.
On a single Tesla V100 GPU, each epoch takes on average
8:20m (8 minutes and 20 seconds), 16:30m and 31:00m for
TSP20, TSP50 and TSP100; 20:17m, 56:25m and 58:53m
for CVRP20, CVRP50 and CVRP100. We have tried three
common pairwise operators including 2-opt, node swap and
relocation, with 2-opt producing the best results. Unless stated
otherwise, we only apply 2-opt, and use the same settings of
initial solutions and additional dummy depots in testing as
those in training. Our code in Python and pre-trained models
will be released soon.

A. Comparison with State-of-the-art Methods

We compare our method with a variety of baselines, in-
cluding: 1) Concorde [36], an efficient exact solver special-
ized for TSP; 2) LKH3 [21], a well-known heuristic solver
that achieves state-of-the-art performance on various routing
problems; 3) OR-Tools, a mature and widely used solver for
routing problems based on metaheuristics; 4) state-of-the-art
DL based methods on TSP and CVRP, i.e. the attention model
(AM) [17] and NeuRewriter [23], which learn construction and
improvement heuristics, respectively.4 We only evaluate the
sampling version of AM, which samples N solutions using the
learned construction policy and is much better than the greedy
version. For fair comparison, we test AM with its default sam-
pling size N=1,280, and also N=5,000 which is the maximum
step of our method. For NeuRewriter, since pre-trained model
is not provided and training is prohibitively time-consuming
on our machine, we directly report the objective values in
the original paper. For each problem size, all methods (except
NeuRewriter) are tested on the same 10,000 random instances.
For both our method and AM, we divide the instances into 10
batches and test each in parallel. We run Concorde, OR-Tools
and LKH3 using the configurations in [17] on a Xeon W-2133
CPU@3.60 GHz. Single thread is used except LKH3, which is
relatively slow hence we solve 16 instances in parallel. Since
run time comparison is hard due to various factors (e.g. Python
vs C++, GPU vs CPU), we follow [17] and report the total
time for solving the 10,000 instances.

All results are summarized in Table I, where ours are dis-
played with step limit T=1,000, 3,000, 5,000. We can observe
that when T=1,000, our method significantly outperforms OR-
Tools for both TSP and CVRP with all sizes. As T increases,

3The number of depots in a CVRP solution cannot be greater than that
of customers n, hence I∗ = 2n is ideal. But we cannot use I∗=200 for
CVRP100 due to GPU memory constraint.

4We do not compare with other related methods such as [10], [15], [16],
[19], [26] since they have already been outperformed by AM on the same
benchmark used here [17].

6

TABLE I: Comparison with state-of-the-art methods

TSP20 TSP50 TSP100 CVRP20 CVRP50 CVRP100
Methods Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

Concorde 3.83 0.00% 5m 5.69 0.00% 13m 7.76 0.00% 1h - - - - - - - - -
LKH3 3.83 0.00% 42s 5.69 0.00% 6m 7.76 0.00% 25m 6.11 0.00% 1h 10.38 0.00% 5h 15.64 0.00% 9h

OR-Tools 3.86 0.94% 1m 5.85 2.87% 5m 8.06 3.86% 23m 6.46 5.68% 2m 11.27 8.61% 13m 17.12 9.54% 46m
AM (N=1,280) 3.83 0.06% 14m 5.72 0.48% 47m 7.94 2.32% 1.5h 6.26 2.56% 22m 10.61 2.20% 53m 16.17 3.34% 2h
AM (N=5,000) 3.83 0.04% 47m 5.72 0.47% 2h 7.93 2.18% 5.5h 6.25 2.31% 1.5h 10.59 2.01% 3.5h 16.12 3.03% 8h

NeuRewriter - - - - - - - - - 6.15 - - 10.51 - - 16.10 - -
Ours (T=1,000) 3.83 0.03% 12m 5.74 0.83% 16m 8.01 3.24% 25m 6.16 0.90% 23m 10.71 3.16% 48m 16.30 4.16% 1h
Ours (T=3,000) 3.83 0.00% 39m 5.71 0.34% 45m 7.91 1.85% 1.5h 6.14 0.61% 1h 10.55 1.65% 2h 16.11 2.99% 3h
Ours (T=5,000) 3.83 0.00% 1h 5.70 0.20% 1.5h 7.87 1.42% 2h 6.12 0.39% 2h 10.45 0.70% 4h 16.03 2.47% 5h

1 The gap is computed based on the best solutions here given by Concorde and LKH3.
2 Bold results are those outperform the best deep learning based baseline.

our results consistently narrows the optimality gaps. AM also
benefits from larger N. However, the improvement is not
much compared with our method. When T=3,000, our method
consistently outperforms AM with N=5,000 on all instance
sets; for TSP, our method achieves almost the same result
as Concorde on TSP20; for CVRP, our results are on par
with NeuRewriter. Though the performance is already good,
with additional 2,000 steps (i.e. T=5,000), our method still
can further reduce the optimality gaps, and outperforms both
baseline deep models with state-of-the-art results on TSP and
CVRP. Note that our results still can be improved by increasing
T , e.g. results of T=8,000 are 7.80 (0.48%) and 15.99 (2.24%)
for TSP100 and CVRP100. The above observations justify
the continuing design of our RL formulation. That is, despite
training with small T , the policies perform fairly well with
much larger step limits in testing. In terms of efficiency,
run time of our method is roughly of the same order of
magnitude as AM. This is well accepted considering the
superiority of our method in solution quality. Moreover, with
the increase of problem size, our run time rises much slower
than other methods. For example, AM (N=5,000) is faster
than ours (T=5,000) on TSP20 and CVRP20, but is slower
on TSP100 and CVRP100. OR-Tools is also faster than our
method (T=1,000) on instances with 20 nodes, but on TSP100
and CVRP100, our method delivers far better solutions than
OR-Tools with similar run times.

B. Comparison with Conventional Policies

The major difference between our method and the conven-
tional improvement heuristics is that the policies of picking
next solution is learned, instead of hand-crafted. To show
that the automatically learned policies are indeed better than
the hand-crafted rules, we compare our method with two
widely used rules, first-improvement and best-improvement,
which select the first and best cost-reducing solution in the
neighborhood, respectively [37]. However, direct comparison
is not fair because when reaching local minimum, they cannot
pick any solution since no improvement exists. Hence we
augment them with a simple but commonly used strategy
restart, to randomly pick a solution from the whole space
when no improvement in the neighborhood can be found.
Then we apply them to the same improvement scheme as our
method, i.e. 2-opt with the “always accept” rule and step limit

TABLE II: Comparison with conventional policies

TSP CVRP

Methods 20 50 100 20 50 100

Fi
rs

t T=1,000 3.84 5.81 8.17 6.18 11.08 17.14
T=3,000 3.84 5.75 8.04 6.16 10.93 16.93
T=5,000 3.84 5.73 8.00 6.15 10.87 16.85

B
es

t T=1,000 3.84 5.75 8.05 6.15 10.79 16.72
T=3,000 3.84 5.71 7.99 6.14 10.70 16.61
T=5,000 3.84 5.70 7.94 6.13 10.67 16.55

O
ur

s T=1,000 3.83 5.74 8.01 6.16 10.71 16.30
T=3,000 3.83 5.71 7.91 6.14 10.55 16.11
T=5,000 3.83 5.70 7.87 6.12 10.45 16.03

Bold means our method outperforms the best rule (T=5000).

T . We run all policies on the same test sets as those in Section
V-A, using the same method to generate initial solutions as in
training. The results are summarized in Table II. For the same
T , our method consistently outperforms conventional rules in
all instance sets, which justifies its superiority. The advantage
of learned policies are more prominent on larger problems, for
example our results with T=3,000 already outperforms both
rules with T=5,000 on TSP100, CVRP50 and CVRP100. We
can conclude that the learned policies can offer better guid-
ance than conventional ones, especially when facing harder
problems. Run time here is not directly comparable, since
the conventional rules are implemented on CPU. However,
our policy could be more efficient since the neural network
directly picks the next solution, without the need of traversing
the neighborhood as in the conventional ones.

C. Enhancement by Diversifying

The above results are all obtained by running the final
learned policy after training only once for each instance.
However, this could be less effective in terms of exploring
the solution space, e.g. it might suffer from local minimum
for some instances during searching. Here we show that, by
coupling with two simple strategies to diversify the search
process, the solution quality of our method could be further
improved. The first strategy is multi-run, meaning that we
directly run the final policy (i.e. the policy obtained after
the last training epoch) multiple times. Since we sample the
probability matrix P for pair selection during training and set

7

(a) Generalization to initial solutions (b) Generalization on TSP (c) Generalization on CVRP

Fig. 3: Generalization analysis

TABLE III: Enhanced results by diversifying

TSP CVRP

Methods 20 50 100 20 50 100

M
P(

4)
1 T=1,000 3.831 5.707 7.897 6.144 10.452 16.110

T=3,000 3.831 5.701 7.839 6.134 10.426 16.055
T=5,000 3.831 5.700 7.822 6.123 10.416 16.018

M
P(

8) T=1,000 3.831 5.703 7.875 6.134 10.436 16.036
T=3,000 3.831 5.700 7.824 6.127 10.404 16.000
T=5,000 3.831 5.699 7.811 6.121 10.395 15.967

M
R

(4
)2 T=1,000 3.832 5.707 7.895 6.144 10.482 16.110

T=3,000 3.831 5.702 7.836 6.132 10.417 15.979
T=5,000 3.831 5.700 7.821 6.122 10.399 15.923

M
R

(8
) T=1,000 3.831 5.703 7.866 6.135 10.445 16.057

T=3,000 3.831 5.700 7.820 6.125 10.393 15.922
T=5,000 3.831 5.699 7.807 6.117 10.384 15.880

1 MP(#): multi-policy strategy with the last # policies.
2 MR(#): multi-run strategy that runs the final policy # times.

certain value C in Equation (6) to control the entropy, we avoid
the extremely dominant action choice in each step to some
extent. Therefore, we could expect to obtain different high-
quality solutions by running the same policy multiple times,
and retrieve the best one as the final solution. The second
strategy is multi-policy, for which we run polices of the last
several training epochs instead of only the final one on an
instance, each generating one solution. Intuitively, multi-policy
could provide more diversity than multi-run, possibly reaching
different regions of the solution space.

Table III shows the performance of the above two strategies.
Clearly, the results for all problems are improved with the two
strategies, compared to our results in Table II. We can see that
with either strategy, the solution is consistently improved as
more runs or policies are used, showing the benefit of diver-
sifying. However, with the same number of runs or policies,
multi-run outperforms multi-policy for all problems. This is
probably because the policies only have small differences since
they are in the last phase of training, and are not trained to be
diverse. Notably, results of multi-run with 8 solutions are very
close to the optimal solutions for TSP50 and CVRP50, with
the gaps of 0.11% and 0.09%. It also narrows the optimality
gaps for TSP100 and CVRP100 to 0.56% and 1.52%. We also

test multi-run on CVRP100 by generating 16 and 32 solutions,
and the objective values further decrease to 15.840 and 15.809
with the optimality gap of 1.24% and 1.08%.

The above analysis shows that both strategies are able to
substantially improve the solution quality. Note that these
strategies can be effectively parallelized, therefore little extra
time is needed as long as the device has enough memory.
Despite the inferior improvement in Table III, we would like
to note that co-training multiple policies to collectively explore
solution space is promising for promoting solution quality and
efficiency, e.g. training multi-head self-attention and keeping
each head searching a different solution space. We plan to
investigate this in the future.

D. Generalization Analysis

Here we show that the policies learned by our method
can generalize to situations unseen in training. All policies
here are the ones used in Section V-A and V-B, without any
further tuning. First, we evaluate the sensitivity to different
initial solutions on the same problem size. We run the policies
trained for TSP100 and CVRP100 on the same test sets used
previously, with two types of initial solutions, i.e. generated
randomly or by nearest insertion. We plot the average objective
values of incumbents against time step T in Figure 3(a). We
can observe that though the policy for TSP are trained with
random initial solutions, it generalizes well to those created by
nearest insertion, achieving almost the same quality (7.874 vs
7.871). Similarly, the policy for CVRP, which is trained with
initial solutions generated by nearest insertion, can achieve
comparable results when beginning from random ones (16.029
vs 16.025). These observations indicate that, for the same
problem size, the learned policies generalize well to unseen
initial solutions with different qualities.

Furthermore, we evaluate the generalization performance of
our method on different problem sizes. Results on TSP are
shown in Figure 3(b). We can see that when using random
initial solutions, though the policies are able to improve (e.g.
from 37.41 to 15.30 when TSP50 policy is used on TSP100),
the final results are not very good. This is probably because
the quality of random solutions are poor, which makes it hard
for such cross distribution generalization. Hence we perform
the same tests using initial solutions generated by nearest

8

(a) Original solution (b) 1st 2-opt (c) 2nd 2-opt (d) 3rd 2-opt (e) 4th 2-opt

(f) Original solution (g) 1st 2-opt (h) 2nd 2-opt (i) 3rd 2-opt (j) 4th 2-opt

Fig. 4: Visualization of learned policies on TSP and CVRP

insertion, and results in Figure 3(b) show that this leads to
relatively good generalization. For the harder problem CVRP,
results are shown in Figure 3(c), based on nearest insertion as
in training. We can observe that our policies generalize well to
CVRP with different sizes. The policies trained on CVRP50
and CVRP100 outperform OR-Tools on all sizes. In particular,
all our results are better than those reported in [23] (e.g.
18.62 vs 18.86 and 16.53 vs 17.33 when CVRP20 and CVRP
50 policy are used on CVRP100, respectively), indicating a
stronger generalization ability.

E. Visualization
Here we give a simple demonstration about what the learned

policies based on 2-opt have done along the search process.
In Figure 4, we visualize 5 successive states (solutions) with
4 actions (2-opt operations) for a TSP100 instance and a
CVRP100 instance in Figure 4(a)-(e) and Figure 4(f)-(j),
respectively. The red links in each state are two newly added
links after two links in the previous state are deleted. From
Figure 4(a)-(e), it can be easily seen that the 2-opt operations
effectively decrease the objective value of the TSP100 instance
from 10.93 to 10.70, with some cross links deleted. In addition,
it verifies that multiple 2-opt could achieve complex operations
as mentioned in Section III. For example, the 2nd and 3rd
2-opt together complete a 3-opt operation. For the CVRP100
insatnce in Figure 4(f)-(j), we can also observe that the learned
policy constantly decreases the objective value. Different from
the TSP100 instance, the learned policy on CVRP100 involves
the inter-route and intra-route operations. For example, the
1st and 2nd actions are inter-route operations, generating new
routes by destroying some previous routes; the 3rd and 4th
actions are intra-route operations, deleting cross links in a
single route as in TSP.

The visualization shows the potential of our method in
learning policies that can execute various effective operations

based on the 2-opt operator. We would like to note that, it
is promising to represent multiple operators, and thus learn
policies that simultaneously specify the local operation and
next solution. Our policy network in this paper can be easily
extended to empower multiple operators, for example using
structures similar to the multi-head self-attention [24]. A
more advanced approach is to use hierarchical RL [38] to
decompose the selection of operator and next solution, and
make decisions for them alternatively.

F. Test on Real-World Dataset

We further verify that our learned policies, though trained
using synthetic data, performs reasonably well on instances
from public benchmarks TSPlib5[39] and CVRPlib6 [40],
which contains real-world problem instances. Note that these
instances may follow distributions that are completely different
those we used in training, in aspects such as node location
patterns, customer demands, vehicle capacities, etc.

For TSPlib, we directly run our policy trained on TSP100
with T=3000, on the 36 symmetric and Euclidean instances
up to 300 nodes, and compare with the AM policy also
trained on TSP100. As shown in Table IV, our TSP100 policy
performs much better than that of AM with 1,280 and 5,000
samples, indicating a stronger generalization ability on these
instances. Besides the much smaller average optimality gap,
our policy outperforms AM (N=5,000) on 75% (27 out of 36)
of these TSPlib instances. On the other hand, all learning based
methods are inferior to OR-Tools. This is reasonable because
in general, achieving good out-of-distribution generalization
is very hard for machine learning models [41]. This could
potentially be alleviated by adapting the trained policy to
the (different) testing distribution, via transfer or few-shot

5http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
6http://vrp.galgos.inf.puc-rio.br/index.php/en/

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
http://vrp.galgos.inf.puc-rio.br/index.php/en/

9

TABLE IV: Generalization on TSPlib

Instance Opt. OR-Tools AM AM Ours
(N=1,280) (N=5,000) (T=3,000)

eil51 426 436 436 435 438
berlin52 7,542 7,945 7,717 7,668 8,020
st70 675 683 691 690 706
eil76 538 561 564 563 575
pr76 108,159 111,104 111,605 111,250 109,668
rat99 1,211 1,232 1,483 1,394 1,419
KroA100 21,282 21,448 44,385 38,200 25,196
KroB100 22,141 23,006 35,921 35,511 26,563
KroC100 20,749 21,583 31,290 30,642 25,343
KroD100 21,294 21,636 34,775 32,211 24,771
KroE100 22,068 22,598 28,596 27,164 26,903
rd100 7,910 8,189 8,169 8,152 7,915
eil101 629 664 668 667 658
lin105 14,379 14,824 53,308 51,325 18,194
pr107 44,303 45,072 208,531 205,519 53,056
pr124 59,030 62,519 183,858 167,494 66,010
bier127 118,282 122,733 210,394 207,600 142,707
ch130 6,110 6,284 6,329 6,316 7,120
pr136 96,772 102,213 103,470 102,877 105,618
pr144 58,537 59,286 225,172 183,583 71,006
ch150 6,528 6,729 6,902 6,877 7,916
KroA150 26,524 27,592 44,854 42,335 31,244
KroB150 26,130 27,572 45,374 43,114 31,407
pr152 73,682 75,834 106,180 103,110 85,616
u159 42,080 45,778 124,951 115,372 51,327
rat195 2,323 2,389 3,798 3,661 2,913
d198 15,780 15,963 78,217 68,104 17,962
KroA200 29,368 29,741 62,013 58,643 35,958
KroB200 29,437 30,516 54,570 50,867 36,412
ts225 126,643 128,564 141,951 141,628 158,748
tsp225 3,916 4,046 25,887 24,816 4,701
pr226 80,369 82,968 105,724 101,992 97,348
gil262 2,378 2,519 2,695 2,693 2,963
pr264 49,135 51,954 361,160 338,506 65,946
a280 2,579 2,713 13,087 11,810 2,989
pr299 48,191 49,447 513,809 513,673 59,786

Avg. Gap 0 3.46% 146.12% 133.54% 17.12%

Bold means the best among three learning based methods.

learning, but is beyond the scope of this paper. Nevertheless,
our method surprisingly outperforms OR-Tools on some in-
stances, including pr76 (1.39%), rd100 (0.06%), and cil101
(4.61%). Moreover, the average gap of instances with 0-100,
101-200, and 201-300 nodes are 11.50%, 18.42%, and 23.61%,
respectively, showing that the quality of our solution does not
degrade very fast with the increase of problem size. Given the
policy is only trained on random instances with 100 nodes,
it generalizes reasonably well to large problems (up to 2
times larger than the training instances) and very different
distributions.

For CVRPlib, we test the policy trained on CVRP100 with
T=5000 on 22 instances with sizes between 101 to 200, each
of which is generated following different depot positioning
(Central, Eccentric, Random), customer positioning (Random,
Clustered) and demand distribution (small or large variance).
The results in Table V show that our policy significantly
outperforms the AM method. Our policy achieves an average
optimality gap that is more than two times smaller than AM
(N=5,000), and performs better on a majority of (13 out of
22) these CVRPlib instances. Similar to TSPlib, the quality
degradation of our policy on CVRPlib is not fast, since the
average gaps on the instances with 101-150 and 151-200 nodes
are 12.36% and 16.27%, respectively.

TABLE V: Generalization on CVRPlib

Instance Opt. OR-Tools AM AM Ours
(N=1280) (N=5000) (T=5,000)

X-n101-k25 27,591 29,405 39,437 37,702 29,716
X-n106-k14 26,362 27,343 28,320 28,473 27,642
X-n110-k13 14,971 16,149 15,627 15,443 15,927
X-n115-k10 12,747 13,320 13,917 13,745 14,445
X-n120-k6 13,332 14,242 14,056 13,937 15,486
X-n125-k30 55,539 58,665 75,681 75,067 60,423
X-n129-k18 28,940 31,361 30,399 30,176 32,126
X-n134-k13 10,916 13,275 13,795 13,619 12,669
X-n139-k10 13,590 15,223 14,293 14,215 15,627
X-n143-k7 15,700 17,470 17,414 17,397 18,872
X-n148-k46 43,448 46,836 79,611 79,514 50,563
X-n153-k22 21,220 22,919 38,423 37,938 26,088
X-n157-k13 16,876 17,309 21,702 21,330 19,771
X-n162-k11 14,138 15,030 15,108 15,085 16,847
X-n167-k10 20,557 22,477 22,365 22,285 24,365
X-n172-k51 45,607 50,505 86,186 87,809 51,108
X-n176-k26 47,812 52,111 58,107 58,178 57,131
X-n181-k23 25,569 26,321 27,828 27,520 27,173
X-n186-k15 24,145 26,017 25,917 25,757 28,422
X-n190-k8 16,980 18,088 37,820 36,383 20,145
X-n195-k51 44,225 50,311 79,594 79,276 51,763
X-n200-k36 58,578 61,009 78,679 76,477 64,200

Avg. Gap 0 8.06% 32.97% 31.62% 14.27%

Bold means the best among three learning based methods.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a deep reinforcement learning frame-
work to automatically learn improvement heuristics for routing
problems. We design a novel neural architecture based on
self-attention to enable learning with pairwise local opera-
tors. Empirically, our method outperforms state-of-the-art deep
models on both TSP and CVRP, and further narrows the gap
to highly optimized solvers. The learned policies generalize
well to different initial solutions and problem sizes, and give
reasonably good solutions on real-world datasets.

We would like to note that our method has great potentials
in learning a variety of more complex improvement heuristics.
First, we could extend the current framework to support multi-
ple operators in the sense that the policy learns to pick both the
operator and next solution. This could be achieved by using
techniques such as multi-head self-attention or hierarchical
RL. Second, despite the simple search scheme used in this
paper, our framework can be applied to learn better solution
picking policies for more advanced search schemes such as
simulated annealing, tabu search, large neighborhood search,
and LKH. Finally, our method is applicable to other important
types of combinatorial optimization problems, e.g. scheduling.
We plan to investigate these possibilities in the future.

REFERENCES

[1] G. Gutin and A. P. Punnen, The traveling salesman problem and its
variations, vol. 12. Springer Science & Business Media, 2006.

[2] P. Toth and D. Vigo, Vehicle routing: problems, methods, and applica-
tions. SIAM, 2014.

[3] G. Laporte and Y. Nobert, “A branch and bound algorithm for the
capacitated vehicle routing problem,” Operations-Research-Spektrum,
vol. 5, no. 2, pp. 77–85, 1983.

[4] J. Lysgaard, A. N. Letchford, and R. W. Eglese, “A new branch-and-cut
algorithm for the capacitated vehicle routing problem,” Mathematical
Programming, vol. 100, no. 2, pp. 423–445, 2004.

10

[5] N. Bansal, A. Blum, S. Chawla, and A. Meyerson, “Approximation
algorithms for deadline-tsp and vehicle routing with time-windows,” in
Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing, pp. 166–174, 2004.

[6] A. Das and C. Mathieu, “A quasi-polynomial time approximation
scheme for euclidean capacitated vehicle routing,” in Proceedings of
the twenty-first annual ACM-SIAM symposium on Discrete Algorithms,
pp. 390–403, SIAM, 2010.

[7] R. Hassin and A. Keinan, “Greedy heuristics with regret, with applica-
tion to the cheapest insertion algorithm for the tsp,” Operations Research
Letters, vol. 36, no. 2, pp. 243–246, 2008.

[8] T. Pichpibul and R. Kawtummachai, “An improved clarke and wright
savings algorithm for the capacitated vehicle routing problem,” Sci-
enceAsia, vol. 38, no. 3, pp. 307–318, 2012.

[9] S. Ropke and D. Pisinger, “An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows,”
Transportation science, vol. 40, no. 4, pp. 455–472, 2006.

[10] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Proceedings of
the 31st Conference on Neural Information Processing Systems (NIPS),
pp. 6348–6358, 2017.

[11] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combi-
natorial optimization: a methodological tour d’horizon,” arXiv preprint
arXiv:1811.06128, 2018.

[12] Y. Keneshloo, T. Shi, N. Ramakrishnan, and C. K. Reddy, “Deep
reinforcement learning for sequence-to-sequence models,” IEEE Trans-
actions on Neural Networks and Learning Systems, 2019.

[13] B. Zhang, D. Xiong, J. Xie, and J. Su, “Neural machine translation with
gru-gated attention model,” IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[14] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proceed-
ings of the 29th Conference on Neural Information Processing Systems
(NIPS), pp. 2692–2700, 2015.

[15] I. Bello and H. Pham, “Neural combinatorial optimization with rein-
forcement learning,” in Proceedings of the 5th International Conference
on Learning Representations (ICLR), 2017.

[16] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác, “Reinforcement
learning for solving the vehicle routing problem,” in Proceedings of
the 32nd Conference on Neural Information Processing Systems (NIPS),
pp. 9839–9849, 2018.

[17] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve
routing problems!,” in Proceedings of the 7th International Conference
on Learning Representations (ICLR), 2019.

[18] Y. Kaempfer and L. Wolf, “Learning the multiple traveling salesmen
problem with permutation invariant pooling networks,” arXiv preprint
arXiv:1803.09621, 2018.

[19] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau,
“Learning heuristics for the tsp by policy gradient,” in Proceedings of
the 15th International Conference on the Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research (CPAIOR),
pp. 170–181, 2018.

[20] D. S. Lai, O. C. Demirag, and J. M. Leung, “A tabu search heuristic
for the heterogeneous vehicle routing problem on a multigraph,” Trans-
portation Research Part E: Logistics and Transportation Review, vol. 86,
pp. 32–52, 2016.

[21] K. Helsgaun, “An extension of the lin-kernighan-helsgaun tsp solver for
constrained traveling salesman and vehicle routing problems,” Roskilde:
Roskilde University, 2017.

[22] L. Wei, Z. Zhang, D. Zhang, and S. C. Leung, “A simulated an-
nealing algorithm for the capacitated vehicle routing problem with
two-dimensional loading constraints,” European Journal of Operational
Research, vol. 265, no. 3, pp. 843–859, 2018.

[23] X. Chen and Y. Tian, “Learning to perform local rewriting for com-
binatorial optimization,” in Advances in Neural Information Processing
Systems, pp. 6278–6289, 2019.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Proceedings of the 31st Conference on Neural Information Processing
Systems (NIPS), pp. 5998–6008, 2017.

[25] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[26] A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna, “A note on learning
algorithms for quadratic assignment with graph neural networks,” stat,
vol. 1050, p. 22, 2017.

[27] K. Helsgaun, “General k-opt submoves for the lin–kernighan tsp heuris-
tic,” Mathematical Programming Computation, vol. 1, no. 2-3, pp. 119–
163, 2009.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[29] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of the 32nd International Conference on Machine Learning (ICML),
pp. 448–456, 2015.

[30] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph Attention Networks,” in Proceedings of the 6th
International Conference on Learning Representations (ICLR), 2018.

[31] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in Proceedings of the 3rh
International Conference on Learning Representations (ICLR), 2015.

[32] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the 2015
International Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1412–1421, 2015.

[33] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4,
pp. 229–256, 1992.

[34] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proceedings of the 33rd International Con-
ference on Machine Learning (ICML), pp. 1928–1937, 2016.

[35] F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev, “Time limits
in reinforcement learning,” in Proceedings of the 35th International
Conference on Machine Learning (ICML), pp. 4042–4051, 2018.

[36] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, “Concorde tsp solver,”
URL http://www.math.uwaterloo.ca/tsp/concorde, 2006.

[37] P. Hansen and N. Mladenović, “First vs. best improvement: An empirical
study,” Discrete Applied Mathematics, vol. 154, no. 5, pp. 802–817,
2006.

[38] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” in Advances in neural information processing
systems, pp. 3675–3683, 2016.

[39] G. Reinelt, “Tspliba traveling salesman problem library,” ORSA journal
on computing, vol. 3, no. 4, pp. 376–384, 1991.

[40] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian,
“New benchmark instances for the capacitated vehicle routing problem,”
European Journal of Operational Research, vol. 257, no. 3, pp. 845–858,
2017.

[41] Y. Sun, X. Wang, Z. Liu, J. Miller, A. A. Efros, and M. Hardt,
“Test-time training for out-of-distribution generalization,” arXiv preprint
arXiv:1909.13231, 2019.

	I Introduction
	II Related Work
	III Preliminaries
	IV The Method
	IV-A RL Formulation
	IV-B Policy Network
	IV-C Training Algorithm
	IV-D Deployment

	V Experimental Results
	V-A Comparison with State-of-the-art Methods
	V-B Comparison with Conventional Policies
	V-C Enhancement by Diversifying
	V-D Generalization Analysis
	V-E Visualization
	V-F Test on Real-World Dataset

	VI Conclusions and Future Work
	References

