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Abstract

Multiple cue probability learning studies have typically focused on stationary

environments. We present three experiments investigating learning in changing

environments. A fine-grained analysis of the learning dynamics shows that par-

ticipants were responsive to both abrupt and gradual changes in cue-outcome

relations. We found no evidence that participants adapted to these types of

change in qualitatively different ways. Also, in contrast to earlier claims that

these tasks are learned implicitly, participants showed good insight into what

they learned. By fitting formal learning models, we investigated whether partici-

pants learned global functional relationships or made localized predictions from

similar experienced exemplars. Both a local (the Associative Learning Model)

and a global learning model (the novel Bayesian Linear Filter) fitted the data

of the first two experiments. However, the results of Experiment 3, which was

specifically designed to discriminate between local and global learning models,

provided more support for global learning models. Finally, we present a novel

model to account for the cue competition effects found in previous research and

displayed by some of our participants.

Nothing endures but change

Heraclitus (540 BC – 480 BC).

Predicting future events from past experience is a fundamental aspect of daily life. For

instance, policy makers have to predict the outcome of interventions and sports coaches must
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predict a player’s influence on team performance. But as many environments are subject to com-

plex changes over time, these tasks can be challenging. In times of economic instability, previ-

ously successful interventions may not have the desired effect. And a player’s past performance

may no longer be predictive when (s)he loses form. Not only are the cues informing predictions

noisy, their predictive validity may change as the environment evolves.

This article addresses how people learn to predict outcomes from multiple cues when the

relations between them undergo unsignalled changes. While a relevant and important topic,

surprisingly little research has addressed it. Previous research has mainly considered stable envi-

ronments. And compared to category learning, little attention has been paid to how people learn

to predict metric outcomes (Busemeyer, Byun, DeLosh, & McDaniel, 1997; DeLosh, Busemeyer,

& McDaniel, 1997). Although this situation is slowly changing (Busemeyer et al., 1997; DeLosh

et al., 1997; Kalish, Lewandowsky, & Kruschke, 2004), this work usually concerns learning simple

functions of a single variable, not learning from multiple cues (but see Juslin, Olsson, & Olsson,

2003; Kelley & Friedman, 2002; Kelley & Busemeyer, 2008). The latter Multiple Cue Probability

Learning (MCPL) tasks are popular in judgement research (e.g., Brehmer, 1994; Cooksey, 1996),

but this area is usually not directly concerned with learning. The present research attempts to

fill this lacuna and in doing so will focus on three main issues: Is learning affected by the abrupt-

ness of changes? Do people have insight into these changes? And, is behaviour in multiple cue

tasks subserved by a global or a local learning process? While the latter two issues have been ad-

dressed previously, it will become clear that the present context of changing environments sheds

new light on these issues.

Learning in a changing environment

The ability to adapt to changes in our environment is a vital part of our functioning. But,

as the signals in the environment are inherently noisy, how do we distinguish real change from

random fluctuation? The problem is one of balance. If we infer too much change, we can’t ben-

efit from previous knowledge. Infer too little, and we are stuck in the past. The right balance

depends on the relative magnitude of two sources of variation: observational noise (variation

of observations from their true values) and structural change (variation in the true values them-

selves). When the former is relatively large, little change needs to be inferred, as apparent change

is most likely observational noise. More change should be inferred if structural change is rela-

tively large, as deviations from expected values are more likely to be due to true change. Research

on basic processes such as motor control has shown that humans can perform this balancing act

rather well (Baddeley, Ingram, & Miall, 2003; Körding & Wolpert, 2004; Wolpert, Ghahramani, &

Jordan, 1995). A much-studied example concerns prism adaptation of visually guided reaching,

in which shifted visual feedback drives rapid recalibration of motor movements (Baddeley et al.,

2003; Cheng & Sabes, 2007; Chhabra & Jacobs, 2006; Körding & Wolpert, 2004). Higher cogni-

tive abilities such as concept learning have also been shown to be receptive to changes in the

environmental structure. For example, normal people perform quite well in the Wisconsin Card

Sorting Task (Grant & Berg, 1948; Milner, 1963), which consists of inferring abstract rules that

change abruptly once the rule has been learned.

Whether one expects the environment to change or remain stable should affect inference.

Consider for example the problem of determining the distance of an object. Numerous cues

are used in depth perception, such as interposition, relative height, texture gradient and binoc-

ular disparity (e.g., Mather, 2006). For the moment we shall take for granted that the observer
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somehow integrates these into a single “depth datum” (an overall immediate perception of the

object’s depth). As for each individual cue, the depth datum is a fallible indicator of the object’s

true depth. If the object remains stationary, the observer can increase the accuracy of her in-

ference by making multiple observations and averaging these to form an overall estimate. But

this is not the best strategy for a moving object, for which recent data are more informative than

earlier ones. Rather than a simple average, an optimal observer should form a weighted average,

weighting observations according to their recency. The optimal (Bayesian) method for tracking

a moving object from noisy data is known as the Kalman filter (Kalman, 1960; Kalman & Bucy,

1961). The Kalman filter implements a method of online Bayesian inference, sequentially updat-

ing estimates after each new observation. The Kalman filter is a general statistical tool and the

object of estimation can take many forms, such as an object’s depth, but also a weight describ-

ing the effect of a cue on a criterion variable. In fact, we use the Kalman filter for precisely this

purpose in our Dynamic Lens Model analysis described later. In the remainder of this section,

we provide an intuitive description of Bayesian inference – as implemented by the Kalman filter

– for our simplified example of depth perception.

We noted that in order to accurately infer change, two sources of uncertainty must be

taken into account: the noise in the data (the discrepancy between observed and true values)

and structural change (variations in the true values over time). But the observer will usually have

some idea about the object’s previous distance, which introduces a third source of uncertainty,

related to the accuracy of this prior knowledge. Together, these three sources of uncertainty de-

termine the best response to a new datum. The steps in the Bayesian inference are depicted in

Figure 1, both for a moving and stationary object. Bayesian inference concerns updating prob-

ability distributions. All prior knowledge of the object’s depth is contained in the the prior dis-

tribution (Figure 1A). It represents, for each possible depth value, the observer’s subjective belief

that the true depth of the object is identical to that value. When the observer has strong prior

knowledge, the prior distribution will have a small variance and be concentrated around a par-

ticular value. If the observer’s prior knowledge is weak, the prior distribution will have a large

variance and be spread out over a large range of possible values. The current depth of a moving

object is likely to differ from its prior depth. Knowledge of the speed and direction in which the

object moves can be used to form a predictive distribution of the object’s current depth (Fig-

ure 1B). In general, this predictive distribution will have a larger level of uncertainty than the

prior distribution. Only when the object is stationary, and there is no uncertainty regarding the

object’s movement, will the predictive distribution be identical to the prior distribution. When

the observer acquires a new datum (Figure 1C), the observer can use this to update the predic-

tive distribution. Inference would be trivial if the datum was noiseless, as the object’s true depth

would simply be identical to the datum. But the datum is unreliable, which is reflected by the

variance of the observation distribution – the larger the observational noise, the larger the vari-

ance. For noisy data, the observer should take his or her expectation, reflected by the predictive

distribution, into account. The relative weight given to the expectation and datum depends on

the ratio of the variance of the predictive and observation distribution. The resulting final es-

timate of the object’s current depth is given by the posterior distribution (Figure 1D). Here, the

posterior mean is a weighted average of the means of the predictive and observation distribu-

tion. This posterior distribution will take the role of prior distribution at the next time point.
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Figure 1. Bayesian inference of a non-stationary (top panels) and stationary (bottom panels) target. The

inferential steps are depicted from left to right. In each panel, solid curves represent the current dis-

tribution, while dashed curves represent the distribution at the previous stage. Inference starts with a

prior distribution (A), which usually reflects the inference of the target at the previous time point. This

prior distribution forms the basis for the predictive distribution (B). For a non-stationary target, the pre-

dictive distribution differs from the prior distribution due to the uncertainty associated with the target’s

movement. For a stationary target, there is no additional uncertainty and the predictive distribution is

identical to the prior distribution. An observation (solid dot in C) is an imperfect indicator of the target.

This is reflected in the observational distribution (dash-dotted line in C). The observation and the pre-

dictive distribution form the basis of the posterior distribution (D), which combines the predictive and

observation distribution. The posterior distribution functions as the prior distribution at the next time

point.

Multiple cue learning

This account of Bayesian inference is simplified in that we took for granted that the ob-

server somehow arrived at a single datum of the object’s distance. In reality, this datum itself is

formed on the basis of multiple cues, which brings the added complication of how to integrate

these cues. Cue integration is a ubiquitous aspect of daily life. For instance, when a stock broker

has to predict share price, (s)he should not only take the past share price into account, but also

market indicators such as the Dow Jones index, exchange rates, etc. To make accurate predic-

tions, the broker must utilize these cues in accordance with their predictive relation with share

price. In other words, the broker must adapt cue utilization to cue validity.

Multiple cue learning has a long history in psychology. Research on this topic usually as-

sumes that participants form predictions of a criterion by an additive combination of cue values

(Anderson, 1981; Brehmer, 1994; Cooksey, 1996; Juslin, Karlsson, & Olsson, 2008). That is, par-

ticipants multiply each cue value by a scaling factor and then add the resulting values to form

a final prediction of the criterion value. As such, predictions are a linear function of the cue

values, and the effect of each cue on the resulting prediction is independent of the effect of the

other cues. The additivity assumption is reflected in the Lens Model (e.g., Cooksey, 1996; Ham-

mond, Wilkins, & Todd, 1966), which was originally proposed by Brunswik (1955) to describe

how organisms perceive a distal (unobservable) criterion through a “lens” of proximal (observ-

able) cues. Hammond et al. (1966) formulated a statistical version of the model as a general

framework for judgement analysis. The lens model is depicted in the box on the right hand side
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Figure 2. The Dynamic Lens Model (DLM) and classic Lens Model. The DLM (left hand side) consists of

two dynamic linear models. In the model of the environment, the criterion values, Yt , depend on the cur-

rent (vector of) cue values, xt and (vector of) cue validity weights, vt = (v1t , v2t ). In the model of the judge,

responses, Rt , depend on the current cue values, xt , and (vector of) cue utilization weights, ut . Both the

cue validity and utilization weights follow a first-order Markov process, such that the validity/utilization

at time t depends only on the validity/utilization at time t − 1. At a single time point t , the model is

equivalent to the classic (static) Lens Model, which is depicted in the box on the right hand side. For com-

parison to other work, we have depicted the classic Lens model in its standard form, in which cue validity

weights, v j , and utilization weights, u j , appear as labels of the cue-criterion and cue-response relations,

rather than as separate variables as in the dynamic lens model; this is only a superficial difference. For

simplicity, there are no time subscripts in the depiction of the classic Lens Model.

of Figure 2. It consists of two linear regression models: one for the effect of the cues on the cri-

terion and one for the effect of the cues on the predictions. The regression coefficients of the

first model reflect the structure of the environment and are referred to as cue validity weights.

Cue validity weights are optimal scaling factors, those that result in the best linear prediction

of the criterion values. The regression coefficients of the second model reflect a participant’s

prediction policy and are referred to as cue utilization weights. The cue utilization weights are

the subjective scaling factors as applied by participants and need not be optimal. By comparing

cue utilization to cue validity weights, we can assess how well a participant’s prediction policy is

adapted to the structure of the environment.

In standard form, the lens model is static; validity and utilization weights are not assumed

to change over time. Multiple cue learning research has almost exclusively been conducted with

such stationary environments. Exceptions are studies by Dudycha, Dumoff, and Dudycha (1973),

Lindberg and Brehmer (1976), Peterson, Hammond, and Summers (1965), Ruffner and Muchin-

sky (1978), and Summers (1969). These studies have shown that participants are generally re-
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sponsive to changes in cue validity but do not optimally adapt their utilization to these changes.

For example, in the study by Peterson et al. (1965), the validities of two out of three cues inter-

changed halfway during the task. The average cue utilization coefficients changed accordingly,

but rather late (60 trials after the change in cue validity). Summers (1969) used a three-cue task

in which only one cue was predictive (i.e., had a validity weight different from 0). The other two

cues were unrelated to the criterion. After 100 trials the validity of the predictive cue either did

not change, changed sign (rule shift; if the cue was positively related to the criterion, it would

become negatively related, and vice versa), was transferred to another cue (cue shift; one of the

previously unpredictive cues took over the role of the predictive cue), or was transferred and

changed sign (complete shift). Results showed that participants’ performance was best when

there was no change, better under rule than cue shift, and worst under a complete shift. Taken

together, these previous studies showed that individuals did learn to adapt their utilization to

changes in validity, although the speed of this adaptation was not as quick as it should have

been. Moreover, some types of change may be more difficult to learn than others. This latter

effect has been more extensively investigated in subsequent studies, showing that adaptation to

changes in cue validity depends on the particulars of the environment before the change, such

as the previous validity of the changing cue (Dudycha et al., 1973; Lindberg & Brehmer, 1976)

and the distribution of cue validities over the cues (Ruffner & Muchinsky, 1978).

Dynamic lens model analysis

One problem with the aforementioned studies is that the analyses employed were not par-

ticularly responsive to dynamic changes in cue utilization. The analyses consisted of fitting the

lens model separately to consecutive blocks of trials. This method is valid insofar as the rela-

tion between cues and responses is stable within each block. However, cue utilization will most

likely change from trial to trial, such that the estimates of cue utilization may reflect the average

utilization in a block, but not the utilization at any single trial. An alternative analysis, rolling

regression (e.g., Kelley & Friedman, 2002; Lagnado, Newell, Kahan, & Shanks, 2006), fits regres-

sion models to a moving window of trials. This has the advantage of estimating cue utilization

weights for each trial after an initialization period. But, although providing a more fine-grained

overview of changes in utilization, the method is essentially similar to the simple blocked version

and suffers from the same drawbacks. To alleviate these problems, the change process should

be explicitly incorporated in the model. We have proposed to do this in a state-space model

formalism (Speekenbrink & Shanks, 2008). The resulting dynamic lens model (DLM) consists of

two dynamic linear models (e.g. West & Harrison, 1997). Relying on advanced estimation proce-

dures, the DLM provides a fine-grained and statistically sound overview of trial-by-trial changes

in cue utilization. The increased precision offered by the DLM in tracking participants’ cue uti-

lization is important, as differences in task structure can have subtle effects on learning, which

might otherwise be missed.

A graphical representation of the DLM is given in the left hand side of Figure 2. Like

the classic lens model, the DLM consists of two regression models, one regressing the crite-

rion and one regressing the responses onto the cues. The main difference is that we explic-

itly model the process by which the regression coefficients (the validity and utilization weights)

change over time. This is indicated in Figure 2 by the arrows from the current cue validity and

utilization weights to those at the next time point. There are only arrows between consecu-

tive time points, which reflects the so-called first-order Markov assumption that current valid-
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ity/utilization weights depend only on their previous values. Besides this assumption regarding

the “memory” of the process, we do not assume there is a consistent trend in the changes; at

each time point, the changes follow a Normal distribution with a zero mean. Such a process is

also called a random walk.

To estimate the cue utilization weights, we use the Kalman technique introduced earlier.

To be more precise, we actually use what is called the Kalman smoother, which gives more pre-

cise estimates than the Kalman filter. While the Kalman filter provides estimates of cue utiliza-

tion using only current and earlier data, the Kalman smoother also takes later data into account.

These later data are informative, because knowing what happened next can tell us something

about the likelihood of an event. The Kalman smoother is used in an “off-line” setting, when

estimation can be deferred until all data is collected. “On-line” estimation, when an estimate is

needed as soon as a new datum is collected, must rely on the Kalman filter.

Estimation of cue utilization by the Kalman filter and smoother requires that certain pa-

rameters of the DLM are known. The first two parameters are the mean vector and variance-

covariance matrix of the prior distribution of utilization weights. These parameters reflect a par-

ticipant’s initial guess of the effect of the cues on the criterion, and the uncertainty associated

with this guess. The third parameter is the variance-covariance matrix of the changes in cue

utilization. The variances in this matrix reflect the average magnitude of trial-by-trial changes in

cue utilization, while the covariances reflect how changes for one cue are correlated with changes

for another cue. The final parameter is the variance of responses around their expectations. This

parameter reflects how consistently participants respond according to their prediction strategy

(as defined in terms of the cue utilization weights). For more details on the estimation of these

parameters, and the Kalman filter and smoother technique, the reader is referred to Appendix A.

We have only mentioned estimation of the cue utilization weights here. While similar

techniques can be used to estimate the cue validity weights, this was not necessary in our ex-

periments, as the exact values of the cue validity weights were determined beforehand. How-

ever, a Kalman filter for cue validity estimation will be introduced later when we consider formal

models of participants’ learning in MCPL tasks.

Types of change

Changes can be gradual and smooth, or abrupt and discontinuous. Previous research has

mainly focused on the latter type. For example, there is an extensive literature in associative

learning which draws upon experiments in which stimulus-reward relations change abruptly. In

addition, concept learning paradigms such as the Wisconsin Card Sorting Test (Grant & Berg,

1948; Milner, 1963) involve category structures which change drastically from one trial to the

next. The preference for abrupt changes in psychological research does not appear to be based

on ecological concerns. Many processes in our environment are subject to gradual change. For

instance, mortgage rates change gradually, as do cultural lore and the quality of vision. At times,

however, these may undergo abrupt changes, as after a market crash, an exotic vacation, or

putting on swimming goggles. Thus, people will encounter a mix of gradual and abrupt changes.

The question then is whether different types of change are adapted to differently.

One possibility with abrupt changes is that they result in switching between representa-

tions (e.g., Bouton, 2004; Elliott & Anderson, 1995; Redish, Jensen, Johnson, & Kurth-Nelson,

2007). Rather than adapting a representation of the environment to inferred changes in the en-

vironmental structure, the previous representation is abandoned altogether in favour of a new
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one. Bouton (2004) argued for such representational switching in the context of extinction stud-

ies. In these studies, an animal is first trained in a context in which a stimulus is paired with

a reward. Then it is placed in a different context, where the stimulus is no longer paired with

reward. As a result, the animal learns to suppress its response to the stimulus. When the animal

later returns to the first context, it will renew its response to the stimulus (without needing to

completely relearn this association). As such, there is evidence that the animal did not “unlearn”

the association between the stimulus and response, but rather learned that this association was

different in different contexts.

In typical extinction studies, the change is not only abrupt, but also relatively large, con-

stituting a change from consistent reinforcement to a consistent absence of reward. Such deter-

ministic reward schedules increase the salience of the change. As is well known, when extinction

follows a partial reinforcement schedule, responses adapt less quickly to the new situation (e.g.,

Rescorla, 1999). This effect is understandable if learning is driven by surprise, as a number of

consecutive non-reinforced trials is less surprising given a history of partial reinforcement than

given a history of continuous reinforcement. Yu and Dayan (2005) distinguish between expected

and unexpected uncertainty. The first type is associated with cue validity, and reflects the inher-

ent uncertainty when basing inference on probabilistic cues. The second type is the uncertainty

due to unexpected structural changes in cue validity. Abrupt changes will result in a relatively

large unexpected uncertainty, while gradual changes will result in relatively little unexpected

uncertainty. If the level of surprise (unexpected uncertainty) determines learning, we should ex-

pect slower learning and less adaptation in a gradually changing environment. We must be care-

ful not to confound the rate of adaptation with the required adaptation. But we can compare

adaptation in a condition in which, in a specific interval, the environment undergoes an abrupt

change from one state to another, to adaptation in a condition in which, during an identical in-

terval, the environment undergoes the same overall change, but in a more gradual fashion. If

gradual changes result in a smaller rate of adaptation irrespective of the required change, we

should expect participants in the gradual change condition to be less adapted at the end of the

interval. This hypothesis will be investigated in the first two experiments presented here.

Insight

Intriguingly, even though people can master MCPL tasks quite well, it is often argued that

they do so without insight into what they learned (Evans, Clibbens, Cattani, Harris, & Dennis,

2003; Gluck, Shohamy, & Myers, 2002; Harries, Evans, & Dennis, 2000; Nisbett & Wilson, 1977;

Slovic & Lichtensteln, 1971; Wigton, 1996; York, Doherty, & Kamouri, 1987). Consequently, it

has been argued that these tasks are learned implicitly (e.g., Berry & Broadbent, 1984; DeShon

& Alexander, 1996; Knowlton, Mangels, & Squire, 1996; Seger, 1994). That is, participants learn

to use the cues according to their validity without conscious access to what they have learned.

However, previous studies have often used insensitive and invalid measures to assess explicit

knowledge (Lagnado et al., 2006; Lovibond & Shanks, 2002). When probed in more valid ways,

participants actually show good insight into the task structure (Lagnado et al., 2006; Newell,

Lagnado, & Shanks, 2007; Speekenbrink, Channon, & Shanks, 2008). Some have suggested that,

although participants may develop insight into their learning, they will do so only at a rela-

tively late stage. If this is true, then what are the possibilities for insight when the environment

changes? Will it necessarily lag behind? In the present study, we will use sensitive measures to

assess participants’ insight into the changing structure of the environment.
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Overview

In the remainder of this article, we first present two experiments on human multiple-cue

learning in a changing environment. In the first experiment, we compared participants’ perfor-

mance in an environment with abrupt changes to that in an environment with gradual changes,

to assess whether participants adapted differently to these changes. In the second experiment,

in addition to this, both the abrupt and gradually changing environments returned suddenly to

a previous state. This was done to assess whether learning in a gradually changing environment

would impede adapting to later abrupt changes. We then discuss five formal learning models

and compare their fit to the data. A main distinction between these models is whether they im-

plement global or local forms of learning. After discussing the fit of these models to the data

of the first two experiments, we present results from a third experiment, which was designed

especially to discriminate between global and local learning models.

Experiment 1

Method

Participants and apparatus. Twenty-eight participants took part in the experiment. All

participants were recruited from the University College London subject pool and paid a basic

fee (6 pounds) for their time, as well as an additional fee (between 0 and 5 pounds) based on

their performance. Participants were randomly assigned to either the abrupt or gradual change

condition. The two conditions did not differ in the distribution of sex (abrupt: 7 male, 7 female;

gradual: 8 male, 6 female; χ2(1) = 0, p = 1), or mean age (abrupt: M = 23.86, SD = 10.91; gradual

M = 28.86, SD = 12.97; t (26) = 1.10, p = .28). The entire experiment was run on a PC compatible

desktop computer, using custom software written in C# for the .NET 2.0 framework. Participants

were tested individually in a sound-dampened room.

Task. In the stockmarket prediction task, participants were asked to predict changes in the

share price of a fictional software company “Mango” (the criterion) from changes in the share

price of two related companies, “iTech” and “jSoft” (the cues). The predictive relation between

the cues and criterion was as specified in the following equation:

Yt = v1t ×x1t + v2×x2t + e t (1)

where Yt denotes the value of the criterion on trial t (i.e., the change in Mango’s share price from

trial t − 1 to trial t ), x1t and x2t denote the values of the cues (i.e., the changes in share price of

iTech and jSoft), and e t is a Normally and independently distributed error term with a mean of

0 and standard deviation of 3. The cue validity coefficients v1t and v2 determine the magnitude

of the effect of the cues on the criterion. Throughout the task, the validity of the second cue

was fixed at v2 = .4, such that for example a 50 point increase in share price of this cue would

increase the share price of Mango by 20 points. The validity of the first cue varied over trials t .

In both conditions, the validity of the first cue started with a negative value of -0.8, so that for

example a 50 point increase in share price of this cue would decrease the share price of Mango

by 40 points. During the task, the validity changed from its initial value of -0.8, via 0, to a final

value of 0.8, in discrete steps at trials 101 and 201 in the abrupt change condition, and linearly in

the gradual change condition (see Figure 5 for a graphical depiction of the cue validity patterns).
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More formally, the cue validity pattern in the abrupt change condition can be expressed as in the

following equation:

v1t =







−0.8 for t = 1, . . . , 100

0 for t = 101, . . . , 200

0.8 for t = 201, . . . , 300

In the the gradual change condition, the equation for the cue validity is

v1t = v1(t−1)+1.6/300

starting at the initial trial t = 1 with a value of v1(1) =−0.8.

The values of the cues, x1t and x2t , were sampled independently from uniform distribu-

tions over the range from -100 to 100. The criterion, Yt , was generated by inserting the cue values

in Equation 1, with the value of the error, e t , drawn from a Normal distribution with mean 0 and

standard deviation 3. Pairs of participants in the abrupt and gradual change condition were

yoked so that they received the same sequence of cue values and error values.

Procedure. At the start of the experiment, participants were given on-screen instructions

that they were to take the role of a financial analyst for an investment company. They had to pre-

dict the price of shares in software company Mango and the investment company would gain or

lose money based on the accuracy of their predictions. Participants were told they could base

their predictions on information about the share price of the related companies iTech and jSoft.

They were also informed that it would be difficult to predict the share price with complete ac-

curacy, but that their predictions should improve with practice. Participants were not informed

that the relation between a cue and the criterion would change over time.

The task consisted of 300 trials. On each trial, participants observed the values of the two

cues both numerically and in graphical form as filled bars (see Figure 3). They could predict

the change in share price of Mango by moving a slider. Participants could view the effect of this

change on the new share price in a graph, which also showed the share price on the previous

five trials. In addition, the predicted change in share price was shown graphically as a filled bar.

After recording their prediction, participants received feedback as to the actual share price. The

change in share price was shown in the bar beside the slider and the resulting share price was

shown in the graph. The difference between the actual and predicted change in share price was

indicated by a coloured block in the bar on the left hand of the slider. Additional feedback was

given in a message in the “console”, which contained the numerical values of the predicted share

price, the true share price, the difference between these values, and the amount won or lost by

the investment company. The earnings for the investment company were determined by a linear

function of the absolute deviation between a participant’s prediction and the actual value of the

criterion:

earningst = 100−5× |Rt −Yt |,

where Rt denotes a participant’s response, and Yt the actual value of the criterion. Thus, in order

to make money for the investment company, the difference between participants’ predictions

and the actual value of the criterion should be less than 20. The company started with a total

fund of 20,000, and the earnings on each trial were added or subtracted from the total funds.

Participants could keep track of the current funds by means of a bar on the upper right of the

screen.
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Figure 3. Representation of the screen display in the Stockmarket Prediction Task.

The task was divided into four blocks of 75 trials each. At the end of each block, partici-

pants were asked to rate the strength of the relation between the cues and criterion on a scale

from -10 (highly negative) to 10 (highly positive), and asked to choose which of the two cues had

the strongest effect on the criterion. To avoid cueing participants to the change in one of the cue-

criterion relations, the start of each block (trials 1, 76, 151, 226) was deliberately asynchronous

with the change in cue validity in the abrupt change condition (after trials 100 and 200). The

order of the two cues on the screen, and the cue labels, were randomized for each participant.

Results and discussion

The structure of this section is as follows. First, we will assess participants’ learning per-

formance and test for differences between the conditions. We will then focus on cue utilization

more directly. Finally, we will investigate participants’ insight into the changing task structure.

Performance. Individual correlations between predictions and criterion values ranged

from 0.04 to 0.92 (M = 0.65, SD = 0.26) in the abrupt change condition, and from 0.42 to

0.83 (M = 0.59, SD = 0.12) in the gradual change condition. There was one participant (A6)

in the abrupt change condition for whom the correlation was not reliably different from 0,

t (298) = 0.66, p = .51 (correlations were significantly larger than 0 for all other participants).

All further analyses were performed both with and without inclusion of participant A6. The re-

sults of the full analyses are reported; exclusion of participant A6 did not change the qualitative
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pattern of results.

We used the Mean Absolute Deviation (MAD) of participants’ predictions from the ac-

tual criterion values as the main measure of performance. A 2 (condition) × 15 (block: 20 trials

each) ANOVA with repeated measures on the second factor showed, besides a significant effect

of block, F (14, 364) = 24.44, MSe = 72.6, p < .001, a significant interaction between condition

and block, F (14, 364) = 2.73, p < .001. The main effect of block reflects a general decrease in

error from the first block (M = 39.28, SD = 9.56) to block 10 (M = 12.83, SD = 7.51), after which

it slightly increases until the last block (M = 20.01, SD = 11.57). In the abrupt condition, there

were sudden increases after the changes in cue validity, while the pattern was more smooth in the

gradual change condition. The main effect of condition was not significant (abrupt: M = 22.81,

SD = 24.48; gradual: M = 21.96, SD = 20.64), F (1, 26) = 0.14, MSe = 525.2, p = .71. Thus, while

the difference between the conditions in cue validity pattern resulted in a difference in the pat-

tern of error over trials, average performance was equal in the two conditions.

Which cues were used?. Participants may have based their predictions on more informa-

tion than the two relevant cues (the changes in share price of jSoft and iTech). To increase the

realism of the task, participants were shown a graph of Mango’s share price on the five preceding

trading days, and participants may have been influenced by this information. Participants may

also have assumed that the effect of one cue was moderated by the other cue (i.e., a cue inter-

action). To investigate these possibilities, we fitted four different DLMs: the Correct (C) model,

in which only the two relevant cues were included, the Previous change (P) model, which in-

cluded the previous change in share price as an additional cue, the Interaction (I) model, which

included the cue interaction as an additional cue, and the Interaction and Previous change (I+P)

model, which included both additional cues. An additional concern in this analysis was the level

of individual differences. Do participants adapt their cue utilization at the same rate? Does this

rate depend on whether the changes in cue validity were gradual or abrupt? Do participants ap-

ply their prediction strategies with the same consistency? To answer these questions, we fitted

the four models to different subsets of the data, thereby fixing the model parameters to be iden-

tical for all participants, identical within conditions, or allowing different parameter values for

each participant.

Full details of the analysis are given in Appendix B. In summary, the results indicated

considerable individual variation in the model parameters, highlighting the need for individual

based analysis of cue utilization. Overall, the large majority of participants (n = 23) relied on

only the two relevant cues, while some participants (n = 4) based their predictions also on the

previous change in share price or assumed a cue interaction (n = 1). Inspection of the utilization

of the previous change in share price showed that it had a positive effect for most participants

who relied on it, predicting an increase (decrease) in share price if the share price previously

increased (decreased). These participants seem to have assumed a form of “momentum” in

the share price process. However, utilization of the previous change in share price tended to

decrease during the task, and most participants who initially used this information learned to

ignore it (the utilization weight approached 0 by the end of the task).

Cue utilization. Estimates of participants’ cue utilization were obtained from the best fit-

ting DLMs identified above. The resulting patterns of cue utilization over trials, or cue utilization

profiles, are depicted in Figure 4. In accordance with the previous analysis, there was consider-

able individual variability in the utilization profiles. For the majority of participants, cue utiliza-
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Figure 4. Cue utilization by participants in the abrupt change condition (A1-A14) and gradual change

condition (G1-G14). Utilization (solid lines) was estimated with model C, except for participants A1, A6,

A12 and G7 (model P) and participant G14 (model I). Validity (broken lines) represents cue validity.

tion was strongly related to the changes in cue validity, although some (e.g., A5 and A6) made

relatively little use of the cues. Especially for some participants in the abrupt change condition

(e.g., A7, A8, A10 and A12), the utilization of cue 1 closely followed the “step function” of the cue

validity. The utilization of cue 2 was variable as well, but, after an initial stage, appeared to vary

around a horizontal line often located at cue validity. Interestingly, some participants (A4 and

G8) initially learned to use this cue in accordance with its validity, but stopped utilizing it towards

the end of the task. This decrease in utilization appears to be accompanied by an increase in

the utilization of cue 1, which is reminiscent of the cue competition effect found by Busemeyer,

Myung, and McDaniel (1993a). They showed that an increase in the (absolute) validity of one

cue resulted in a decrease of the (absolute) utilization of a second cue. This competition be-

tween cues is consistent with the blocking effects found in associative learning experiments. In

the present experiment, cue competition seems limited to a few participants.

The average utilization curves are depicted in Figure 5. A condition×block (30 blocks of 10

trials each) ANOVA was conducted on the utilization of cue 1, with repeated measures on the last

factor and a Greenhouse-Geisser correction for heterogeneity of variance. A main effect of block,

F (2.41, 62.55) = 65.30, MSe = 0.22, p < .001, confirms that participants adapted their utilization

of cue 1 during the task. In addition, a condition × block interaction shows that this pattern

depended on whether the changes in cue validity were abrupt or gradual, F (2.41, 62.55) = 8.90,

p < .001. A similar ANOVA showed that participants also adapted their utilization of cue 2 dur-

ing the task, F (2.57, 66.85) = 12.71, MSe = 0.12, p < .001. There was a trend towards an interac-
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tion between condition and block, F (2.57, 66.85) = 2.51, p = .07, indicating that the form of the

change in cue 1 validity may have affected utilization of cue 2. Figure 5 shows that the difference

between the conditions is located at the start and end of the task. In the abrupt change con-

dition, the utilization of cue 2 shows a gradual rise towards cue validity. In the gradual change

condition, utilization appears to linger around 0 until trial 50, followed by a more rapid rise to-

wards cue validity. Interestingly, after this initial stage, the utilization appears to remain stable

for the gradual change condition, while the average utilization in the abrupt change condition

drops somewhat after trial 200 (corresponding to the second change in the validity of cue 1).

Both Figure 5 and the results of the ANOVA suggest that participants’ utilization adapted

to the specific cue validity profile of their condition. Cue utilization appeared closer to a step

function in the abrupt change condition, and more like a linear function in the gradual change

condition. To test this more directly, we estimated two regression models for the utilization of

cue 1, one with the cue validity profile of the abrupt change condition, and the other with cue

validity profile of the gradual change condition as predictor. The regression models were fitted to

the data of individual participants. For each condition, we then compared the (absolute) resid-

uals of the models. Adaptation to the form of change should result in smaller residuals when

using the relevant cue validity profile (i.e., the abrupt profile for the abrupt change condition,

and the gradual one for the gradual change condition). Paired sample Wilcoxon tests confirmed

that the abrupt validity curve described utilization better than the gradual change curve in the

abrupt change condition, Z = −12.33, p < .001, while the gradual validity profile fitted better in

the gradual change condition, Z = 10.84, p < .001.

Figure 5 indicates that utilization of cue 1 at the end of the task was stronger in the abrupt

than gradual change condition. A t-test comparing the utilization at trial 300 between the con-

ditions confirmed this, t (26) = 2.69. p < .05. The utilization of cue 2 did not differ between the

conditions at this point, t (26) = t = −1.09 p = 0.29. Hence, utilization was closer to cue valid-

ity when the latter changed abruptly than when it changed gradually. This is consistent with a

smaller rate of adaptation following gradual change.

Insight. Participants’ insight into the task structure was assessed with two kinds of ques-

tions. In the rating questions, participants were asked to rate the strength and direction of each

cue’s effect on the criterion. Figure 6 shows the mean ratings together with the (rescaled) va-

lidity weights at the time of rating. The average ratings follow the cue validity patterns quite

well; apart from trial 225 in the gradual condition, the average ratings were in the expected di-

rections, and in most cases significantly so. The relation between ratings and cue validity was

confirmed by a regression analysis without intercept1, which showed a significant effect of cue

validity, F (1, 223) = 110.90, p < .001, R2 = 0.33. Interestingly, a similar regression model with cue

utilization as predictor showed that this had a stronger effect on the ratings, F (1, 223) = 256.3,

p < .001, R2 = 0.53. In fact, while the addition of cue utilization to the model with cue valid-

ity resulted in a significant reduction of error, F (1, 222) = 97.12, MSe = 11.42, p < .001, adding

cue validity to the model with cue utilization as predictor did not, F (1, 222) = 0.32, p = .57. As

such, participant’s ratings seem to reflect their inference of the task structure, rather than the

task structure directly.

1We did not include an intercept in the model because we were interested in whether participants could detect the

direction of the cue-criterion effects as well as their strength. Including an intercept would have resulted in a model

in which positive ratings do not necessarily reflect positive validity weights.
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LEARNING IN A CHANGING ENVIRONMENT 16

Exp. 1: Cue 1

trial

ra
ti
n

g

75 150 225 300

−
1

0
−

5
0

5
1

0

●

●

●

●

●

●

●

●

Exp. 1: Cue 2

trial
ra

ti
n

g

75 150 225 300

−
1

0
−

5
0

5
1

0

●
●

●

●●

●
●

●

Exp. 1: Choice

trial

ra
ti
n

g

75 150 225 300

0
.0

0
.5

1
.0

●

●

●

●

●

● ●

●

Exp. 2: Cue 1

trial

ra
ti
n

g

75 150 225 300

−
1

0
−

5
0

5
1

0

●

●

●

●

●

●

●

●

Exp. 2: Cue 2

trial

ra
ti
n

g

75 150 225 300

−
1

0
−

5
0

5
1

0

●

●

●

●
●

●

●
●

Exp. 2: Choice

trial
ra

ti
n

g

75 150 225 300

0
.0

0
.5

1
.0

●

●

●

●

●

●

●

●

Exp. 3: Cue 1

trial

ra
ti
n

g

75 150 220

−
1

0
−

5
0

5
1

0

●

● ●●

●

●

Exp. 3: Cue 2

trial

ra
ti
n

g

75 150 220

−
1

0
−

5
0

5
1

0

●

●

●

● ●
●

Exp. 3: Choice

trial

ra
ti
n

g

75 150 220

0
.0

0
.5

1
.0

●

●

●

●

●

●

● ●rating abrupt/NP
validity abrupt/NP

rating gradual/PN
validity gradual/PN

●

●

choice abrupt/NP
predicted abrupt/NP
choice gradual/PN
predicted gradual/PN

Figure 6. Means and 95% confidence intervals of the strength ratings and validities for the two cues in

Experiments 1–3. Cue validities were rescaled by linear regression without intercept. To allow for easier

discrimination, the ratings (and validities) in the two conditions have been slightly displaced on the x-

axis and the ratings and validities at the different trials are connected by lines. The reader should note

that these lines are not indicative of the actual cue validity profiles (e.g., the validity of cue 1 in the abrupt

change condition changed abruptly on trial 100, see Figure 5).
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In the forced choice questions, participants were asked to pick the cue with the strongest

effect on the criterion. To assess the extent to which the choices reflect actual differences in cue

validity, we fitted a logistic regression model with choice (1= cue 1, 0= cue 2) as dependent vari-

able and the difference in absolute validity (d = |v1,t |−|v2|) as predictor (there was no intercept).

This showed a significant effect of the difference in validity, b = 2.15 (S.E. = 0.60), p < .001, al-

though the model did not fit the data very well, χ2(111) = 141.11, p < .05. We also fitted a similar

model with the difference in absolute utilization (rather than validity) as predictor. This model

did fit the data, χ2(111) = 125.76, p = .16, and showed a significant effect of utilization, b = 4.08

(S.E. = 0.88), p < .001. As for the ratings questions, while the addition of the cue utilization dif-

ference to the model with cue validity difference significantly increased model fit, χ2(1) = 16.23,

p < .001, the reverse was not true, χ2(1) = 0.87, p = .35. Again, these results indicate that partic-

ipants’ insight was based on their inference of the task structure, rather than the task structure

directly.

In summary, we found no evidence for a dissociation between participants’ knowledge of

the environment as manifest in their predictions, and their explicit judgements of the effects and

relative importance of the cues. As such, we found no support for implicit learning in this task.

Experiment 2

Experiment 1 showed that participants were responsive to the changes in cue validity.

Sudden and gradual changes in cue validity resulted in correspondingly shaped patterns of cue

utilization. While there was no overall performance difference between the conditions, partici-

pants’ utilization at the end of the task was closer to cue validity in the abrupt change than in the

gradual change condition. This is consistent with slower adaptation to gradual changes, as the

overall change in cue validity was identical in both conditions. However, the conditions differed

in another respect beside the type of change. In the abrupt change condition, cue validity was

initially stable, while cue validity changed from the outset in the gradual change condition. As

participants had no prior knowledge of the task structure, they needed to form a representation

of the structure whilst simultaneously adapting it to the changes. In contrast, participants in the

abrupt change condition could form a stable representation before needing to adapt to a change

in cue validity. As it is likely that change is more easily detected from a relatively stable repre-

sentation of the task, participants in the abrupt change condition may have been advantaged.

The second experiment addresses this issue by starting the task with a period of relative stabil-

ity in both conditions. In addition, the end of the task included an identical abrupt change in

both conditions, in which the validity of the changing cue returned to its original state. Insofar

as abrupt changes result in the formation of different representations of the task, rather than the

modification of a single representation (e.g. Bouton, 2004; Elliott & Anderson, 1995; Redish et al.,

2007), we should expect participants in the abrupt change condition to be advantaged in adapt-

ing to this final change, as switching between representations should be quicker than adapting

a single representation.

Method

Participants. Thirty students from University College London took part in the experiment.

Participation was voluntary, and participants were entered into a draw to win one of two cash

prizes (20 and 10 pounds). Participants were randomly assigned to either the abrupt or gradual
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change condition. The two conditions did not differ in the distribution of sex (abrupt: 5 male, 10

female; gradual: 4 male, 11 female; χ2(1) = 0, p = 1), or mean age (abrupt: M = 21.20, SD = 2.08;

gradual M = 20.53, SD = 1.19; t (28) = 1.08, p = .29).

Materials. The task was similar to that of Experiment 1. The only difference was in the

validity of cue 1. In the abrupt change condition, the cue validity profile was similar to Exper-

iment 1, starting at a negative value of v1t = −0.8 (trials 1 to 100), then changing to a value of

v1t = 0 (trials 101 to 170), and then to a positive value of v1t = 0.8 (trials 171 to 240). However,

in this experiment, the validity then returned to its initial negative value of v1t =−0.8 (trials 241

to 300). In the gradual change condition, the validity of cue 1 also went from a negative value of

v1t = −0.8 to a positive value of v1t = 0.8, but this change was smooth, slowly changing at the

start and end, but faster in the middle. The end of the task included the same abrupt change

from v1t = 0.8 to v1t = −0.8 as in the abrupt change condition. More formally, the cue validity

profile in the gradual change condition can be expressed in the following equation:

v1t =

(

−0.8+ 1.6
1+exp(14.3−t /10)

for t = 1, . . . , 240

−0.8 for t = 241, . . . , 300

The logistic function which describes v1t between trials 1 and 240 has the appearance of an S-

shaped curve: relatively stable at first, then changing increasingly rapidly, after which the rate of

change decreases again to a period of relative stability. Thus, while continuously changing, the

validity starts and ends with a period of relative stability, just as in the abrupt change condition.

With this particular function, 95% of the change occurs in the space of 77 trials (from trial 95

until trial 172). A graphical representation of the resulting cue validity patterns can be found in

Figure 5.

Procedure. The procedure was identical to that of Experiment 1, apart from a section in

the instructions, in which participants were informed that they would enter a draw to win cash

prizes, where the chance of winning was based on their performance.

Results and discussion

Performance. The correlation between predictions and criterion values ranged from 0.01

to 0.81 (M = 0.50, SD = 0.25) in the abrupt change condition, and from -0.02 to 0.91 (M = 0.57,

SD = 0.25) in the gradual change condition. There was one participant in each condition (A13

and G11) for whom the correlation was not significantly different from 0, t (298) =−0.39, p = .70

and t (298) = 0.12, p = 0.91, respectively. The correlation was significant for all other participants.

As before, we report the results for all participants; unless stated otherwise, the same pattern of

results was obtained from the analyses after exclusion of A13 and G11.

The MAD between predicted and actual criterion values was analysed with a 2 (con-

dition) × 15 (block: 20 trials each) ANOVA with repeated measures on the second factor

and a Greenhouse-Geisser correction. This analysis showed a significant effect of block,

F (5.86, 164.08) = 14.76, MSe = 2.39, p < .001, and a significant interaction between condition

and block, F (5.86, 164.08) = 2.93, p < .05. The main effect of condition was not significant

(abrupt: M = 31.32, SD = 31.05; gradual M = 30.93, SD = 31.24), F (1, 28) = 0.01, MSe = 116.57,

p = .91; hence, as in Experiment 1, the form of the validity changes did not affect overall perfor-

mance, but did affect the pattern of performance over the task.
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Which cues were used?. The results replicated those in Experiment 1 (see Appendix B for

details). The large majority of participants (n = 24) relied on just the two cues when making

predictions, while some participants (n = 4) also relied on the previous change in share price

or assumed an interaction between the cues (n = 2). In addition, there was strong evidence for

individual variation in the model parameters.

Cue utilization. The estimated cue utilization profiles are given in Figure 7. As in Exper-

iment 1, participants’ cue utilization adapted to the changing environment. Again, there was a

lot of individual variability; some participants (e.g., A8 and G9) adapted quickly and accurately

to the changes, while others (e.g., A10 and G12) showed relatively little adaptation. Some par-

ticipants (e.g., A11, G1, G5, G11 and G14) appeared to have initial difficulties in utilizing cue 1

according to its (negative) validity. This is consistent with the often noted difficulty in learning

negative cue-criterion relations (e.g., Brehmer, 1973; Naylor & Clark, 1968). Participants G5, G11

and G14 show a sudden large change towards negative utilization, before changing towards pos-

itive utilization (in accordance with the change in validity). After initially neglecting this cue,

these participants seemed to suddenly realise the negative relation between this cue and the

criterion. A number of participants (A2, A5, A6, A9, G1, G5, G8 and G10) show evidence of cue

competition, in that the utilization of cue 2 clearly drops in the period where cue 1 is at its max-

imum positive validity. Interestingly, cue competition seems strongest in the period in which

both cues have a positive effect on the criterion; after the final change, when cue 1 is at its max-

imum negative validity, the utilization of cue 2 rises again. As such, cue competition may be

restricted to situations in which cues have a similar effect on the criterion and differentiation

between them is relatively difficult.

Figure 5 shows the average utilization in the two conditions. The shape of the average uti-

lization curves appears to match the shape of the two validity curves, with two inflection points

in the abrupt change condition corresponding to the abrupt changes in cue validity, and a more

gradual change pattern in the gradual change condition. A condition × block (15 blocks of 20

trials each) ANOVA for the utilization of cue 1, with repeated measures on the last factor and

Greenhouse-Geisser correction, replicated the results of Experiment 1. There was a significant

effect of block, F (4.16, 116.58) = 64.98, MSe = 0.18, p < .001, as well as a significant interaction

between block and condition, F (4.16, 116.58) = 4.86, p < .001. As before, differences in the cue

validity patterns resulted in differences in cue utilization. The same ANOVA for the utilization

of cue 2 showed a trend for block, F (4.25, 119.07) = 2.25, MSe = 0.09, p = .06, and no significant

effects.

The results of the regression analysis, predicting cue utilization from the cue validity pro-

files, also replicated those of Experiment 1. In the abrupt change condition, the abrupt change

validity curve described utilization better than the gradual change curve, Z = −8.19, p < .001,

while the reverse was true for the gradual change condition, Z = 11.55, p < .001.

We investigated the speed of adaptation by comparing utilization in the period before the

final abrupt change. Figure 5 shows no evidence of a lower rate of adaptation in the gradual

change condition. If anything, average utilization appears higher than in the abrupt change

condition. Averaging cue utilization over the 20 trials preceding the final abrupt change, this

difference was significant, t (28) = 2.15, p < 0.05. However, this result was due to the two sub-

performing participants; after exclusion of A13 and G11, the difference was no longer significant,

t (26) = 1.87, p = .073. There was thus no strong evidence that cue utilization was closer to
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Figure 7. Cue utilization for participants in the abrupt change condition (A1-A15) and gradual change

condition (G1-G15). Estimated utilization (solid lines) was computed with model C, apart from partici-

pants A6 and A7 (model I) and A6, G4, G5 and G12 (model P). Validity (broken lines) represents actual cue

validity.
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optimal in the gradual condition. In contrast to Experiment 1, we found no evidence of slower

adaptation to gradual change.

To test the hypothesis that abrupt changes result in the formation of multiple repre-

sentations of the task, we assessed adaptation to the final abrupt change in a condition by

block (7 blocks of 10 trials each, starting at trial 230) ANOVA with repeated measures on the

last factor and Greenhouse-Geisser correction. This showed only a significant effect of block,

F (1.87, 52.32) = 67.38, MSe = 0.14, p < .001. Neither the main effect of condition, F (1, 28) = 0.02,

MSe = 0.53, p = .88, nor its interaction with block, F (1.87, 52.32) = 1.17, p = .31, were significant.

There is thus no evidence that the abrupt change condition adapted more quickly to the final

abrupt change, as would be expected from reinstatement of a previous task representation.

Insight. The results of the insight questions are depicted in Figure 6. As before, the average

ratings were mostly consistent with cue validity and the regression analyses replicated the results

of Experiment 1. The effect of cue validity on the ratings was significant, F (1, 239) = 63.54, p <

.001, R2 = 0.21, but a regression model with cue utilization as predictor fitted better, F (1, 239) =

128.5, p < .001, R2 = 0.35. And, while adding cue utilization to the model with cue validity as

predictor resulted in a significant reduction of error, F (1, 238) = 44.35, MSe = 19.74, p < .001,

adding cue validity to the model with cue utilization as a predictor did not, F (1, 238) = 1.45,

p = .23.

The results of choice questions also replicated those in Experiment 1. While showing a

significant effect of validity, b = 1.93 (S.E. = 0.52), p < .001, the model with cue validity as pre-

dictor did not fit the data very well, χ2(119) = 151.66, p < .05. A model with cue utilization as

predictor did fit the data, χ2(119) = 141.67, p = .08, and showed a significant effect of utilization,

b = 3.31 (S.E.= 0.77), p < .001. And, while adding cue utilization to the model with cue validity

significantly increased model fit, χ2(1) = 12.22, p < .001, the reverse was not true, χ2(1) = 2.23,

p = .14.

In summary, the significant effects of validity and in particular utilization on participants’

ratings and choices shows participants had a considerable degree of insight into what they

learned. Again, we failed to find evidence for implicit learning in this task.

Learning models

The results of Experiment 1 and 2 show that participants were responsive to changes in

the environment and learned to utilize the cues in accordance with their (changing) validity. By

comparing different formal learning models, we will now investigate how they may have done

so.

While there are many models of category learning, relatively few have been proposed to

model how people learn continuous functions of multiple cues. We can distinguish two broad

classes of function learning and categorization models: global and local learning models. Global

learning models extract a single function (or rule) relating cues to the criterion that applies to

all possible cue values. When this function does not make an accurate prediction for a cue pat-

tern, the function is adjusted to reduce the prediction error. A defining characteristic of global

learning models is that the function will be adjusted for the whole range of possible cue val-

ues. A change detected for for one cue value will thus generalize to all other cue values. Local

learning models do not display such generalization. They learn localized associations between

the criterion and specific cue patterns by strengthening associative links between cue patterns



LEARNING IN A CHANGING ENVIRONMENT 22

and criterion values, or by storing and recollecting cue-criterion pairings as in exemplar mod-

els. In local learning models, new observations may change the predictions for the observed cue

pattern, but importantly, there is little or no effect on predictions to other cue patterns.

We will now discuss different instantiations of global and local learning models suitable

for multiple cue learning tasks with changing cue-criterion relations. We formulate two new

global Bayesian models of MCPL, which differ in the assumed structure of the environment:

the Bayesian Linear Filter, which assumes the cues combine additively in determining the cri-

terion, and the Competitive Bayesian Filter, which assumes the cues compete to determine the

criterion. As a final global learning model, we use a Least Mean Squares network, which makes

similar assumptions as the Bayesian Linear Filter, but uses a different (non-Bayesian) form of

learning. We compare the global learning models to two previously successful local learning

models: the Generalized Context Model and the Associative Learning Model. The discussion

will be mostly conceptual, describing the main ideas behind each model; technical details are

given in Appendix C.

Global learning: Bayesian Linear Filter (BLF)

Bayesian modelling has become an increasingly popular framework to describe human

inductive learning (Tenenbaum, Griffiths, & Kemp, 2006), reasoning (Oaksford & Chater, 2007),

and causal inference (Griffiths & Tenenbaum, 2005), to name but a few areas. Bayesian models

update probability distributions on the basis of incoming information and are well suited to

online (e.g., trial-by-trial) learning. The Bayesian Linear Filter (BLF) is one possible Bayesian

model. It assumes the environment can be modelled as in the DLM (the criterion is a linear

function of the cues, and validity weights change over time according to a random walk). The BLF

learns the cue validity weights by using the Kalman filter to compute the posterior distribution of

cue validity weights. The Kalman filter has been previously proposed to model reward learning

in conditioning (e.g., Dayan, Kakade, & Montague, 2000; Kakade & Dayan, 2002; Sutton, 1992).

The BLF is related to this model, but learns the parameters of a linear function rather than the

level of reward in the presence (versus absence) of a cue.

When making predictions, the BLF computes a predictive distribution of the criterion. The

predictive distribution is based on the posterior cue validity distribution and more uncertainty

about the cue validity weights results in more uncertainty regarding the criterion value. In addi-

tion, the variance of the predictive distribution increases with the extremity of the cue values; as

predictions are the summed product of cue values and validity weights, cue validity uncertainty

is magnified by higher the absolute cue values. We assume participants’ responses are made in

accordance with the predictive distribution.

Global learning: Competitive Bayesian Filter (CBF)

The BLF assumes the value of the criterion depends on all cues simultaneously. An al-

ternative assumption is that the cues compete to determine the criterion; on each trial, only a

single cue is responsible for the value of the criterion, but which cue that is can vary over time.

These assumptions may underlie the cue competition effects (e.g., Birnbaum, 1976; Busemeyer

et al., 1993a) referred to earlier. To learn in such a competitive environment, two problems must

be solved: determine which cue is responsible for the criterion, and determine the effect of each

individual cue on the criterion. These two tasks are performed optimally by what we call the
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Competitive Bayesian Filter (CBF), which is closely related to the competitive mixture of experts

model (Dayan & Long, 1998).

The CBF tracks changes in cue validity in a similar way to the BLF and uses posterior cue

validity distributions to compute predictive distributions of the criterion. But in the CBF, each

cue predicts a different value of the criterion. As there is uncertainty about which cue will be re-

sponsible on a given trial, the final predictive distribution is a mixture of the individual predictive

distributions, weighting each by the probability that the corresponding cue will be responsible

on that trial. After observing the actual criterion value, this information is used to compute a

posterior probability of cue responsibility. The extent to which the CBF learns about the individ-

ual cue-criterion relations depends on this assessment of responsibility, as the observed value

only provides information about the relation between the criterion and the responsible cue.

We assume participants’ predictions are made by weighting the predictions for each in-

dividual cue according to their predicted responsibility. As a result, cues are relatively under-

utilized when compared to their inferred cue validity. Furthermore, in situations where the as-

sumption of cue competition is wrong, such as in the present task, low validity cues will be rel-

atively more under-utilized than high validity cues. Because high validity cues will, on average,

give better predictions than low validity cues, their posterior probability of responsibility will in-

crease, which in turn increases their weight in the final prediction. It is through this mechanism

that the CBF explains the cue competition effects of Busemeyer et al. (1993a), who found that in-

creasing the validity of one cue decreased the utilization of another cue. The CBF thus explains

these cue competition effects as stemming from an erroneous assumption of cue competition in

a non-competitive (linear) environment.

Global learning: Least Mean Squares network (LMS)

Despite the popularity of Bayesian models, it is not undisputed that learning involves up-

dating probability distributions. Instead, learning may involve updating a single estimate of the

validity weights based on prediction error. This learning process is implemented by the Least

Mean Squares (LMS) model, which is a single-layer neural network with two input nodes (one

for each cue) and a single output node for the criterion. The weights of the input-output con-

nections reflect the inferred cue validity weights, and these are updated by means of the LMS or

delta learning rule (e.g., Gluck & Bower, 1988). The LMS rule is structurally similar to the Kalman

filter, but uses a learning rate parameter which is constant over time and does not depend on

uncertainty. As such, the LMS rule can be taken as a simple approximation to the Kalman filter2.

Local learning: Generalized Context Model (GCM)

The BLF, CBF and LMS network abstract information regarding the cue-criterion relations.

Exemplar models, such as the context model (Medin & Schaffer, 1978) and Generalized Context

Model (GCM, Nosofsky, 1986), offer an alternative which does not involve such abstraction. Ex-

emplar models have been very successful in category learning, and more recently also in MCPL

studies with a continuous criterion (e.g., Juslin et al., 2003). According to exemplar models, a

2It can be shown that, under certain conditions, the “learning rate” of the Kalman filter (the so-called Kalman

gain, see Appendix A) converges to a constant (e.g. Durbin & Koopman, 2001, p.33). Under these conditions, the

Kalman filter and LMS rule are equivalent in the limit. While convergence of the Kalman gain is not guaranteed for

the DLM in general (in our case, the Kalman gain depends on the cue values, which vary from trial-to-trial and prevent

convergence), the LMS rule can still be seen as an approximation to the Kalman filter.
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response is made on the basis of a set of recollected exemplars (previously encountered cue pat-

terns and corresponding criterion values). When asked to make a prediction, the cue pattern

probes the recollection of stored exemplars. Each recollected exemplar is weighted according to

the similarity of its cue values to the probe cue pattern. Finally, a response is made on the basis

of a weighted average of recollected criterion values. In addition to similarity, we let the weight of

exemplars depend on their recency. Memory decay of exemplars is necessary to track changes in

the environment and we used two common functional forms of memory decay: an exponential

(e.g. Nosofsky, Kruschke, & McKinley, 1992) and power function (e.g. Elliott & Anderson, 1995).

Local learning: Associative Learning Model (ALM)

Associative learning consists of gradually strengthening associations between cues and

response alternatives. Busemeyer et al. (1997) and DeLosh et al. (1997) proposed a model of

associative function learning, which they appropriately named the Associative Learning Model

(ALM). The ALM was modelled after ALCOVE (Kruschke, 1992), a successful model of category

learning. The ALM is implemented as an associative network with an input node for each unique

cue pattern, and an output node for each unique criterion value. A probe cue pattern activates

the input nodes according to a Gaussian generalization function, such that nodes receive more

activation the more similar they are to the probe cue pattern. This spreaded activation of the

input nodes is propagated to the output nodes according to a weighted additive rule, resulting in

a spreaded activation of the output nodes. When making predictions, participants are assumed

to choose one of the output nodes with a probability that reflects the relative activation of the

output nodes. After observing the actual value of the criterion, the weights of the input-output

connections are updated according to the same LMS rule used in the LMS model.

While the ALM and the LMS model are both implemented as single-layer artificial neural

networks and apply the same learning rule, there are substantial differences. The LMS uses a

single node for each cue and the criterion and is constrained to learn a linear relation between

cues and criterion. The ALM uses many nodes for each cue and the criterion and therefore can

also learn non-linear relations. Essentially, the ALM corresponds to a form of nonparametric

density estimation (e.g., Silverman, 1986) of the conditional distribution of the criterion given

cue patterns. As it makes no assumption about the shape of this distribution, it is a general

model which will work in many situations. This generality comes at a price, however, as learning

will be generally slower than in models which do make (approximately correct) assumptions

about the distribution.

Results

We fitted the learning models to the data of Experiment 1 and 2. As for the DLMs, the

learning models’ free parameters (see Appendix C for details) were estimated under different

equivalence assumptions. We fitted a version of each model in which the parameters were as-

sumed identical between all participants, one in which the parameters were assumed to be iden-

tical within conditions, and one in which no between-participant equivalence was assumed. Full

details of the models’ fit are given in Appendix D.

Before comparing the different learning models, we will first discuss some basic findings

for the different models. For all models, the results indicated the need to allow for individual vari-

ation in the model parameters, corroborating the evidence for individual variability in the DLM

analyses. In addition, the global learning models showed that participants learned about the



LEARNING IN A CHANGING ENVIRONMENT 25

Table 1: Best fitting learning models in Experiment 1 and 2

model # par. BIC R2 n (BIC) n (R2)

Experiment 1

BLF 112 75964 0.59 4 9

CBF 140 76791 0.55 4 8

LMS 84 76222 0.58 1 5

GCM 112 77413 0.53 1 3

ALM 140 74941 0.56 18 3

Experiment 2

BLF 120 88736 0.36 4 8

CBF 150 88716 0.37 6 7

LMS 60 89268 0.33 0 2

GCM 120 89209 0.38 1 11

ALM 120 87680 0.35 19 2

Note: # par = number of freely estimated parameters (note that while all models had between 2

and 6 free parameters, as these were estimated for each individual participant, the total number

of free parameters is relatively large), BIC= Bayesian Information Criterion, n (BIC)= number of

participants for whom this was the best fitting model according to the BIC, n (R2) = number of

participants for whom this was the best fitting model according to the R2, BLF= Bayesian Linear

Filter, CBF = Competitive Bayesian Filter, LMS = Least Mean Squares network model, GCM =

Generalized Context Model, ALM = Associative Learning Model (ALM).

cue validities at a different rate (the learning rate was identical only in the best fitting LMS model

in Experiment 2). For the GCM, the results showed a clear superiority of the version with an

exponential memory decay function (versions with exponential decay always fitted better than

the corresponding versions with power decay). This is in contrast to the findings of Elliott and

Anderson (1995), who found evidence for a power decay function. As their study involved a cat-

egorization task with gradually changing categories, their results may not have a direct bearing

on the present task. Nonetheless, the difference is interesting, and merits further investigation.

Note that the LMS model incorporates a form of exponential decay, as do the Bayesian filters

(approximately). The best fitting version of the ALM in Experiment 1 was the one with a differ-

ent generalization coefficient for the two cues. In Experiment 2, the best fitting version had an

identical generalization coefficient for the two cues.

The fit measures of the best version of each model are collected in Table 1. Comparing the

values of the BIC, we see that the ALM is the overall best fitting model in both experiments and

thus provides the best description of the distribution of participants’ responses. The superiority

of the ALM may be partly due to the fact that it (correctly) takes participants’ predictions to

be integers between -100 and 100, rather than assuming predictions are continuous values not

necessarily restricted to this range3. While the ALM had the best overall fit, it did not uniformly

3More technically, the ALM specifies a discrete probability distribution over the 201 possible responses, while the

other models use continuous density functions over the whole real number line. For continuous density functions

f , the likelihood l is usually defined as l (R) = f (R), but to make comparable predictions to the ALM, we used the

cumulative distribution functions F (R) =
∫ R

−∞
f (x )d x , and computed the likelihood as l (R) = F (R + .5)− F (R − .5).
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fit best on an individual level. As Table 1 shows, the BLF and CBF fitted best for a number of

participants, while there were a small number of participants for whom the GCM or LMS fitted

best. When looking at the R2 values, we see that the BLF outperformed the other models in

Experiment 1. As the BLF has fewer free parameters than the ALM, its higher accuracy is not

due to increased model complexity. In Experiment 2, the GCM performed best, using the same

number of parameters as the ALM. Hence, we are left with a dilemma: the ALM appears to better

capture the statistical properties of responses, while the BLF and GCM perform better in terms

of their point predictions. We should note that, in contrast to the LMS and GCM, the reported R2

values of the BLF, CBF and ALM are probably not as high as they could be, making the values for

the BLF and CBF more impressive4.

The model fits are far from unequivocal. The relative fit of the ALM differs markedly de-

pending on whether one looks at the BIC (best fitting model) or the R2 (one of the worst fitting

models). There is also a marked difference between Experiment 1 and 2: in the first experiment,

the GCM was the worst fitting model, both in terms of the BIC and R2, while in the second ex-

periment it outperformed all other models in terms of the R2, but only the LMS in terms of the

BIC. Aggregating the data over the two experiments, we see that the ALM fits best according to

the BIC while the BLF fits best according to the R2 value5. With that in mind, we tentatively

conclude that the BLF and ALM are the best models of participants’ learning processes.

For a more qualitative comparison of the models’ predictions, Figure 8 compares cue uti-

lization as predicted by the models to the DLM estimates of participants’ actual cue utilization.

This shows that the differences between the models are mostly subtle. One difference is at the

start of the task, where the CBF and GCM predict relatively quick learning, while the other mod-

els predict more gradual changes in cue utilization.

Experiment 3

Both the BLF and ALM fitted the data of Experiment 1 and 2 well, so it remains unclear

whether learning is a local or global process. Experiment 3 was designed to resolve this am-

biguity. As noted earlier, global learning models such as the BLF, CBF and LMS learn single

functions which apply to the whole range of possible cue values. Local learning models, such

as the ALM and GCM, effectively learn a large number of rules each applying to only a specific

localized region in the space of possible cue values. The design of Experiment 3 was based on

the observation that this distinction extends to the inference of change. For global models, a

change detected in one region of the cue space will change the function globally, so that changes

generalize to all possible cue values. For local models, a change in one region of the cue space

While this solves part of the problem by basing all computed likelihoods on discrete probability distributions, the

continuous distributions assign positive mass to values outside the range of possible responses. This puts the ALM at

an advantage in terms of likelihood values (which form the basis of the BIC).
4Due to the form of the response distributions of these models (Normal distributions with changing variance for

the BLF and CBF, and a general discrete distribution for the ALM), maximum likelihood and least squares (maximum

R2) estimation are likely to give different parameter estimates. The response distributions of the LMS and GCM mod-

els are normal distributions with a constant variance, for which maximum likelihood and least squares estimation

give identical results. Thus, for the LMS and GCM, maximum likelihood estimation results in minimum BIC and

maximum R2 values, while for the BLF, CBF and ALM, estimation only minimizes the BIC values. For this reason,

maximum likelihood estimation will bias comparison on R2 values towards the LMS and GCM
5The aggregated BIC values are 164860, 165708, 165671, 166782 and 162833, and the R2 values are .45, .44, .43, .44

and .43, for the BLF, CBF, LMS, GCM and ALM respectively.
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Figure 8. Average predicted utilization of cue 1 according to the BLF, CBF, LMS, GCM and ALM in Ex-

periment 1 (top rows) and 2 (bottom rows). For the BLF and LMS, predicted cue utilization is identical

to inferred cue validity. For the CBF, utilization is identical to the inferred cue utilization weighted by the

(predicted) cue responsibility. For the GCM and ALM, we derived approximate predictions of cue utiliza-

tion by fitting DLMs to the models’ predicted responses. Also shown are the average utilization curves as

derived from the DLM, and the cue validity weights.

will not generalize to other regions. By following a change in cue validity with training on a re-

stricted range of cue values, we should be able to discriminate between global and local forms of

learning. While local learners should only learn to change their predictions to cue values in this

restricted range, global learners should learn to also change their predictions to cue values out-

side this range. Testing participants on the whole range of cue values (without feedback) should

thus provide a “model-free” test of global vs local learning.

In the previous two experiments, some participants seemed to have problems learning

negative cue-criterion relations. This is consistent with results from previous research showing

that negative relations are more difficult to learn than positive ones (e.g., Brehmer, 1973; Naylor

& Clark, 1968). To increase the generalizability of the results, we included a Positive-Negative

(PN) condition in which cue validity was initially positive before changing to a negative value, in

addition to the Negative-Positive (NP) condition, where the cue validity changed from a negative
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to a positive value.

Method

Participants. Forty students from University College London took part in the experiment.

Participants were paid a basic fee (2 pounds) for their time, as well as an additional fee (between

0 and 5 pounds) based on their performance. Participants were randomly assigned to either the

NP or PN condition. The two conditions did not differ in the distribution of sex (NP: 10 male,

10 female; PN: 8 male, 12 female; χ2(1) = .10, p = .75), or mean age (NP: M = 20.00, SD = 0.92;

gradual M = 19.60, SD = 0.88; t (38) = 1.41, p = .17).

Materials. Apart from the inclusion of a test phase without outcome feedback and reduc-

ing the total number of trials to 220, the task was similar to that of the previous experiments.

In the NP condition, the validity of cue 1 started at a negative value of v1 = −0.8 for trials 1 to

100, and then changed to a positive value of v1 = 0.8 for trials 101 to 220. In the PN condition,

this pattern was reversed, starting with a positive validity of v1t = 0.8 for trials 1 to 100 and then

changing to a negative value of v1 =−0.8 for trials 101 to 220. In both conditions, the validity of

cue 2 was held constant at v2 = 0.4. See Figure 5 for a graphical representation of the resulting

cue validity patterns.

Precise details of the experimental design are given in Table 2. The task was divided into

three phases: two learning phases and a test phase. Learning Phase 1 was similar to the task in

the previous experiments. Participants were presented with cue values sampled from the range

[−100; 100], and asked to predict the (change in) share price of software company Mango. In

Learning Phase 2 (trials 101 to 180), where the validity of cue 1 differed from Learning Phase 1,

participants were presented with only a subset of the possible values of cue 1. For one group

these values were in the ranges [−50; 0] and [50; 100], and for the other group in the ranges

[−100;−50] and [0; 50]. Thus, there were two ranges excluded from Learning Phase 2, an “in-

terpolation” range, lying in between the two included ranges, and an “extrapolation” range, lying

outside the two included ranges. In the Test Phase (trials 181 to 220), participants were asked to

make predictions without outcome feedback. The cue validity was identical to that in the second

learning phase.

In the Test Phase, participants were presented with critical and control cue patterns. The

critical patterns had values for cue 1 which were outside the range used in Learning Phase 2,

while the control patterns had values for cue 1 which were inside this range. Both critical and

control patterns had been presented before at the end of Learning Phase 1 (and the control pat-

terns also at the end of Learning Phase 2). Global learning models predict that participants give

different predictions in the Test Phase compared to Learning Phase 2, and that this difference is

comparable for the critical and control cue patterns. Local learning models predict that partici-

pants will make different predictions for the control cue patterns (as they have learned to do so

during Learning Phase 2), but not, or to a much lesser extent, for the critical cue patterns.

Procedure. The procedure was similar to that of Experiment 1, but the instructions in-

formed participants that they would also be asked to make predictions without outcome feed-

back. At the start of the test phase, participants were informed that they were now to make pre-

dictions without feedback, and that they could make their predictions as in the previous trials

with feedback.
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Table 2: Design of the task in Experiment 3. The values given are for half the participants; for the other

half, critical and control patterns were interchanged, and the values of Cue 1 in Learning Phase 2 were

randomly sampled from the ranges [-50;0] and [50;100].

Learning Phase 1

Trial 1-80 Randomly generated cue patterns:

• Cue 1 randomly sampled from the range [-100;100]

• Cue 2 randomly sampled from the range [-100;100]
Trial 81-100 10 critical cue patterns:

• Cue 1 = −45, −35, −25, −15, −5, 55, 65, 75, 85, 95

• Cue 2 randomly sampled from the range [-100;100]

10 control cue patterns:

• Cue 1 = −95, −85, −75, −65, −55, 5, 15, 25, 35, 45

• Cue 2 randomly sampled from the range [-100;100]

Learning Phase 2

Trial 101-160 Random generated cue patterns:

• Cue 1 randomly sampled from the ranges [-100;-50] and [0;50]

• Cue 2 randomly sampled from the range [-100;100]
Trial 161-180 10 random cue patterns (as above)

10 control cue patterns (repeated from Learning Phase 1)

Test Phase

Trial 181-200 10 critical cue patterns (repeated from Learning Phase 1)

10 control cue patterns (repeated from Learning Phase 1 & 2)
Trial 201-220 10 new critical cue patterns (generated as in Learning Phase 1)

10 new control cue patterns (generated as in Learning Phase 1)

Results and discussion

The results are presented in largely the same order as earlier. We first discuss overall learn-

ing performance, followed by an investigation of the responses to the critical and control pat-

terns. We then discuss cue utilization, followed by a comparison of the formal learning models.

We end with the assessment of participants’ insight. Due to a technical error, responses of nine

participants on one critical trial (each with a different cue pattern) of the Test Phase were not

recorded; these were treated as missing values.

Performance. The correlation between predictions and criterion values in the two learn-

ing phases ranged from -0.02 to 0.88 (M = 0.45, SD = 0.24) in the NP condition, and from 0.38

to 0.97 (M = 0.64, SD = 0.19) in the PN condition. For two participants in the NP condition

(N10 and N13) the correlation was not significantly higher than 0, t (178) = 1.36, p = .18, and

t (178) = −0.31, p = 0.76, respectively. The correlation was significantly higher than 0 for all

other participants. As before, we report the results using data from all participants; unless stated

otherwise, the same pattern of results was obtained after exclusion of N10 and N13.

A 2 (condition) × 11 (block: 20 trials each) ANOVA with repeated measures on the second
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factor and Greenhouse-Geisser correction was conducted for the MAD between predicted and

actual values of the criterion6. This analysis showed a significant effect of block, F (3.71, 140.91) =

6.90, MSe = 330.42, p < .001, which is due to a sharp increase in prediction error in the block

where cue validity changed. There was also a significant interaction between condition and

block, F (3.71, 140.91) = 27.09, p < .001, which is mainly due to smaller prediction error in the

blocks where cue validity was positive (M = 24.61, SD = 7.90) compared to negative (M = 41.06,

SD = 3.99). The main effect of condition was not significant (NP: M = 34.80, SD = 32.71; PN:

M = 30.43, SD = 32.69), F (1, 38) = 1.38, MSe = 1519.13, p = 0.25.

Critical and control trials. Figure 9 shows the average responses and optimal responses

to the critical and control cue patterns. Each arrow represents the change in average prediction

from Learning Phase 1 (arrow base) to the Test Phase (arrow tip). The results indicate that par-

ticipants revised their responses after the change in cue validity, both for critical and control test

trials. However, in general, participant’s responses were more cautious (closer to 0) and changed

less than optimal. In agreement with the analysis of the MAD, responses in Learning Phase 1

were more optimal in the PN condition than in the NP condition, while the reverse holds in the

test phase. More importantly, there does not appear to be a consistent difference between the

critical and control test trials in either condition. This was confirmed in a condition by trial type

(control vs critical) by cue value ANOVA, with as dependent variable the ratio of the change in ac-

tual response to the change in optimal response from learning to test (i.e., the ratio of the length

of the arrows for actual and optimal responses). This analysis only showed a significant effect of

cue value, F (19, 555) = 7.33, MSe = 1.07, p < .001, but no effects of trial type (all F ’s < 1.50). The

main effect of cue value was due to the “overshooting” for small values of cue 1 (values -5 and 5),

as evident in Figure 9. After elimination of the responses to these two cue values, the main effect

of cue value was no longer significant, F (17, 555) = 1.14, MSe = 0.40, p = .31.

The absence of a trial type effect indicates that participants revised their responses to the

critical test trials as much as their responses to control test trials. This is expected from global

learning, where learned changes for the control cue patterns generalize directly to the critical

test patterns. While local learning allows for some generalization of change to surrounding cue

patterns, a key prediction is that this extrapolated change should be smaller in magnitude than

learned change. As there was no indication of this effect, the results are more supportive of global

than local learning.

Which cues were used?. The pattern of results was similar to that obtained in the previ-

ous experiments (see Appendix B for details). The large majority (n = 26) of participants only

relied on the two actual cues. Some participants (n = 11) also seemed to rely on the previous

change in the criterion, and a small number of participants (n = 4) seemed to assume an inter-

action between the cues. Again, there was strong evidence for individual variation in the model

parameters.

Cue utilization. The cue utilization profiles derived from the best fitting DLMs are given

in Figure 10. As in the previous experiments, these figures show that participants’ cue utilization

adapted to the changing environment. As before there was a lot of individual variability; some

participants (e.g., N7, N14, P4 and P13) adapted quickly and accurately to the changes, while

6For the test trials, the MAD refers to the absolute difference between predictions and the expected value of the

criterion.
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Figure 9. Mean actual and optimal responses to the critical and control test patterns. Arrows start at the

response in Learning Phase 1 and end at the response in the Test Phase. Black arrows indicate the actual

responses and grey arrows the optimal responses. Different test patterns are indicated by the value of the

first cue, displaced slightly to separate actual and optimal responses. Note that these plots combine the

results of two groups. In one group, the critical cue 1 values were between -50 and 0 and between 50 and

100, while in the other group, the critical cue 1 values were between -100 and -50 and between 0 and 50.

This also holds for the control cue patterns.
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others (e.g., N10 and P20) showed relatively little adaptation. Some participants (e.g., N8, N9

and N11) seem to have had initial difficulties in utilizing cue 1 according to its (negative) validity,

but learned to utilize the cue in the direction of its positive validity in the second learning phase.

In the PN condition, all participants showed positive utilization in Learning Phase 1. However,

some participants (e.g., P3, P14 and P15) were apparently unable to later change this utiliza-

tion in Learning Phase 2. Finally, some participants (e.g., P5 and P18) appeared to change their

utilization from Learning Phase 2 to the Test Phase.

The average utilization is depicted in Figure 5. The conditions clearly differed in the uti-

lization of cue 1, which was confirmed by a condition× block (11 blocks of 20 trials each) ANOVA

which showed a significant interaction between condition and block, F (1.96, 74.45) = 65.31,

MSe = 0.41, p < .001. The conditions also differed in the utilization of cue 2, as confirmed by a

significant interaction between condition and block, F (3.26, 124.05) = 9.13, MSe = 0.08, p < .001.

In the NP condition, utilization of cue 2 slowly increased to its validity. In the PN condition, uti-

lization deviated little from validity initially, but decreased in Learning Phase 2.

Learning models. As participants received no outcome feedback in the Test Phase, we

assumed no learning would take place there, and therefore fitted the models to the data of the

two learning phases, effectively using the data from the Test Phase as a cross-validation sample.

The complete results of the model fits are given in Appendix D. Table 3 contains the results

for the best fitting version of each model (this selection was based all trials, i.e., the learning and

test phases combined). For the learning phases we obtained similar results to Experiment 2: the

BIC selected the ALM as the best fitting model, but the R2 was highest for the GCM. Interestingly,

although the GCM has the highest aggregated R2 value, the BLF has the highest R2 value for more

individual participants than the GCM.

For present purposes, more important is how well the models predict responses in the

Test Phase. As data from the test phase was not used in parameter estimation, the number of

free parameters was set to 0 in calculating the BIC for this phase. As could be expected, the fit

of all models is worse in the test phase than in the learning phases. The ALM even has a neg-

ative R2 value, meaning that the model does a worse job in predicting participants’ responses

than the overall mean. The CBF outperforms the other models, both in terms of the BIC and

R2. With regard to the distinction between global and local learning models, it is interesting to

distinguish between the interpolation and extrapolation trials. Recall that these terms reflect the

inter- and extrapolation of change to cue values encountered before the change, rather than the

inter- and extrapolation of a stable cue-criterion relation to not yet encountered cue values. If

learning is global and change extrapolated, we should expect the local learning models to per-

form especially poorly on the extrapolation trials, as the interpolation trials can benefit more

from generalization from the surrounding cue values. This clearly holds for the ALM, which has

the worst fit for the extrapolation trials, both in terms of the BIC and R2. However, the pattern

is less clear for the GCM. While the GCM is outperformed on the extrapolation trials by all three

global learning models in terms of the BIC, its R2 value is only surpassed by the CBF. Moreover,

in contrast to all other models, the R2 values indicate better fit to the extrapolation trials than the

interpolation trials. This is unexpected and it is unclear why the GCM would fit the extrapolation

trials better than the interpolation trials.

To summarize, the results of the test phase indicate a superiority of the CBF, followed by

the BLF, which performs better in the interpolation trials, but not as well in the extrapolation tri-
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Figure 10. Cue utilization for participants in Experiment 3 in the Negative-Positive (N1-N20) and

Positive-Negative (P1-P20) condition. Estimated utilization (solid lines) was computed with model C,

apart from participants N17, P1, P13 (model I), P4, P5, P10, P12, P15, P18, N3, N9, N10 and N17 (model P)

and N9 (model I+P). Validity (broken lines) represents actual cue validity. Horizontal dotted lines indicate

zero cue utilization. Vertical dotted lines indicate the start of the test phase.
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Table 3: Fit of the learning models in Experiment 3

BIC R2

test test

model # par. learning inter. extrap. comb. all learning interp. extrap. comb. all n (BIC) n (R2)

BLF 120 70711 3709 4163 7871 86383 0.42 0.41 0.16 0.24 0.41 7 13

CBF 200 71666 3732 4104 7836 87434 0.43 0.31 0.26 0.29 0.41 6 6

LMS 84 71416 3760 4172 7932 87264 0.42 0.29 0.05 0.13 0.38 0 2

GCM 160 71489 3840 4204 8044 87508 0.47 0.21 0.25 0.24 0.44 3 9

ALM 200 70090 3783 4322 8104 85940 0.44 0.29 -0.24 -0.06 0.39 24 10

Note: learning = Learning Phase 1 and 2, inter. = “interpolation” critical test trials, extrap. = “extrapolation” critical

test trials, comb. = all critical test trials combined, all= all data from learning and test phases. See note in Table 1 for

explanation of other abbreviations.

als. While the GCM performs quite well in the test phase in terms of the R2, it is outperformed by

the CBF in this respect, and additionally by the BLF in terms of the BIC. Overall, participants’ in-

ference of change appears more consistent with a global Bayesian learner than a local associative

or exemplar learner.

Insight. The results of the insight questions are depicted in Figure 6. The results replicate

those of the previous experiments. In general, the average ratings are consistent with the sign

of the cue validity weights. A regression model with cue validity as single predictor showed a

significant effect of cue validity on the ratings, F (1, 239) = 102.3, p < .001, R2 = 0.30, but a similar

model with cue utilization as predictor showed a stronger effect , F (1, 239) = 123.4, p < .001,

R2 = 0.34. And while cue utilization had an additional effect to cue validity, F (1, 238) = 12.78,

MSe = 18.69, p < .001, the reverse was not true, F (1, 238) = 1.79, p = .18.

The logistic regression model for the choice data with cue validity as predictor showed a

significant effect of validity, b = 1.55 (S.E. = 0.48), p < .01, but did not fit the data very well,

χ2(119) = 155.39, p < .05. The model with cue utilization as predictor showed a stronger effect of

utilization, b = 2.89 (S.E.= 0.70), p < .001, and could not be rejected, χ2(119) = 144.89, p = .053.

In addition, while adding cue utilization to the model with cue validity as predictor significantly

improved model fit, χ2(118) = 12.67, p < .001, the reverse was not true, χ2(118) = 2.18, p = .14.

Thus, as in the previous experiments, participants showed good insight into what they

learned, and we did not find evidence for implicit learning.

General discussion

We presented three experiments investigating how people learn to predict a criterion on

the basis of two cues, where the relation between one of the cues and the criterion changed over

time. The results showed that participants learned to predict the criterion reasonably well and in

doing so were responsive to changes in the cue-criterion relations. Indeed, responses were quite

subtly tuned to the dynamic changes in the environment, showing different patterns for grad-

ual and abrupt changes (Experiments 1 and 2). Participants also showed good insight into the

changing task structure. Comparing a number of formal learning models, we showed that partic-

ipants’ behaviour was consistent with a Bayesian learner, who infers the parameters of a chang-

ing linear function by taking uncertainty into account, and an associative learner, who gradually

strengthens the associations between cue patterns and response alternatives. The third experi-
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ment showed that participants generalized a change learned for a particular range of cue values

to the whole range of possible cue values. This is more consistent with global rule learning than

local forms of learning.

Types of change

In the first two experiments, we compared learning in environments where changes in a

cue-criterion relation were either gradual and smooth, or abrupt and discontinuous. The type

of change appeared to have little effect on participants’ overall prediction performance. In both

types of environment, participants’ cue utilization patterns reflected the changes in cue validity.

Experiment 1 indicated that adaptation to gradual changes was slower than to abrupt changes.

However, this result may have been due to problems in establishing an initial representation of

the task. In the gradual change condition, cue validity changed from the outset, while validity

was initially stable in the abrupt change condition. Keeping initial cue validity relatively stable in

both conditions, we found no evidence that participants were slower to adapt to gradual changes

in Experiment 2. This supports the hypothesis that an initial stable representation helps learning

later changes. One potential caveat is that the gradual change in Experiment 2 was faster and

therefore less different from the abrupt change than in Experiment 1. However, as a gradual

curve fitted the cue utilization better than the abrupt curve in this condition, it seems unlikely

that participants perceived the pattern of gradual changes as an abrupt one.

The second experiment also tested the hypothesis (e.g., Bouton, 2004; Elliott & Anderson,

1995; Redish et al., 2007) that abrupt changes will result in the formation of different task rep-

resentations, rather than the adaptation of a single representation. We found no support for

this hypothesis, as reinstatement of the environment’s initial state did not result in an advantage

for participants who previously encountered abrupt changes. Thus, abrupt changes did not ap-

pear to be learned in a qualitatively different way than gradual changes. In both cases, learning

may entail the adaptation of a single representation to the changing environment. Of course,

participants may come to expect changes of a similar kind as those encountered previously, so

that a large abrupt change is more surprising after a period of relatively small, gradual changes

than after a period of abrupt changes. If learning depends on surprise, an unexpected abrupt

change may actually result in quicker adaptation (Yu & Dayan, 2005). This surprise would be on

a higher level, stemming from a difference between expected and inferred change. Surprise is

more commonly linked to changes in cue-criterion relations, rather than changes in the process

underlying these changes. Detecting the latter type of change involves rather sophisticated in-

ference. While the results are suggestive, how higher level change processes are reflected in the

learning process requires further investigation. It is clear that these aspects can be learned (e.g.,

Behrens, Woolrich, Walton, & Rushworth, 2007). We can learn that some aspects of the envi-

ronment remain stable, while others change, and that some changes are rapid, while others are

slow. Addressing how we adapt the dynamics of our inferential processes to the environment is

an important future challenge for cognitive science.

Implicit and explicit learning

Participants displayed good insight into general aspects of the cue-criterion relations. In

particular, they were able to indicate the direction of the relation between each cue and crite-

rion, as well as the relative strength of these relations. Moreover, they displayed awareness of

the changes in cue validity. While participants’ judgements were clearly related to cue validity,
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the relation with cue utilization was even stronger. We take participants’ cue utilization to reflect

their inference of the task structure and conclude that, even though inferences may be prone

to error (cue utilization and validity do not always match), participants were able to access and

evaluate these inferences. This is in clear contrast to claims that MCPL tasks are learned implic-

itly.

Dynamic lens model analysis

We used a dynamic lens model (DLM) to obtain optimal estimates of participants’ cue

utilization on a trial-by-trial basis. The resulting fine-grained profiles of participants’ learning

process provided interesting results. First of all, many participants were clearly responsive to

changes in the cue-criterion relations. In contrast to the results of earlier studies (e.g., Peterson

et al., 1965), which indicated that participants were relatively slow in adjusting cue utilization to

changes in validity, a large number of participants showed almost immediate changes in cue uti-

lization following a change in validity. Secondly, the DLMs indicated large individual differences

in cue utilization patterns. For instance, we could see that some participants appeared to have

(initial) difficulties in utilizing a cue which was negatively related to the criterion. While previous

MCPL studies have shown that negative relations are generally harder to learn than positive ones,

we could also see that some participants seemed to suddenly overcome this difficulty, resulting

in rapid changes in cue utilization. Such rapid changes may result from an attentional process,

where the negative cue is first ignored, but suddenly attended to. Differences in attention may

also underlie the cue competition effects displayed by some participants. While attentional pro-

cesses were not explicitly incorporated into our analyses, there are different ways of doing so.

One possibility is to allow the covariance matrix of utilization changes (Σu , see Appendix A) to

change over time. Attention to a cue could be modelled by assigning that cue a relatively large

variance, resulting in relatively rapid changes in utilization. A second possibility is to incorpo-

rate an “attentional gate” such that, on a given trial, participants can utilize a given cue or not.

This trial specific utilization would be independent of the underlying latent utilization weights,

such that participants can make sudden shifts between an effective utilization of 0, and one

that is substantially different from 0. These options differ in important ways; the first is more

directly related to the learning, the second more to the response process. While both can be rel-

atively easily incorporated into the DLM, parameter estimation will become more involved. In

the relatively simple case when participants only utilize a single cue at a time, we arrive at the

Competitive Bayesian Filter. In general, we can no longer rely on the Kalman filter, and utiliza-

tion estimates will no longer be analytically tractable. However, recent advances in approximate

methods, such as Monte Carlo Markov Chain (e.g., Gilks, Richardson, & Spiegelhalter, 1996) and

Particle Filters (e.g., Doucet, Freitas, & Gordon, 2001), mean that we can start exploring such

extensions in future research.

Formal models of MCPL: global and local learning

To provide a more theoretically inspired account of participants’ learning, we formulated

five formal learning models. As noted in the introduction, model development for function

learning and MCPL has lagged behind that for category learning. In addition, there has been

little work on how these models function in dynamic environments. The present study aimed

to fill this lacuna. We formulated two novel Bayesian MCPL models: the Bayesian Linear Filter
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(BLF) and the Competitive Bayesian Filter (CBF), in addition to three previously proposed mod-

els, a Least Mean Squares (LMS) network model, the Generalized Context Model (GCM, Nosof-

sky, 1986), and the Associative Learning Model (ALM, Busemeyer et al., 1997).

The results of the model comparison were not conclusive. Apart from the LMS, all models

performed best at some stage (the CBF outperforming the other models in the test phase of

Experiment 3). For a final, overall evaluation, we aggregated the data from (the learning phases

of) the three experiments. This shows that the ALM fitted best according to the BIC, while the R2

measure indicates a superiority of the BLF7. The BLF’s advantage is especially noteworthy since,

in contrast to the LMS and GCM, the R2 value was not directly maximised for this model and

could potentially increase if parameters were estimated by a least squares procedure. As the BLF

was also the second best performing model according to the BIC, it appears to be more of an

“all-rounder” than the other models.

We were particularly interested in the difference between global and local learning. The re-

sults of the test phase in Experiment 3 seemed to support global over local learning models. The

“model-free” test indicated that changes in one range of the cue values were generalized to other

ranges. This extrapolation of change is a crucial prediction from global learning models. Local

learning models can accommodate this extrapolation with a high level of generalization from

experienced to new cue values. But this generalization should be weaker than directly learned

changes. Yet we found no evidence that predictions were adjusted less for extrapolation cues.

In addition, the global learning models showed superior fit to the test phase. While the first two

experiments were ambivalent in their support for global and local learning models, the results of

Experiment 3 clearly support global learning.

One caveat is that we tested the models in a linear task environment. Previous research

indicates that while participants usually assume linearity, they can learn functions with more

general shapes (e.g., Busemeyer et al., 1997; DeLosh et al., 1997; Kelley & Busemeyer, 2008). The

BLF, like the other global learning models tested here, can only learn linear relations between

cues and criterion and is unlikely to perform as well in highly nonlinear task environments. Un-

surprisingly, models without linearity constraints, such as the GCM and ALM, perform better in

those environments (Juslin et al., 2003; McDaniel & Busemeyer, 2005). Juslin et al. (2003, 2008)

argued that people switch from rule-based to exemplar-based learning to cope with such envi-

ronments. While there is no need to invoke multiple learning systems, the results do indicate

that linear models such as the BLF may need to be extended to capture learning in more general

MCPL tasks. While previous studies focussed on function learning (learning the relation between

a single cue and the criterion), a recent study by Kelley and Busemeyer (2008) reports evidence

that people can learn non-linear and non-additive functions of two cues.

Another potential criticism is that our conclusions are based on a limited number of learn-

ing models. Although compared to category learning, the literature contains relatively few mod-

els of MCPL, it would have been infeasible to compare all of them. We restricted our attention to

models with relatively dissimilar characteristics. Although the BLF and LMS model are relatively

similar, we included the latter to assess the evidence for a Bayesian learning mechanism which

effectively adjusts the learning rate according to uncertainty. Interestingly, the results do support

the existence of such a mechanism of learning rate adjustment. In addition, we tested specific

versions of each model and it is possible that other variants would have performed better. For

7The aggregated BIC values were 251515, 253479, 253098, 254559 and 249110, and the R2 values 0.441, 0.430, 0.415,

0.438, and 0.418, for the BLF, CBF, LMS, GCM and ALM respectively.
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instance, we did not fully estimate participants’ prior expectations regarding cue validity in the

global learning models (i.e., we set the mean of the prior cue validity distribution to 0 in the BLF

and CBF, and the starting weights to 0 in the LMS). Also, we tested a relatively simple version

of the ALM which did not include the additional linear inter- and extrapolation component of

the EXtrapolation Association Model (EXAM, DeLosh et al., 1997). This component allows the

model to better capture participants’ extrapolation of a function to unknown cue values. As our

experiments did not involve an explicit extrapolation test, we deemed it unnecessary here; while

the critical test trials in Experiment 3 required participants to generalize a change in the func-

tion to certain cue values, crucially, they had encountered these cue values before the change

and did not extrapolate to unknown cue values. The tested version of the ALM also did not in-

clude the ability to learn dimensional attention weights; as in the GCM, we assumed that the

generalization gradient for each cue remained the same throughout the task. While not incor-

porated into the original version of the ALM or EXAM, learning these generalization gradients

(or dimensional attention weights) is an important aspect of ALCOVE (Kruschke, 1992), the cat-

egory learning model on which the ALM was based. Whether it improves the performance of

the ALM in multiple cue tasks will require further investigation. Similarly, future work can focus

on extensions of the other models. For example, while the current versions of the BLF and CBF

assume changes in cue validity have a constant (co-)variance throughout the task, incorporating

mechanisms to infer changes in the magnitude of cue validity changes may improve upon these

models.

Cue competition

Research on MCPL, particularly that conducted in the Brunswikian paradigm, typically as-

sumes that cues affect predictions independently. Not only does this assumption underlie lens

model analysis, there is evidence that participants have difficulties in learning to perform MCPL

tasks when cues interact (e.g., Busemeyer et al., 1997), which may indicate that people naturally

assume independent and additive cue effects. There are however findings suggesting that rather

than being independent, cues have competing effects on predictions (Birnbaum, 1976; Buse-

meyer et al., 1993a). The strongest evidence for this cue competition was found by Busemeyer et

al. (1993a), and it was noted (Busemeyer, Myung, & McDaniel, 1993b) that cue competition poses

a serious problem for a large class of learning models. Our analysis of individual cue utilization

patterns also showed signs of cue competition effects, albeit for a minority of participants. To

further investigate evidence for cue competition, we formulated a novel model, the Competitive

Bayesian Filter, which explicitly predicts cue competition effects. According to this model, cue

competition results from an incorrect assumption regarding the structure of the environment,

according to which only a single cue at a time can determine the criterion. The CBF learns op-

timally under this (invalid) assumption. The CBF fitted the data reasonably well, and it offered

the best description of the behaviour of a number of participants. Although cue competition

thus characterises a proportion of learners, our lens model analysis clearly indicates it is not a

universal characteristic of human multiple cue learning.

Individual variation

One striking aspect of our results is the large variation between participants. Even in a

relatively simple two-cue task, the analyses of participants’ cue utilization show a wide range in

learning dynamics. The usual practice of analysing aggregate data, or averaging over individual
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analyses, can hide the richness in idiosyncratic behaviour. Some of the individual variation may

reflect differences in sensitivity to change in the task structure. In our experiments, as in many

real-life situations, participants were not explicitly alerted to the possibility of changes in cue-

criterion relations. Different results could have been obtained if they were informed beforehand

of the possibility of change. But our analyses show that most participants did learn that the

environment changed. Moreover, additional research not reported here, in which participants

were informed of the possible changes, showed similar results to those obtained here.

The idiosyncratic cue utilization patterns could alternatively reflect qualitative differences

in learning processes. In other words, do participants learn in qualitatively different ways, or are

their differences a matter of degree? The finding that the best fitting model varies over indi-

viduals seems to support the former option. However, as illustrated in Figure 8, differences in

the models’ predictions are often subtle, even when considering the full course of their learn-

ing rather than asymptotic performance. Small differences do occur, such as the relatively quick

adaptation of the GCM and CBF in comparison to the other models. By incorporating changes

in the environment, model discriminability may be enhanced, especially when controlling the

cue patterns as in Experiment 3.

The difficulty in model discrimination necessitates the use of highly sensitive tests. For

instance, models may differ mostly in certain periods, such as the start of the task (where the

CBF and GCM adapt quicker than the other models, see Figure 8) or after a change in task struc-

ture. It will then be useful to focus experiments mainly there. And if models differ mostly in

their predictions for certain cue patterns, then these patterns should be emphasised in the task.

One complication in the design of such discriminative tests is that they are often highly sensi-

tive to changes in model parameters. We found evidence of significant individual variation in

parameter values, and therefore a sensitive test for one participant may not be a sensitive test for

another. We are currently working on methods to resolve this problem, providing adaptive tests

for model discrimination.
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Appendix A

Cue utilization estimation by the Kalman filter/smoother

In this appendix, we give details of the Dynamic Lens Model (DLM) and the Kalman filter

and smoother techniques for its estimation. We also give a brief description of the Expectation-

Maximisation (EM) algorithm to estimate the model parameters. More general and extensive

treatments can be found in Durbin and Koopman (2001), Harvey (1989), or West and Harrison

(1997). The presentation is geared towards the current situation, and the equations presented

are not optimal from a computational viewpoint. For the actual implementation, we used the
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more numerically stable computations described in Wu, Pai, and Hosking (1996).

Dynamic Lens Model (DLM)

In the DLM, we model a response on trial t , denoted as Rt , as a function of the cue values

and utilization weights as follows:

Rt = xt ut + e t , e t ∼N (0,σr ), (2)

where xt = (x1t , . . . ,xm t ) is the 1×m vector containing the cue values, and ut = (u 1t , . . . , u m t )
❚

the m × 1 vector containing the utilization weights (❚ denotes the matrix transpose). Note that

this is just a multiple regression model written in matrix form; the response is the dependent

variable, the cues the independent variables, and the utilization weights the regression coeffi-

cients. The right hand part of Equation 2 states that the error term, e t , is a Normally distributed

variable with zero mean and a standard deviation σr , which reflects how variable responses are

around the model predictions. We can use a similar model for the task environment, replacing

the response by the criterion value Yt and the cue utilization weights by the cue validity weights

vt . The cue utilization and/or validity weights are allowed to vary over trials/time and these

changes are assumed to follow a first-order Markov process, so that the utilization (validity) at

a particular time point only depends on the utilization (validity) at the previous time point (see

also Figure 2). The distribution of the cue utilization (validity) at time t +1, conditional upon the

utilization (validity) at time t , is specified by a transition model. For the cue utilization weights,

we use the following transition model

ut+1 = ut +dt , dt ∼N (0,Σu ), (3)

i.e., the utilization at time t +1 has a (multivariate) Normal distribution centred on the utilization

at time t . This transition model, in which the probability of an increase is identical to the prob-

ability of a corresponding decrease, is also known as a random walk. The covariance matrix Σu

effectively determines the magnitude of the cue utilization changes: if the diagonal values of this

matrix (the variances) are relatively large, utilization will undergo relatively large changes from

one trial to the next, while small values result in relatively stable utilization over trials. The co-

variances in Σu reflect the inter-dependency between changes in the utilization of the cues. The

specification of the DLM is completed by a prior distribution of utilization weights, for which we

use a multivariate Normal distribution:

u0 ∼N (µ0,Σ0). (4)

The mean vector (µ0) and covariance matrix (Σ0) of the prior distribution reflect participants’

initial guess regarding the effect of the cues. The higher the variances in Σ0, the more uncertain

this initial guess is, and the quicker participants will adapt their utilization in the initial trials.

The prior distribution thus determines both the starting point of utilization and the magnitude

of initial changes in utilization. Its effect on later utilization decreases, and eventually it “washes

out” completely.

Given values for the model parameters, µ0, Σ0, Σu and σr , the remaining task is to es-

timate the values of ut for t = 1, . . . , T . For this, we use the Kalman filter and smoother. The

Kalman filter computes an estimate of ut based on the responses thus far (i.e., R1, R2, . . . , Rt ).

It is an on-line estimation technique, useful when observations are made sequentially and we
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need an estimate at each time point. As later observations provide useful information about

previous values of ut , they should be used if available. The Kalman smoother does just that,

and provides estimates of ut taking all observations into account (i.e., R1, R2, . . . , RT , where T de-

notes the total number of trials). As we estimated cue utilization after completion of all trials,

we relied the Kalman smoother. Effectively, the Kalman smoother updates estimates from the

Kalman filter on the basis of later observations. Below, we provide details of both the Kalman

filter and smoother techniques. The estimation routines were implemented in custom software

written in R, and an R package is available from the first author’s website which can be accessed

via ❤tt♣✿✴✴✇✇✇✳✉❝❧✳❛❝✳✉❦✴♣s②❝❤❧❛♥❣s❝✐✴st❛❢❢✴❝♣❜✲st❛❢❢✴♠❴s♣❡❡❦❡♥❜r✐♥❦.

Filtering

Starting from an initial distribution u0 ∼ N (µ0,Σ0), filtering consists of the recursive esti-

mation of ut=k based on the observations thus far (i.e., Rt and xt , t = 1, . . . , k ). In the following,

let R j :k = (R j , R j+1, . . . , Rk ) and similarly xj :k = (xj , xj+1, . . . , xk ). From a Bayesian perspective,

filtering consists of computing the posterior distribution p (ut |R1:t , x1:t ). The cue vectors xt are

assumed fixed and we will not explicitly conditionalize on xt in the remainder.

For the DLM specified above, all relevant distributions are (multivariate) Normal. From

multivariate Normal theory, it can be shown (e.g., Durbin & Koopman, 2001; West & Harrison,

1997) that the filtering distribution is

p (ut |R1:t ) =N (mt , Ct ), (5)

the state prediction distribution is

p (ut+1|R1:t ) =N (mt , Pt ), (6)

and the forecast distribution is

p (Rt+1|R1:t ) =N (xt+1mt , Vt ). (7)

The Kalman filter is an effective algorithm to iteratively compute the parameters (means and

(co)variances) of these distributions. The mean mt of the filtering distribution can be computed

as

mt =mt−1+Kt (Rt −xt mt−1), (8)

which is initialized at m0 =µ0. The covariance of the filtering distribution can be computed as

Ct =Pt −Kt Vt K❚t , (9)

and is initialized at C0 =Σ0. The Kalman gain term is

Kt =Pt x❚t /Vt . (10)

The covariance matrix of the state prediction distribution is computed as

Pt =Ct−1+Σu . (11)

Finally, the variance Vt of the forecast distribution is

Vt = xt Pt x❚t +σ
2
r . (12)
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Smoothing

The Kalman filter provides optimal estimates of ut at each time t , using only the observa-

tions made up to that time. As mentioned previously, at a later time t + k , there is more infor-

mation available to estimate ut , so the filtering estimates are (not necessarily) optimal in light of

this new evidence. Smoothing consists of estimating ut on the basis of all observations R1:T .

The smoothing distribution is

p (ut |R1:T ) =N (m′t , C′t ). (13)

The mean m′t of the smoothing distribution can be computed as

m′t =mt +Pt qt , (14)

where

qt−1 = x❚t V −1
t (Rt −xt mt )+ (I−Kt xt )

❚qt , (15)

initialized at qT = 0, and I is an identity matrix. The covariance matrix C′t of the smoothing

distribution can be computed as

C′t =Pt −Pt Mt−1Pt , (16)

where

Mt−1 = x❚t V −1
t xt +(I−Kt xt )

❚Mt (I−Kt xt ), (17)

which is initialized at MT = 0.

Parameter estimation

The Kalman filter and smoother assume that parameters µ0, Σ0, Σu and σr are known.

When this is not the case, maximum likelihood estimates can be obtained from the Expectation-

Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977; Shumway & Stoffer, 1982). In

the EM algorithm, the states ut are treated as missing values. Using previous estimates of µ0,

Σ0, Σu and σr , the missing states are imputed with their expected values (computed using the

Kalman smoother), and new parameter estimates are then computed by maximising the joint

likelihood of the parameters given the observations R1:T and (imputed) states u1:T . For further

details, we refer the reader to Durbin and Koopman (2001) or Wu et al. (1996), which contains a

computationally simpler implementation.

Appendix B

Assessment of the cues used

To determine the subjective cues (those on which participants actually based their predic-

tions), we fitted DLMs with the following alternative cue vectors:

• Correct (C): xt = (x1t ,x2t )

• Interaction (I): xt = (x1t ,x2t ,x1t ×x2t )

• Previous change (P): xt = (x1t ,x2t , yt−1)

• Interaction + Previous change (I+P): xt = (x1t ,x2t ,x1t ×x2t , yt−1)
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In addition to investigating which cues participants actually used, we also investigated the ex-

tent of individual differences in how participants adapted their cue utilization. Recall that the

parameters of the DLM determine the initial utilization, the rate of adaptation, and the con-

sistency of responses. By fixing these parameters to be identical for different participants, and

comparing this to a model in which the parameters vary over individuals, we can investigate

the extent of individual differences in the dynamic process of cue utilization. We fitted three

versions of each model. In one version, we estimated the parameters separately for each indi-

vidual participant, thus allowing the parameters to vary over individuals. In a second version, we

estimated the parameters for each condition, thus assuming the parameter values to be identi-

cal within the conditions. In a final version, we assumed the parameter values were identical

for all participants. The different restrictions on the model parameters result in a set of nested

models for each of the four models (e.g., the version in which parameters vary between partic-

ipants is nested under the version in which parameters vary between conditions). To compare

nested models estimated by maximum likelihood, we can use likelihood-ratio tests to determine

whether a particular restriction resulted in significantly poorer fit.

Experiment 1

The results of the likelihood tests comparing the models with identical parameter values

within each condition to those with no equivalence between participants were χ2(94) = 1022.67,

χ2(164) = 1109.70, χ2(164) = 1109.37 and χ2(258) = 1186.46, for models C, I, P and I+P respec-

tively, all p < .001. These tests show that, for each model, the version in which parameters varied

between participants fitted significantly better than the other versions. As such, there is suffi-

cient evidence for individual variation. To compare the models fitted to the individual data, we

used the Bayesian Information Criterion (BIC, Schwarz, 1978). This showed that model C fitted

best for 23 participants, model I for 1 participant, and model P for 4 participants. The distribu-

tion of best fitting model was independent of condition, p = .33 (Fisher’s exact test). Comparing

the models fitted to the individual data showed that model C fitted best (the overall BIC values

were 73984, 74620, 74545 and 75422 for models C, I, P and P+I respectively).

Experiment 2

The results of the likelihood ratio tests comparing the models with identical parame-

ters within each condition to those with no equivalence between participants were χ2(102) =

1488.69, χ2(178) = 1593.24, χ2(178) = 1585.00 and χ2(280) = 1704.12, for models C, I, P and I+P

respectively, all p < .001. Thus, the version with individually varying model parameters fitted

significantly better than the other versions in which parameters varied between conditions or

were constrained to be identical for all participants. A comparison between the models on the

individual data showed that model C fitted best for 24 participants, model I for 2, and model P

for 4 participants. The distribution of best fitting model was independent of condition, p = .34

(Fisher’s exact test). Comparison of the models fitted to the individual data showed that model C

fitted best (the overall BIC values were 87122, 87821, 87743 and 88698 for models C, I, P and I+P

respectively).

Experiment 3

In fitting model P and model P+I, the value of the previous change in share price was set

to 0 for trials in the Test Phase, as no outcome feedback was given there. The results of the
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likelihood ratio tests comparing the models with identical parameters within each condition

to those with no equivalence between participants were χ2(142) = 1905.45, χ2(248) = 2088.42,

χ2(248) = 2051.75 and χ2(390) = 2335.26, for models C, I, P and I+P respectively, all p < .001.

Thus, for each model, the version with individually varying parameters fitted better than the

other versions. Allowing for individual variation in model parameters, model C fitted best for 26,

model I for 3, and model P for 10 participants, while model I+P fitted best for one participant.

The distribution of best fitting model was independent of condition, p = .68 (Fisher’s exact test).

Overall, model C fitted the data best (the overall BIC values were 84006, 84823, 84603 and 85699

for models C, I, P, and I+P respectively).

Appendix C

Details of the learning models

This appendix contains details of the implementation of the five learning models. Free

parameters in these models were estimated by maximum likelihood, using the Nelder-Mead

simplex method as implemented in the “optim” function of the R environment for statistical

computing (R Development Core Team, 2006). As for the DLMs, we fitted different versions of

each model, assuming the parameter values to be identical for all participants (referred to as

“·/·/ind”), to be identical for participants within a conditions (referred to as “·/·/con”), or to vary

over individuals (referred to as “·/·/ind”).

Bayesian Linear Filter (BLF)

The Bayesian Linear Filter is similar to the DLM used to estimate participants’ cue utiliza-

tion. Thus, in correspondence with the DLM, the Bayesian Filter makes the following assump-

tions
Yt = xt vt + e t , e t ∼N (0,σ2

y ),

vt+1 = vt +dt , dt ∼N (0,Σv ),

v0 ∼N (µ0,Σ0).

(18)

Learning proceeds through the filtering distribution

p (vt |Y1:t ) =N (mt , Ct ), (19)

the state prediction distribution

p (vt+1|Y1:t ) =N (mt , Pt ), (20)

and the forecast distribution

p (Yt |Y1:(t−1)) =N (xt mt−1, Vt ), (21)

The parameters of these distributions are calculated as in Equations 8, 9, 11 and 12, replacingσr

byσy and Σu by Σv .

Participants’ responses are assumed to follow the forecast distribution, such that the dis-

tribution of a participant’s response at time t is identical to the distribution in Equation 21.

In fitting the model to participants’ responses, the mean of the prior distribution was fixed to

µ0 = (0, 0)❚ and its covariance to the diagonal matrix Σ0 = diag(σ0,σ0). We set the covari-

ance matrix of validity changes to the diagonal matrix Σv = diag(σ,σ) in models “BLF/1/·”, and

to Σv = diag(σ1,σ2) in models “BLF/2/·”. The value of σy was freely estimated. In total, the

Bayesian Linear Filter model had thus either three (σ0, σ, and σy ) or four (σ0, σ1, σ2, and σy )

free parameters.
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Competitive Bayesian Filter (CBF)

The Competitive Bayesian Filter is based on the assumption that, at each trial, only a sin-

gle cue is responsible for producing the criterion. Which cue is responsible can vary over trials.

The criterion is assumed to be a linear function of the responsible cue. Thus, denoting the re-

sponsible cue on trial t as C t , we can write the outcome on trial t , conditional upon j being the

responsible cue, as

Yt |(C t = j ) = v j t x j t + e t e t ∼N (0,σ2
y ). (22)

As in the BLF, the cue validities are assumed to vary over time as

v j t = v j (t−1)+d j t d j t ∼N (0,σ2
j ), (23)

starting from a prior distribution

p (v j 0) =N (µj 0,σ2
j 0) (24)

In addition, the CBF incorporates an assumption regarding the changes in cue responsibility.

More precisely, these are assumed to follow a (first-order) Markov process, such that the prob-

ability that cue j produces the criterion at trial t , given that k was the responsible cue on trial

t −1, is time-invariant. We will denote this conditional probability as

βj k = P(C t = j |C t−1 = k ) (25)

The Competitive Bayesian Filter combines the Kalman filter for learning cue validity with

a discrete-state Markov model for inferring responsibility; such a model can be referred to as a

Switching Kalman Filter (cf. Ghahramani & Hinton, 2000; Murphy, 1998). As in the BLF, learning

of cue validity involves filtering distributions and the parameters of these are computed by the

Kalman filter. However, in the CBF, a current observation only provides information of the valid-

ity of the responsible cue. Therefore, the observations are weighted according to the posterior

probability of cue responsibility in the CBF. The posterior probability that cue k was responsible

on trial t , αk t = P(C t = k |Y1:t , x1:t ), can be computed as

αk t =

∑m

j=1αj (t−1)βj k N (Yt |vk t xk t ,σ2
j )

∑m

k=1

∑m

j=1αj (t−1)βj k N (Yt |vk t xk t ,σ2
j )

, (26)

where N (a |b , c ) denotes the Normal density with mean b and variance c evaluated at a .

Weighting observations by αk t is identical to rescaling the observational variance σ2
y as σ2

y /αk t

(Ghahramani & Hinton, 2000). Apart from this change, the computations are equivalent to those

of the BLF, which can be simplified here by representing cue validity as a collection of univariate

processes. Thus, if we let m j t denote the mean of the filtering distribution of v j t , then

m j t =m j (t−1)+K j t (Yt −x j t m j (t−1)), (27)

where the Kalman gain is

K j t =
x j t s 2

j t

x 2
j t s 2

j t +σ
2
y /αj t

, (28)

and the variance of the state prediction distribution is

s 2
j (t+1) = (1−K j t x j t )s

2
j t +σ

2
j . (29)
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In the CBF, the forecast distribution is a mixture of m Normal distributions (one compo-

nent for each cue)

p (Yt |Y1:(t−1)) =

m
∑

j=1

πj t N (m j (t−1)x j t , Vj t ), (30)

where the mixing proportions are equal to the predicted responsibility

πj t = P(C t = j |Y1:(t−1), x1:(t−1)) =

m
∑

k=1

αk (t−1)βj k (31)

and the variance of each Normal component is

Vj t = x 2
j t s 2

j t . (32)

The optimal point prediction for such a mixture is the weighted average

ŷt =

m
∑

j=1

πj t m j (t−1)x j t . (33)

Participants’ responses are assumed to be made as such a weighted average, but with a variance

which reflects the uncertainty related to the individual components. More precisely, we assume

participants’ responses are distributed as

p (Rt |x1:t , Y1:(t−1)) =N (ŷt ,

m
∑

j=1

π2
j t Vj t ), (34)

In fitting the CBF, we assumed a symmetry in transitions between responsible cues, such

that βj k = βk j =β (note that, for m = 2, we have βj j = 1−βj k ). Furthermore, we fixed the mean

of the prior distributions to µj 0 = 0 with an equal variance for each cue, σ2
j 0 = σ

2
0. In versions

“CBF/1/·”, we assumed equivalence between the cues for the state variance σ2
j = σ

2, while in

versions “CBF/2/·”, this variance could differ between the cues. In total, the CBF had either 4 (β ,

σ2
0,σ2, andσ2

y ) or 5 (β ,σ2
0,σ2

1,σ2
2, andσ2

y ) free parameters.

Least Mean Squares network (LMS)

The Least Mean Squares network is a simple single layer feedforward network with one

input node for each cue and a single output node for the criterion. The activation of the input

nodes is given by xt , and the activation of the output node is

outt = xt wt . (35)

The connection weights wt = (w1t , w2t )
❚ are updated by the LMS or delta rule (e.g. Gluck &

Bower, 1988)

wt+1 =wt +diag(η)(yt −outt )x
❚

t , (36)

where η is a vector with learning rate parameters (such that each input-output connection can

be learned at a different rate). The LMS network gives point predictions of participants’ re-

sponses. To fit the model to participants’ actual responses, we assumed that these were dis-

tributed as

p (Rt |Y1:(t−1), x1:t ) =N (outt ,σ2
r ) (37)
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whereσ2
r is constant variance which reflects the “implementation error”.

Starting weights were initialized to w0 = (0, 0)❚. Two versions were fitted, one with iden-

tical, η = (η,η), and one with a different learning rate, η = (η1,η2), for the two cues. These are

referred to as models “LMS/1/·” and “LMS/2/·” respectively. In total, the LMS model had thus

either two (η andσr ) or three (η1, η2 andσr ) free parameters.

Generalized Context Model (GCM)

In exemplar models such as the Generalized Context Model (Nosofsky, 1986), a response

to a probe cue xt is made by recollecting previously encountered exemplars x1:(t−1), and weight-

ing the corresponding recollected criterion values y1:(t−1) according to the similarity of xt to xt−k ,

k = 1, . . . , t −1. The similarity of two cues is a decreasing function of their distance

s t (t−k ) = s (xt , xt−k ) = exp(−λ(d t (t−k ))
q ), (38)

with q = 1 for the exponential, and q = 2 for the Gaussian similarity function. The distance is

based on a generalized Minkowski distance

d t (t−k ) = d (xt , xt−k ) = ((xt −xt−k )
r w)(1/r ) (39)

where r > 0 and 1❚w = 1 (i.e., the attention weights w i ≥ 0 sum to 1). To account for memory

decay, exemplars were additionally weighted in accordance with their “distance” in time. At cur-

rent time t , the time distance of an an exemplar encountered at time t ′ < t is t − t ′ = k and the

recency weight is

πk = exp(−γk ), (40)

for exponential decay, or

πk = k−γ, (41)

for power decay. Note that we have not included the usual linear scaling parameters in these

functions, as these cancel out in Equation 42.

As in Juslin et al. (2003), we assume predictions are made as a weighted average of the

criterion value of the stored exemplars

ŷt =

t−1
∑

j=1

πj s t j y j
∑t−1

k=1πk s t k

(42)

In addition, we assume responses are corrupted by Normally distributed random noise, so that

the distribution of responses is

p (Rt |Y1:(t−1), x1:t ) =N (ŷt ,σ2
r ) (43)

In the actual implementation of the model, we used the alternative parametrization

s t (t−k ) = exp(−(v❚(xt −xt−k )
r )q/r ), (44)

where v = λr /q w, and v ∈ ℜ+. The advantage is that the only constraint on v is that the ele-

ments are greater or equal to zero. The values vi represent the “stretching” (or contraction) of

cue dimension i .
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Parameters r and q were treated as fixed, and we fitted eight different versions of the GCM,

resulting from the different combinations of r = 1, 2, q = 1, 2 and the two memory decay func-

tions. The GCM has four remaining free parameters, v = (v1, v2), σr and γ. Tables D1 and D2

contain only the results from the models with r = 2 and q = 1, which fitted uniformly better than

the other combinations of r and q (although the difference with the model with r = 1 and q = 1

was only slight).

Associative Learning Model (ALM)

The ALM is an associative network with one input node for each (possible) cue pattern,

and an output node for each (possible) value of the criterion. We provide here a relatively

straightforward extension of the ALM to multiple-cue functions, using multivariate Gaussian

generalization gradients rather than the univariate Gaussian gradients of the original ALM. A

probe cue pattern xt results in a distribution of activation across all input nodes, according to

the generalization gradient

a i t = exp
�

−.5(xt −αi )Σ
−1(xt −αi )

❚
�

(45)

in whichαi = (α1i ,α2i ) is the vector with locations for input node i , andΣ= diag(σ1,σ2) a scaling

matrix. The activation of each output node is an additive function of the input activations

o j t =
∑

i

w i j t a i t , (46)

where w i j t is the weight of the connection between input node i and output node j . These

weights are initialized at 0, and updated according to the LMS rule

w i j (t+1) =w i j t +η(v j t −o j t )a i t , (47)

in which η is a learning rate parameter, and v j t the training signal for output node j on trial t .

This training signal is determined from the outcome feedback yt by the Gaussian generalization

gradient

v j t = exp
�

−.5(yt −µj )
2/σ2

y

�

, (48)

in which µj is the location of output node j andσy a scaling parameter.

Responses are a probabilistic function of the activation of the output nodes

P(Rt =µj ) =
exp
�

λo j t

�

∑

k exp (λok t )
. (49)

Note that in using the exponentiated version of Luce’s ratio choice rule, our implementation dif-

fers slightly from that inBusemeyer et al. (1997) and DeLosh et al. (1997), who used the simpler

version P(Rt = µj ) = o j t /(
∑

k ok t ). Using the exponentiated version was necessary, since there

was no guarantee that the output values o j t were positive. We also followed DeLosh et al. (1997)

and used one input node for each unique presented cue pattern, rather than for each unique

possible cue pattern. The number of input nodes was restricted for practical purposes, as there

are 2002 possible cue patterns, which would have resulted in a network with 2003 connections.

The restricted ALM is still rather large, with 60,000 input-output connections for each partici-

pant.
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Appendix D

Fit of the learning models

This appendix contains the full results of the model fit for Experiments 1 and 2 (Table D1)

and Experiment 3 (Table D2). The best fitting version of each model is signalled in bold.
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Table D1: Fit measures of the learning models in Experiment 1 and 2.

Experiment 1 Experiment 2

model # par. BIC R2 # par. BIC R2

BLF/1/all 3 78506 0.44 3 90750 0.24

BLF/2/all 4 78424 0.45 4 90757 0.24

BLF/1/con 6 78050 0.46 6 90700 0.24

BLF/2/con 8 77993 0.46 8 90605 0.25

BLF/1/ind 84 76319 0.56 90 88770 0.34

BLF/2/ind 112 75964 0.59 120 88736 0.36

CBF/1/all 4 78138 0.45 4 89422 0.32

CBF/2/all 5 78232 0.44 5 89412 0.32

CBF/1/con 8 77722 0.47 8 89350 0.31

CBF/2/con 10 77666 0.47 10 89352 0.31

CBF/1/ind 112 77124 0.54 120 88721 0.37

CBF/2/ind 140 76791 0.55 150 88716 0.37

LMS/1/all 2 78691 0.43 2 91193 0.21

LMS/2/all 3 78569 0.44 3 91067 0.22

LMS/1/con 4 78199 0.45 4 91149 0.22

LMS/2/con 6 78167 0.45 6 90939 0.23

LMS/1/ind 56 76689 0.55 60 89268 0.33

LMS/2/ind 84 76222 0.58 90 89328 0.34

GCM/exp/all 4 78831 0.42 4 90149 0.30

GCM/pow/all 4 79234 0.40 4 90504 0.27

GCM/exp/con 8 78523 0.43 8 90067 0.30

GCM/pow/con 8 78889 0.41 8 90412 0.28

GCM/exp/ind 112 77413 0.53 120 89209 0.38

GCM/pow/ind 112 77867 0.51 120 89675 0.35

ALM/1/all 4 77137 0.44 4 88359 0.28

ALM/2/all 5 77132 0.44 5 88353 0.29

ALM/1/con 8 76785 0.46 8 88355 0.29

ALM/2/con 10 76793 0.46 10 88349 0.29

ALM/1/ind 112 75479 0.53 120 87680 0.35

ALM/2/ind 140 74941 0.56 150 87691 0.36
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Table D2: Fit of the learning models in Experiment 3

BIC R2

test test

model # par. learning inter. extrap. comb. all learning inter. extrap. comb. all

BLF/1/all 3 74117 3830 4603 8433 90863 0.18 0.33 -0.39 -0.15 0.15

BLF/2/all 4 73469 3861 4481 8342 90064 0.24 0.34 -0.36 -0.13 0.20

BLF/1/con 6 73004 3859 4497 8356 89661 0.28 0.34 -0.25 -0.06 0.25

BLF/2/con 8 72943 3855 4525 8380 89640 0.29 0.34 -0.28 -0.08 0.25

BLF/1/ind 120 70711 3709 4163 7871 86383 0.42 0.41 0.16 0.24 0.41

BLF/2/ind 160 70614 3710 4220 7930 86385 0.45 0.36 0.15 0.22 0.43

CBF/1/all 4 72368 3821 4245 8065 88550 0.30 0.28 0.04 0.12 0.29

CBF/2/all 5 72364 3820 4243 8062 88542 0.30 0.28 0.04 0.12 0.29

CBF/1/con 8 72335 3824 4294 8118 88611 0.31 0.27 0.01 0.10 0.29

CBF/2/con 10 72350 3822 4286 8108 88612 0.31 0.28 0.02 0.11 0.29

CBF/1/ind 160 71792 3739 4090 7829 87553 0.42 0.35 0.27 0.30 0.41

CBF/2/ind 200 71666 3732 4104 7836 87434 0.43 0.31 0.26 0.29 0.41

LMS/1/all 2 73687 3874 4412 8287 90198 0.22 0.36 -0.27 -0.06 0.20

LMS/2/all 3 73658 3874 4429 8304 90194 0.23 0.36 -0.29 -0.08 0.20

LMS/1/con 4 73614 3882 4420 8302 90186 0.23 0.33 -0.27 -0.07 0.20

LMS/2/con 6 73453 3878 4458 8336 90054 0.25 0.33 -0.32 -0.10 0.21

LMS/1/ind 56 71540 3764 4197 7961 87440 0.38 0.31 -0.02 0.09 0.35

LMS/2/ind 84 71416 3760 4172 7932 87264 0.42 0.29 0.05 0.13 0.38

GCM/exp/all 4 72968 3877 4182 8059 89198 0.30 0.27 0.14 0.19 0.29

GCM/pow/all 4 72953 3872 4216 8087 89183 0.30 0.28 0.10 0.16 0.29

GCM/exp/con 8 72654 3879 4247 8126 89016 0.33 0.26 0.08 0.14 0.31

GCM/pow/con 8 72589 3871 4282 8153 88935 0.33 0.28 0.04 0.12 0.31

GCM/exp/ind 160 71489 3840 4204 8044 87508 0.47 0.21 0.25 0.24 0.44

GCM/pow/ind 160 71660 3819 4440 8259 87889 0.46 0.27 0.15 0.20 0.43

ALM/1/all 4 71642 3850 4055 7904 87556 0.29 0.32 0.12 0.19 0.27

ALM/2/all 5 71599 3841 4049 7890 87490 0.29 0.32 0.12 0.19 0.27

ALM/1/con 8 71570 3870 4056 7926 87577 0.30 0.32 0.13 0.20 0.28

ALM/2/con 10 71488 3845 4046 7891 87403 0.29 0.33 0.12 0.19 0.28

ALM/1/ind 160 70286 3789 4121 7909 85997 0.41 0.32 0.00 0.11 0.38

ALM/2/ind 200 70090 3783 4322 8104 85940 0.44 0.29 -0.24 -0.06 0.39


