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Abstract

In this paper we address several aspects of the learning
problem in content-based image retrieval (CBIR). First,
we introduce the linear and kernel-based biased dis-
criminant analysis, or BiasMap, to fit the unique nature
of relevance feedback as a small sample biased classifi-
cation problem. Secondly, a WARF (word association
via relevance feedback) formula is presented for learn-
ing keyword relations during the process of relevance
feedback. We also introduce our new user interface for
CBIR, ImageGrouper, which is designed to support
more sophisticated user feedbacks and annotations.
Finally, we use the D-EM (Discriminant-EM) algorithm
as a way of exploiting unlabeled data in CBIR and offer
some insights as to when unlabeled data will help.

1. Introduction

In content-based image retrieval (CBIR), a gap exists
between the high level semantics in the human minds
(whether expressible by words or not) and the low level
features computable by machines, even if we assume
that consensus interpretation of images can be reached
among all users at all times (which is seldom true).
Therefore the first challenge for the machine is to learn
the associations between high-level and low-level to
effectively facilitate retrieval. On the other hand, “a
picture is worth a thousand words”—a more profound
challenge comes from the dynamic interpretation of
images under different circumstances. In other words,
the perceptual “similarity” depends upon the applica-
tion, the person, and the context of usage. So in fact the
machine not only needs to learn the associations, but
also has to learn them on-line with user in the loop.

A natural way of getting user in the loop is to ask the
user to give feedbacks regarding the current output of
the system. Though this is an idea borrowed from the
text retrieval field [1], it seems to work better in the
image domain: it is easier to tell the relevance of an
image than that of a document—it takes time to read
through a document while an image reveals its content
instantly.

Various learning techniques have been shown to pro-
vide dramatic performance boost in CBIR systems. For
a detailed survey see [2].

Aside from the real-time demand, a major difficulty
for learning during relevance feedback is the relatively
small number of training samples available from the
user, usually only 10 to 20 per round for an image re-
trieval system. Oftentimes this is even smaller than the
dimension of the feature space. In this paper, we first
present the BiasMap approach [3] to specifically ad-
dress the small sample issue. We also try to model
nonlinear distributions using a kernel approach. The
machine learns a new query and a discriminative trans-
form of the feature space before nearest neighbor re-
trieval is performed in the new space.

Some of today’s image databases have limited key-
word or key-phrase annotations. It is desirable to seam-
lessly incorporate low-level visual feature-based learn-
ing with the semantic level keyword annotations of the
image. The benefit of such integration is two-fold: we
can learn not only the low-level feature support for the
semantic labels [4] but also the high-level relationship
between labels or keywords from the user interaction.
In this paper, we also discuss a scheme for learning
word association matrix during relevance feedback
process [5].

For real-time learning in CBIR, user interface design
plays an important role in capturing sophisticated user
intentions and interpretations. Aside from providing
judgments on relevance or irrelevance, the user might
wish to select and group examples from multiple rounds
of interactions, or make overlapping annotations to dif-
ferent groups of images. Such actions can be supported
by ImageGrouper, a novel interface we proposed for
CBIR [6].

The basic setup in content-based image retrieval is
usually as a binary classification problem—one class
for the query image class, and the other for the rest.
Learning these classifiers is usually based on labeled
records only, obtained through feedback from the user
on relevant images and irrelevant images. The rest of
the images in the database, which can be considered
unlabeled data, are not utilized in building the classifier.
The question is whether they can be used to enhance the
performance of the retrieval system.
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In the past few years there has been a growing inter-
est in the use of unlabeled data for enhancing classifica-
tion accuracy in supervised learning settings. Most
studies on the subject have shown that there is great
potential in using unlabeled data to enhance the learn-
ing process and improve classification results [7]. We
have proposed D-EM (Discriminant-EM) algorithm [8]
to incorporate unlabeled data in a semi-supervised fash-
ion for enhancing the performance in content based
image retrieval.

However it is easy to foresee situations, where the
unlabelled data will harm the classifier. Some of our
recent work explores the conditions under which unla-
belled data can be helpful [9, 10].

For applications where a user annotation step is per-
formed, the question arises as to how to relieve the user
of the burden of labeling the whole dataset. One solu-
tion is to explore the clustering structure of the data and
select representative points proactively to query the
user, and then propagate the labels automatically [11].
This idea is closely related to active learning.

Active learning [12], or selective sampling [13], stud-
ies the strategy for the learner (i.e., the machine) to ac-
tively select samples to query the teacher (i.e., the user)
for labels, in order to achieve the maximal information
gain, or the minimized entropy/uncertainty in decision-
making. Its early application for document classifica-
tion can be found in [14]. Recent applications in image
retrieval can be found in [15, 16, 17].

The principles of incremental learning can certainly
be applied in interactive image retrieval. A relevance
feedback process is inherently incremental: except for
the first round, the machine always learns from both
previous feedbacks from the user(s), and the new in-
formation from the current round. Incremental knowl-
edge accumulation can be performed either for one user
only or among different users and across different feed-
back sessions, depending upon whether the underlying
clustering structure in one user’s mind differs from
those in the others’. [18, 2]

More recent work also explores the learning issue re-
lated to image visualization or layout [19, 20]. Assum-
ing the user lays out photos on a table (or the computer
screen) in a certain way, the machine can learn a feature
space transformation to match the mutual distances
among these images (e.g., using multi-dimensional
scaling techniques). The learned feature transform,
when applied on test images, shall places them in a way
mimicking the user’s preferences.

We shall point out that all the aforementioned learn-
ing techniques are based on the premise that the image
representation in the feature space has retained the
high-level semantic information necessary to support
the user’s interpretation. Unfortunately, this require-
ment is often not satisfied.

In the following, we discuss some of the work done
at our group in the area related to learning in CBIR.

2. Small Sample Learning by Relevance
Feedback

Much work regards the relevance feedback problem
as a strict two-class classification problem, with equal
treatments on both positive and negative examples [2].
It is reasonable to assume positive examples to cluster
in certain way (maybe non-linearly), but negative ex-
amples usually do not cluster since they can belong to
any class. Forcefully assigning all negative examples
into one class/mode can mislead the algorithm therefore
hurt the robustness in performance, especially when the
number of training samples is small.

We define biased classification problem as the prob-
lem in which there are an unknown number of classes
but the user is only interested in one class, i.e., the user
is biased toward one class. And the training examples
are labeled by the user as only positive or negative as to
whether they belong to the target class or not. Thus the
negative examples can come from an uncertain number
of classes. More importantly, the limited number of
negative examples is not representative of the true dis-
tribution of all negative points. (One alternative is to
use a random sampling strategy to increase the number
of negative examples thus their representative power.
But this carries the danger of mislabeling.) Therefore it
is desirable to distinguish a real two-class problem from
a biased classification (or (1+x)-class) problem in our
case. And a typical relevance feedback process poses a
biased classification problem.

For a biased classification problem, we ask the fol-
lowing question: what is the optimal linear trans-
formation to take into account both positive and nega-
tive examples, such that positive examples have mini-
mal scatter while negative examples have maximal
scatter with respect to positive ones (i.e., negative ex-
amples are “far away” from positive ones)? Or mathe-
matically, what is the optimal transformation such that
the ratio of “positive scatter” over “negative scatter
with respect to positive” is minimized? We call this
biased discriminant analysis (BDA) due to the bias to-
ward the positive examples.

Linear/nonlinear BDA, which we dub it BiasMap, is
a supervised learning scheme using a small number of
positive and negative examples. It is a mapping or
transformation of the representation space, usually into
a lower dimensional subspace. It is biased in the sense
that positive and negative examples are treated asym-
metrically.

2.1 Biased Discriminant Analysis (BDA)

We use {xi}, i=1,…,NP to denote the positive exam-
ples, and {yi}, i=1,…,NN to denote the negative exam-
ples. And mx is the mean vector of {xi}. For any linear
transformation matrix W , which is a long matrix, we
define the biased criterion function
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The difference from traditional discriminant analysis
formulation lies in the asymmetry.

To avoid singularity in estimating the covariance ma-
trix in the solution, regularization shall be applied by
adding small positive values to the diagonal before in-
version. The influence of the negative examples can be
tuned by adding a discounting factor, i.e., a positive
value to the diagonal—with a large discounting factor
BDA is reduced to the whitening transform on positive
examples.

2.2 Nonlinear BDA using Kernel

To take into account nonlinearity in the data distribu-
tions, we propose a kernel-based approach [21, 22]. The
original BDA problem is reformulated into dot-product
form, and then a kernel is used in place of the dot prod-
uct. This is the major advantage of kernel-based ap-
proach—if we were to carry out the nonlinear transfor-
mation explicitly before the dot-product calculation, the
computation would usually be formidable. Assume a
nonlinear transform Φ on the original data before
applying linear BDA:
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It can be shown that the numerator of (5) can be re-
written as:
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Extensive experiments have demonstrated the advan-
tages of the proposed algorithm. Here we can only re-
port one experiment on a fully labeled set of 500 im-
ages from COREL. It contains five classes, each with
100 images. Visual features used are color moments,
wavelet moments, and water-filling structural features
[23]. Each round 10 positive and 10 negative images
are randomly drawn as training samples and the learned
feature transformation is applied to all the images be-
fore a nearest neighbor classifier is applied for image
ranking. For each round the error rate in the top 100
returns is recorded as the performance measures. A
total of 500 rounds of testing are performed and the
averaged error rates are shown in Table 1, where four
schemes are compared: QM (Query Movement, i.e., no
transformations, just return the nearest neighbors of the
positive centroid), WT (whitening transform on positive
examples [24]), BDA, and KBDA. Evident perform-
ance improvement is observed.

Table 1. Averaged hit rate in top 100 for 500 trials
QM WT BDA KBDA
62.7% 70.4% 74.2% 79.1%

3. Learning Word Association via Rele-
vance Feedback

The performance of a content-based image retrieval
(CBIR) system is inherently constrained by the use of
the low-level features, and can not give satisfactory
retrieval results in many cases; especially when the
high-level concepts in the user’s mind is not easily ex-
pressible in terms of the low-level features. Therefore,
for real world applications, whenever possible, textual
annotations shall be added or extracted and processed to
improve the retrieval performance. We have recently
explored the unification of keywords and feature con-
tents for image retrieval. We proposed a seamless joint
querying and relevance feedback scheme based on both
keywords and low-level visual contents incorporating
keyword similarities. We proposed an algorithm for the
learning of the word similarity matrix during user inter-
action, namely word association via relevance feed-
back, or WARF. This learned similarity matrix, specific
to the dataset as well as the users, can be applied for
keyword semantic grouping, thesaurus construction,
and soft query expansion during intelligent image re-
trieval with user-in-the-loop [25, 5].

The assumption is that some of the images in the da-
tabase have textual annotations in terms of short
phrases or keywords. These can come from pattern rec-
ognition; automatic speech recognition, keywords spot-
ting from text (e.g., from surrounding HTML text on
web-pages); or manual annotation, etc.

Among all the images shown to the user, the relevant
set is the set of images indicated by the user as “good”
ones. If a term only appeared in the annotations for the
images in the relevant set, it is called a relevant term.
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The number of occurrences of a relevant term i in the
relevant set is called relevant term frequency, denoted
as fi. The number of co-occurrences of two relevant
terms i and j in the same image is denoted by cij. The
“relevance” of term i and j, Sij, is then updated as

)),(min(),max( ijjijiijij cffffSS −×+= (10)
This formula for updating word association through

relevance feedback, or the WARF formula, is executed
after every user feedback with more than one relevant
image.

The result of multiple WARF updates is used to fa-
cilitate the unification of keywords and contents in a
flexible and meaningful way. During each user retrieval
and feedback process, the algorithm will dynamically
update the weights in a semantic network consisting of
the keywords appeared in the database. This algorithm
was tested through simulated experiments [25].

After extensive use of the database by the user, the
output of the algorithm, i.e., the weights between pairs
of terms will correspond to the “similarity” of the two
terms, or the estimated probability for the user to re-
quest these two terms together in one query. By using
Hopfield network or clique detection, we can further
group terms into semantic classes, which can be used to
assist future retrieval process.

In addition, since these “knowledge” are all extracted
from the user feedback, the word association informa-
tion can also be regarded as the user’s “search habit” or
“preference”. Therefore, this real time thesaurus con-
struction algorithm based on user feedback will provide

a practical way for not only the semantic grouping of
keywords but also learning of user preference.

4. User Interface Support for Relevance
Feedback

While relevance feedback for image retrieval was
very successful, there are several drawbacks in the tra-
ditional user interfaces. First, these systems assume that
the more query examples are available, the better result
we can get. Therefore, only way to refine the search
was to add example images incrementally. However,
this assumption is not necessarily true. There are cases
where additional examples may contain undesired fea-
tures and degenerate the retrieval performance. [6]
showed finding good combinations of query examples
is essential for successful image retrieval. Second, the
traditional interface does not allow the user to put aside
the query results for later uses. This type of interaction
is desired because the users of CBIR are not necessarily
looking for only one type of images. The users’ interest
may change during retrieval. In addition, there was no
way to integrate content-based retrieval with keyword
annotation. To overcome these limitations, we are de-
veloping a new user interface for image retrieval,
named ImageGrouper [6].

Figure 1 shows the interface of ImageGrouper. The
interface is divided into two panes. The left pane is the
ResultView that displays the result of both content-

Figure 1. ImageGrouper interface

ResultView

GroupPalette

Positive Group

Negative Group
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based and keyword-based search. The right pane is the
GroupPalette, in which the user handles image groups.
In order to create an image group, the user first drags
images from the ResultView to GroupPalette, then en-
closes the images by drawing a box as we draw rectan-
gles in an illustrating application. The user can create
any number of groups within the palette. For each
group, the user can specify it as relevant, irrelevant or
neutral. Neutral groups do not contribute to the search
at the moment and can be used for another query later.
The properties of the groups can be easily changed
from the popup menu. The box colors change accord-
ingly. Moreover, the user can move images from one
group to another at any moment. In addition, these
groups can be overlapped to each other, allowing im-
ages to belong multiple groups. When the user presses
the “Query” button, the system retrieves images that are
similar to positive group images while avoiding images
similar to negative groups images. The results are dis-
played in the ResultView. The user can refine the query
further by dragging the new images into groups in the
palette.

Compared with the traditional GUI for CBIR, Im-
ageGrouper is much easier to try different combina-
tions of query examples. Moreover, it provides storage
area for images that are not used for query at the mo-
ment. It is shown that this trial and error query can
improve the query performance even if underlying al-
gorithms are identical [6].

In addition, the user can create new groups within an
existing group (Group in a group). Thus, the user can
begin with collecting relatively generic images first,
then narrow down the search to more specific images.
For example, assume the user is looking for “red car”
images. S/he can initially collect “cars with any colors.”
Once s/he found enough number of images, s/he can
divide them into two groups: red cars and other cars.
Then the user can specify red car group as relevant, and
other cars as irrelevant. This narrowing down search
was not possible with the conventional interfaces.

Furthermore, the user can annotate text information
to each group that is obtained by content-based queries.
This text information can be used for keyword-based
search. Therefore, ImageGrouper makes it possible
integration of content-based and keyword-based query.
The user first creates groups of images using content-
based query, then s/he annotate these groups with key-
words. S/he can retrieve the images with keywords
later.

5. Using Unlabeled Data

The retrieval system acts as a classifier to divide the
images in the database into two classes, either relevant
or irrelevant. In this sense, an annotated image can be
represented by a feature vector x, e.g. a set of image
features or eigen features, and its label y that is either

relevant or irrelevant, i.e., y∈{+1,-1}. It seems that
many supervised learning approaches could be em-
ployed to approach to this classification problem. Un-
fortunately, they are confronted by two main chal-
lenges. The first one is that the annotated or labeled
training samples are too limited. Generally, the labels
are provided by queries and relevance feedbacks, which
will not be many. Limited training data would only
result in weak classification. Another challenge is the
dimensionality of learning, since high dimensional vis-
ual data would pose practical difficulties for feature
weighting, selecting and dimensionality reduction. Lim-
ited training data would also prevent effective dimen-
sionality reduction schemes. Therefore, a new learning
scheme needed for such a challenging scenario.

5.1 D-EM Algorithm

Considering there are a large number of unlabeled
images in the given database, we may use them to boost
the weak classifier learned from the limited labeled
data, since unlabeled data contain information about the
joint distribution over features. In such circumstance,
the hybrid training data set D consists of a labeled data
set L ={(xi,yi), i=1,…,N}, and an unlabeled data set
U={xi, i=1,…,M}. In CBIR, the query images act as the
labeled data, and the whole database or a subset can be
treated as the unlabeled set. We make an assumption
here that L and U are from the same distribution. There-
fore, image retrieval is to classify the images in the da-
tabase based on both labeled and unlabeled training
data.

The Expectation-Maximization (EM) approach can
be applied to this learning task, since the labels of unla-
beled data can be treated as missing values. A param-
eterized generative model can be used to model the data
distributions. For example, we can use Gaussian mix-
ture models. The E-step basically estimates the ex-
pected membership for each unlabeled sample to aug-
ment the labeled training set, and the M-step estimate
parameters of the generative model based on such an
augmented data set. The iteration between the E-step
and the M-step is expected to improve the classifier to a
local optimum in an incremental sense. Unfortunately,
in practice, such a standard EM approach will be
plagued by some difficulties. One is that our assump-
tion in the generative model on the probabilistic struc-
ture of data distribution, e.g., the number of mixture
components, may not hold, since we may not know the
ground truth data distributions in advance. Such a dis-
crepancy may diverge the EM iteration. Secondly, a
large number of parameters need to be estimated due to
the high dimensionality of the generative model. Con-
sequently, the standard EM approach often fails when
such a structure assumption does not hold.

To alleviate such difficulties, we can find a mapping
such that the data are clustered in the mapped feature
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space, in which the probabilistic structure could be
simplified and captured by simpler Gaussian mixtures.
Putting the step of finding the mapping into the EM
iteration loop, we propose a three-step iteration method,
the Discriminant-EM (D-EM) algorithm [8, 26, 27], in
which the E-step estimates the membership for each
training data, D-step identifies a mapping and thus a
discriminating subspace, and M-step estimates the pa-
rameters of the generative model in the lower dimen-
sional discriminating subspace. The advantage of put-
ting the D-step in the loop is that the E-step has pro-
vided a large augmented labeled training set. The D-
EM algorithm iterates among these three steps.

We use multiple discriminant analysis (MDA) as the
D-step. The basic idea behind MDA is to find a map-
ping such that the ratio of the between-class scatter and
within-class scatter is maximized in the projected space.
MDA offers a means to catch major differences be-
tween classes and discount factors that are not related to
classification. Another advantage of MDA is that the
data are clustered to some extent in the projected space,
which makes it easier to select the structure of Gaussian
mixture models. We developed a nonlinear kernel
MDA algorithm based on kernel machines [26]. Both
linear MDA and kernel MDA have been used in the D-
EM algorithm [8, 26, 27].

The application of D-EM to image retrieval is
straightforward [8]. Based on relevance feedback, sev-
eral relevant and irrelevant examples are labeled by
human. Using a random subset of the database or even
the whole database as an unlabeled data set, the D-EM
algorithm identifies some “similar” images to the la-
beled images to enlarge the labeled data set. Therefore,
good discriminating features could be automatically
selected through this enlarged training data set to better
represent the implicit concepts. In our current imple-
mentation, in the transformed space, both classes are
represented by Gaussian distributions. The D-EM itera-
tion tries to boost an initial weak classifier.

In order to give some analysis and compare several
different methods, we manually labeled an image data-
base of 134 images. Our dataset has 7 classes such as
airplane, bird, car, church painting, flower, mountain
view and tiger. All images in the database have been
labeled as one of these classes. In all the experiments,
these labels for unlabeled data are only used to calcu-
late classification error. We fed the D-EM algorithm a
different number of labeled and unlabeled samples. We
found that D-EM brought about 20% to 30% more ac-
curacy than without using unlabeled data.

5.2 When Will Unlabeled Data Help?

In our recent work [9, 10] we have discussed the
value of unlabeled data in supervised statistical learn-
ing using generative classifiers. We present here some
of the main conclusions and results of this work, which

can be used as a guideline for any system which wishes
to utilize unlabeled data with labeled data.

Defining the problem, let C be the class variable
takes a finite number of labels, denoted as |C|. Let X be
the feature vector. We are given a data set, D, of inde-
pendent instances sampled from some unknown joint
distribution P(C, X). D has N labeled instances and M
unlabeled instances, where an unlabeled instance is
missing the value for C. Our task is to learn the parame-
ters of the joint probability distribution P(C, X) and use
it to perform classification by computing P(C | x) for a
given feature vector x. One of the basic methods to es-
timate this distribution is maximum-likelihood (ML)
estimation.

Past theoretical and experimental work showed that
using the ML estimation approach (via EM or other
numerical algorithms when unlabeled data is present)
should yield improvement in the classification accuracy
as more unlabeled data is added. However, there is an
underlying assumption in all the theories - that the as-
sumptions on the joint distribution are correct (for ex-
ample, dependencies between features, the distribution
of the features, whether Gaussian or other). This restric-
tion is quite harsh. It requires good prior knowledge of
the nature of the joint distribution. In practice however,
such knowledge is usually not available. The question
is how unlabeled data affect the classification accuracy
in these cases.

Figure 2 shows three examples of learning with unla-
beled data. In Figure 2(a) we show the result of adding
unlabeled data to fixed size labeled data sets (30, 300,
3000) when we have the correct prior knowledge of the
distribution that generated the data. As can be seen,
adding unlabeled data improves greatly the classifica-
tion performance, even for the case using only 30 la-
beled records. Figure 2(b) shows the case of learning
with incorrect assumptions on the joint distribution. In
this case, adding the unlabeled data decreases the per-
formance of the classifier. As we add more unlabeled
data the performance degrades more and more. This is a
startling result since the common statistical folklore is
that more data should help, but in this case it makes the
classifier worse. Figure 2(c) shows a case of learning
with incorrect assumptions on the joint distribution, but
the complexity of the problem is relatively high (49
features compared to 10 features in case (a) and (b)). In
this case we see that when the labeled data set is small
(30 labels and 300 labels), adding the unlabeled data
improves the classification performance. However,
when 3000 labeled data are available, adding the unla-
beled data decreases the performance.

To summarize, unlabeled data consistently improve
classification performance when the correct assump-
tions are made on the joint distribution. When incorrect
assumptions are made (which is often the case), unla-
beled data can both improve and degrade the classifica-
tion performance, depending on the complexity of the
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classifier compared to the size of the labeled training
set. The results also suggest a new use for unlabeled
data: detecting incorrect assumptions, since the classifi-
cation performance can only degrade if the assumptions
on the joint probability were incorrect.

Note that a key point of the D-EM algorithm is that
the D-step actively tunes the data in a reduced space so
that the assumptions implied by the E and M-steps can
hold with a much higher probability.

6. Conclusion

In this paper, we have briefly introduced our work re-
lated to the learning issue in CBIR. For relevance feed-
back, three schemes are discussed with the first one
attacking the small sample learning issue, the second
attempting the integration issue of visual features and
keywords, and the third addressing the user interface
design. We also discussed the use of unlabeled data in
CBIR, with a careful look at the conditions under which
unlabeled data will help.
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