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Abstract

We study the effects of various incentive schemes on the
learning behavior of teams in an artificial factory. Model-
ing the new product development process, we demonstrate,
how production and marketing agents learn to coordinate
their actions in order to produce the optimal product with
respect to their incentive schemes. As a coordinating mech-
anism between marketing and production, we use the House
of Quality framework of Hauser and Clausing [6]. The
House of Quality methodology, which is used by real firms,
contains important information from marketing and produc-
tion. It is a procedure that facilitates the search for new
promising (from market perspective) and feasible products
(from a production/design perspective). We found that the
House of Quality approach yields higher life cycle returns
than the traditional search for new products - especially for
a low number of search steps. This is an important find-
ing recommending the application of the House of Quality
since the number of search steps directly influences time to
market. Thus, minimizing the number of steps could be an
important competitive advantage in todays fast moving con-
sumer markets.

1. Introduction

Traditionally, microeconomics has assumed that the
form of the organizational network is hierarchical, where
the result of a computation is only passed to several imme-
diate subordinates or to one agent on the next higher level,
respectively. It is assumed that management has a general
model of the environment and the organization and on this
basis derives the decision rules for the agents. However,
economics agents have a limited capacity for computation
and their knowledge is limited to their field of specializa-
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ion.
Therefore, if the rationality of economic agents is

ounded, the capacity of management to build models and
erive sub-models must be bounded too, as models are built
n communicated or observed data by estimating parame-
ers and performing symbolic computations. Thus, the as-
umption that - also as a team - a management agent can
ake a total model of the firm and its environment looses

ts credibility in more complex situations. Furthermore, the
nvironment must also be rather stable, so that the need for
reorganizing”, i.e. determining new decision rules, does
ot arise too often so that the bounded rationality of man-
gement is exceeded (see e.g. [10]).

Both requirements are often violated today. Consider the
ollowing statement from Clark and Fujimoto [3] about the
omplexity of consumer behavior in today’s car markets:
Car buyers don’t choose between brands on prices, quali-
ies, and functions alone anymore. In order for a brand to
ecome appealing to them, certain ”soft” variables such as
urban feeling” or ”high-tech feeling” have to be added.”
cf. [2]). Obviously, many variables enter into the func-
ional relationship between the purchase probability and
he technical specifications of a car in a nonlinear way in
uch a situation, where a number of variables have equivo-
al meanings and are not readily encodable. It thus seems
ighly unlikely that someone who is not constantly and di-
ectly exposed to customers can make a meaningful model.

When important knowledge is created through daily op-
rations and ”embedded” in the employees, one must think
bout how this tacit knowledge can be integrated into the
rganizational knowledge base so that via organizational
earning good organizational decisions arise.

A number of empirical works indicate the importance
f the knowledge integration view. Clark and Fujimoto
3], for instance, show that in the 80s Japanese car manu-
acturers that used multi-functional teams coordinated by a
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high-profile project manager outperformed the more loosely
coupled, sequentially organized European and American
competitors both in terms of development time and prod-
uct quality [2]. A study by [11], which surveyed 788 new
product developments in Japan, confirms this finding. Sim-
ilarly, [5] find that the success of a new product increases
with the intensity of communication between marketing and
R & D. However, when R & D and marketing person-
nel become too close friends, the need for harmony pro-
hibits an open discussion of conflicting arguments and con-
sequently new product success decreases [5]. Lawrence and
Lorsch compare different companies in different industries
to formulate the ”contingency theory of organization”: the
more complex the environment, the more differentiated the
knowledge has to be and the stronger the need for high-
band-width communication and non-hierarchical coordina-
tion [9].

The aim of this paper is to develop quantitative models
for organizational learning in tactical planning. We focus on
modeling the new product development process and demon-
strate, how production and marketing agents learn to co-
ordinate their actions in order to produce optimal products
with respect to their incentive schemes. We will also show
that methods of Total Quality Management (TQM) like the
House of Quality [6] are coordinated search procedures for
organizational learning and study under which conditions
they work best (functional and institutional integration).

2. World Definition

In this section, we define the environment in which the
agents live, i.e., their world. The environment consists of
three major components:

� The market definition, which describes life-cycle ef-
fects and market share as a function of product at-
tributes, price and promotion budgets.

� The production definition, which describes how pro-
duction processes map into technical product features;
i.e., the production and cost function of the firm.

� The interface definition, which describes how real
technical product features are related to attributes as
perceived by the consumers.

Figure 1 shows the interactions in this environment.
Starting without any prior knowledge, the agents observe
realizations of past actions and try to build their own model
of the world. Observations of actions are realized when pro-
totypes of a product are developed and used for a market
study. Once a prototype is built, the real costs, technical
characteristics and consumer preferences are known. These
examples can then be used to learn their model of the world.
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Life Cycle Return LCR

Attractivity A

Costs

Price P

Production 
Processes X

Technical 
Features Y

Attributes Z

Market Share S Sales Potential Q
Rate of Innovators p
Rate of Imitators q

Promotion B

Figure 1. Structure of the environment

The learned relations can be used in the next step to decide
which prototype to build next, etc.

Market Definition

The Life Cycle Return (LCR) of a product is given by
the sum of profits over all periods, t:

LCR =

TX
t=1

�(t) (1)

The profit of a period is determined by the following re-
lation:

�i(t) = [Pi(t)� �i(Zi(t))]SiQ(t)�B(t) (2)

where �i(t) represents the profit of firm i at time t, P the
price, Z the attribute vector of the product, Q the market
volume, and S the firms’ market share. � i(Z) denotes the
products’ costs as a function of the product attributes.

Life Cycle (LC) effects are modeled by an extension of
the classical Bass model [1] which finds strong empirical
support [12]. With only three parameters (rate of innova-
tors (p), rate of imitators (q), market potential (Q)) the sales
quantity of each period is determined:

Q(t) = Q

�
p(t)(p(t) + q)2e�(p(t)+q)t

(p(t) + qe�(p(t)+q)t)2

�
(3)

The coefficient of innovation, p, is modeled as function of
the marketing budget, B, in period t.

p(t) = a+ c ln[B(t) + 1] (4)

The market share of a product, Si, is given by

Si =
AiPJ

j=1Aj

(5)
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where A denotes the attraction of the product with attribute
vector z and price P .

A = f(z)g(P ) (6)

where f(z) is a function of the product position relative to the
ideal point, z�. Following Shocker and Srinivasan (1974),
we model the distance of the product offering to the ideal
point as a weighted Euclidean distance:

fj(zi) = 1�
[(z� � zi)

0W (z� � zi)

(z�
0

Wz�)
(7)

with W representing a diagonal matrix whose diagonal el-
ements wi denote the weights consumers place on attribute
i.

g(P) is a downward sloping function of price:

gj(Pj) = (1� bPj=�) (8)

with Pj � �=b and �=b is the market’s reservation price
such that 0 � gj(Pj) � 1.

Production Environment

The relationship X ! Y is captured by the following
relationship (Cobb-Douglas)

Yi =
Y
j

X
�i;j
j (9)

with 0 � �i;j � 1.
The costs of a technical feature depend on a weighted

sum of the chosen processes and materialsX through which
the feature Y is characterized and a penalty for deviations
from the intended attributes.

�i(Yi) =

I;JX
i;j=1

rijXiXj + di(Yi � Ŷi) (10)

Marketing-Production Interactions

Attributes Zi of a product are a weighted function of
technical features Y of that attribute:

Zi =
X
j=1

�i;jYj (11)

with
P

�i;j = 1

Costs of an attribute Z are given by

�j(Zj) =

IX
i=1

�i(Yi) (12)

Product attributes as perceived by the consumers, z, are a
function of the real product attribute values, Z, last periods
perceptions and advertising budget, B, which can be used
to shift the perceptions from Z to z:

z(t) = �1Z(t)+�2z(t�1)+�3ln[B(t)+1](z��z) (13)

3

a
t
r
o
u
i
p
s
a
n
u
m
p
t
p
d
l

a
i

g
c
s
t
t
t
t
d
p
o
s
h
s
t

t
o
l
m
m
d
c
S
c
c
u
c

g

Proceedings of the 33rd Hawaii Internationa
0-7695-0493-0/
. Learning and Decision Making

The marketing agent learns the expected market share of
product as a function of past realizations of product at-

ributes, market shares, etc. The production agent learns the
elationship between input factors X and technical features
f the product Y on one hand and which input factors to
se for a given set of target features Y , on the other hand,
.e., the inverse function. As described by equation 10, the
roduction agent learns to manufacture a product in a way
uch that the costs and the distance to the target product
re minimal. Agents’ knowledge is modeled via artificial
eural networks with one hidden layer using five hidden
nits (determined by trial and error). After having learned
arket reactions, the way products can be built and their

roduction costs, the agents have to decide together which
echnical features and – as a result – which attributes their
roduct should have. In contrast to individual learning, we
efine this process as organizational learning [7] or outer
oop learning.

By using team decision methods or negotiations the
gents try to develop an optimal product according to their
ncentives.

The process of coordination could be cooperation or ne-
otiation. In the case of cooperation the two agents dis-
uss different possible sets of technical features. For each
et the production agent calculates the production cost and
he marketing agent calculates the market share based on
heir approximations of the world. Together they are able
o calculate the expected revenues and costs of producing
he product - the Life Cycle Return. In a team they value
ifferent sets of technical features and choose the one that
romises the highest Life Cycle Return. This method of co-
rdination is possible if the agents can be motivated to find a
olution that is optimal for the company (LCR) and if they
ave no different individual incentives. One way to reach
uch a status is to link the wage of the agents to the profit of
he company.

In many cases such an incentive scheme is impossible
o reach. Usual benchmarks for marketing agents are sales
r market shares. Production agents are often rewarded for
ow costs. In our simulation the marketing agent tries to

aximize the market share and the production agent mini-
izes production costs. In this setting the agents evaluate

ifferent peculiarities of the product features and accept a
hange only if it does not decrease their individual payoffs.
o if they start with product features Y old they will accept a
hange in design to features Y new only if the new design in-
reases market share and decreases costs. Such win-win sit-
ations are of high relevance in management practice when
hanges are implemented across several functional units.

For both ways of negotiation (cooperation, win-win ne-
otiation) we modeled a situation where the agents search
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for new products randomly and one where they use the
House of Quality to guide their search.

Search Models

In the process of coordination the agents have to find a
target set of technical product features Yt that maximizes
expected Life Cycle Return (LCR). To model this search,
we used Simulated Annealing, an optimization method that
was first used by [8]. In our implementation the agents
choose one product feature Yi and change it according to
the rule Yi

0 = (1 � �) � Yi + � � � where � is a parame-
ter that allows to change the step width in each search (in
our model, � is reduced during the search process) and � is
uniformly distributed in the range � 2 [�1; 1].

The agents accept the change if the expected reward R 0

with features Y 0 is higher than the expected reward R for
the original product. If the new reward is lower than the
original one the change is accepted with a probability of

1

1 + e
R�R0

Temp

(14)

where Temp is a parameter which avoids local minima.
Temp is reduced during the search process - so that in the
beginning of the search worse solutions are accepted and at
the end only improvements are allowed.

For the two ways of negotiation, different measures of
the return of a product consisting of a set of features are
used.

� For cooperation the agents try to maximize LCR, i.e.,
R = LCR.

� In the case of the win-win negotiation each agent has
an individual reward. RM of the marketing agent is
the expected market share S and RP are the produc-
tion costs � and estimated deviations from the target
features.

House of Quality

The House of Quality aims at finding a favorable prod-
uct/process specification. It is a ”kind of conceptual map
that provides the means for inter-functional planning and
communication” [6].

As its name indicates, these interfunctional relationships
are graphically depicted in a house. Its body is a matrix
that contains the size and ’strength’ of interrelations be-
tween technical specifications (features) of a product plan
and customer attributes of the product concept. The entries
of the matrix indicate in what way (direction, strength) a
change in Y affects Z. The original approach consists of 4
houses, linking product concept with product plan, product
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lan with parts design, parts design with process design and
rocess design with quality control measures. The entries
re made based on tacit knowledge enriched with explicit
nowledge and experimental data. The roof of the house,
ontains correlations between the technical features Y .

Hauser and Clausing describe how one search step is
onducted in practice, using the specifications of a car’s
oor as example: ”Our doors are much more difficult to
lose from the outside than those of competitors’ cars. We
ecide to look further because our marketing data says this
ustomer attribute is important. From the central matrix, the
ody of the house, we identify the engineering characteris-
ics that affect this customer attribute: energy to close door,
eak closing force, and door seal resistance. Our engineers
udge the energy to close the door and the peak closing force
s good candidates for improvement together because they
re strongly positively related to the customer’s desire to
lose the door easily. They determine to consider all the en-
ineering ramifications of door closing. Next, in the roof
f the house, we identify other engineering characteristics
hat might be affected by changing the door closing energy.
oor opening energy and peak closing force are positively

elated, but other engineering characteristics are bound to
e changed in the process and are negatively related. It is
ot an easy decision. But with objective measures of com-
etitors’ doors, customer perceptions, and considering in-
ormation on costs and technical difficulty, we decide that
he benefits outweigh the costs. A new door closing target
s set for our door - 7.5 foot-pounds of energy. This target,
oted on the very bottom of the house directly below the
elevant engineering characteristic, establishes the goal to
ave the door easiest to close.”

For the analyses of our problem, we used only the first
ouse of Quality, where the marketing and the production

gent meet. In the House of Quality, we represent the con-
ection between different technical features Y i (some fea-
ures promote other features, some features restrict each
ther) - the roof matrix - and the connection between tech-
ical features Yi and product attributes Zj - the central
atrix - using the correlations cri;j = Corr(Yi; Yj) and
c
i;j = Corr(Yi; Zj) calculated for 100 training samples.
e also estimate the importance of the product attributes in

ales Ii using the same samples by learning the relation

f(Z) =
X
i

Ii � Zi + � (15)

in equation (6) and the costs kj of technical features by
earning

�(Y ) =
X
i

ki � Yi + � (16)

n equation (10).
To use the House of Quality in the search process, we

alculate a rating W (Yi) of each technical feature Yi by
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Table 1. Comparison between House of Qual-
ity and random search using the same incen-
tive schemes

steps mean std mean std
HoQ HoQ without HoQ without HoQ

10 0.157 0.038 0.144 0.030
50 0.287 0.059 0.265 0.075
100 0.384 0.024 0.359 0.047
250 0.414 0.018 0.410 0.018
500 0.459 0.019 0.446 0.024
1000 0.483 0.014 0.483 0.017

W (Yi) =
X
j

Ij � c
c
i;j � ki (17)

This value represents the “isolated contribution” of (Y i)

to LCR. To represent inter-feature dependencies (changing
one feature may result in the (unwanted) change of another
one) a modified feature value (Wm) is calculated.

Wm(Yi) = W (Yi) + 
X
i 6=j

cri;j �W (Yj) (18)

If the agents use the House of Quality they use Wm(Yi)

to decide which feature value should be changed next. At-
tributes with higher Wm are more likely to be changed.

4. Results

Tables 1 and 2 show average values and standard devia-
tions of expected life cycle returns over 50 replications of
our simulation. While Table 1 represents the results for
the coordinated search, Table 2 reflects the outcomes of
the negotiation based (win-win) situation. Each table con-
tains the results for the House of Quality search and the
random search for different numbers of product evaluation
iterations.

Comparing the results of the simulation searching for
new products indicates that the House of Quality approach
always yields higher LCRs. However, the results from a
random search approximate to the results of the House of
Quality approach when the number of steps is high (see Fig-
ures 2 and 3).

Allowing for 10 search steps only, the estimated LCR
using the House of Quality is 9.2% higher as compared to
the random search for coordinated incentives and 7% for in-
dividual incentive schemes, respectively. After 1000 steps
the results are almost identical. Furthermore, it can be noted
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hat the standard deviation of the outcome decreases consid-
rably when the number of search steps is higher than 100.
he number of search steps should be regarded as the time
vailable for discussing about new product possibilities to
e introduced.

The importance of choosing the right incentive functions
an be seen. Linking the agents (additional) payoff to the
verall performance measure of the firm leads to a higher
CR in general (see Figure 4). Furthermore, product devel-
pment is “guided” into the right direction, i.e., the agents
ill improve the life cycle return of a new product with in-

reasing time to discuss several product opportunities.
Linking the individual payoffs to local performance mea-

urement (such as production cost or market share) allows
oth agents (especially if there is enough time to search)
o improve their individual payoff while lowering the firms
rofits.
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Figure 2. Results for the case of using the
same incentive schemes

. Conclusion

We have studied the product development process in an
rtificial firm using two different incentive schemes and two
ethods for product selection. We showed that coordinat-

ng incentive schemes - such as shares or options as part of
he income - increase the performance (shorter time to mar-
et or higher product performance) of the firm [4]. As a co-
rdinating mechanism between marketing and production,
e used the House of Quality framework of Hauser and
lausing and compared it to a directed random search strat-
gy. We found that the House of Quality approach yields
igher life cycle returns than the traditional search for new
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Table 2. Comparison between House of Qual-
ity and random search using conflicting in-
centive schemes

steps mean std mean std
HoQ HoQ without HoQ without HoQ

10 0.137 0.029 0.128 0.031
50 0.253 0.049 0.213 0.049

100 0.343 0.041 0.283 0.054
250 0.371 0.006 0.367 0.007
500 0.367 0.004 0.363 0.002

1000 0.364 0.001 0.362 0.001
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Figure 3. Results using individual incentive
schemes
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Figure 4. Comparing different incentive
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roducts - especially for a low number of search steps. This
s an important finding recommending the application of the
ouse of Quality since the number of search steps directly

nfluences time to market. Thus, minimizing the number of
teps could be an important competitive advantage in todays
ast moving consumer markets.
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