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Abstract. On-line learning in domains where the target concept depends on some hidden context poses serious 

problems. A changing context can induce changes in the target concepts, producing what is known as concept 

drift. We describe a family of learning algorithms that flexibly react to concept drift and can take advantage 

of situations where contexts reappear. The general approach underlying all these algorithms consists of (1) 

keeping only a window of currently trusted examples and hypotheses; (2) storing concept descriptions and re- 

using them when a previous context re-appears; and (3) controlling both of these functions by a heuristic that 

constantly monitors the system's behavior. The paper reports on experiments that test the systems' performance 

under various conditions such as different levels of noise and different extent and rate of concept drift. 
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1. Introduct ion 

The work presented here relates to incremental or on-line concept learning, which has 

recently received considerable attention among theoreticians (e.g., Angluin, 1988; Maass, 

1991; Helmbold, Littlestone, & Long, 1992) as well as practitioners (e.g., Schlimmer 

& Granger, 1986; Langley, Gennari, & Iba, 1987; Kilander & Jansson, 1993; Kubat, 

1989, 1993; Salganicoff, 1993a; Widmer & Kubat, 1993), The principal task is to learn 

a concept incrementally by processing labeled training examples one at a time. From 

another point of view, the problem may be seen as minimizing the total number of 

erroneous classifications in a feedback system: a stream of objects are classified, one 

by one, as positive or negative instances of a concept, and immediately afterwards the 

correct answer is received. The learner uses the current state of the knowledge base to 

predict the class of each incoming example. A discrepancy between the prediction and 

the real class value will usually trigger modifications to the knowledge base. 

A difficult problem in such a learning scenario is that the concepts of interest may 

depend on some hidden context. Mild weather means different things in Siberia and 

in Central Africa; Beatles fans had a different idea of a fashionable haircut than the 

Depeche-Mode generation. Or consider weather prediction rules, which may vary radi- 

cally depending on the season. Changes in the hidden context can induce more or less 
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Figure 1. Current and old concept descriptions and the window moving along the stream of examples. 

radical changes in the target concepts, producing what is generally known as concept 

drift in the literature (e.g., Schlimmer & Granger, 1986). 

An example of real-world concept drift is described by Kubat (1992), where a system 

was presented that learned to control the load redistribution in computer clusters: over- 

loaded units should send part of their load to underloaded units in order to improve the 

overall response time. The 'real' rules describing "overloadedness" would depend on 

the workload profile as defined by the frequency of disk operations, CPU and memory 

requirements, and the like. However, the only variables visible to the system were the 

lengths of various CPU and disk queues. Thus, the workload structure was the hidden 

context that determined the interpretation of the visible variables. Note that this context 

varies in time and that similar contexts can reappear. 

Effective learning in environments with hidden contexts and concept drift requires a 

learning algorithm that can detect context changes without being explicitly informed 

about them, can quickly recover from a context change and adjust its hypotheses to a 

new context, and can make use of previous experience in situations where old contexts 

and corresponding concepts reappear. 

One possible approach is sketched in Figure 1. As the context is known to vary in 

time, the learner trusts only the latest examples - -  this set is referred to as the window. 

Examples are added to the window as they arrive, and the oldest examples are deleted 

from it. Both of these actions (addition and deletion) trigger modifications to the current 

concept hypothesis to keep it consistent with the examples in the window. In the simplest 

case, the window will be of fixed size, and the oldest example will be dropped whenever 

a new one comes in. 

To extend the basic model, assume that the learner maintains a store of concept de- 

scriptions or hypotheses pertaining to previously encountered contexts. This is indicated 
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by the boxes in the lower left part of Figure 1. When the learner suspects a context 

change, it will examine the potential of the previously stored descriptions to provide bet- 

ter classifications. Based on the result, the system may either replace the current concept 

description with the best of the stored descriptions, or start developing an entirely new 

description. 

Generally, a learning algorithm embodying these ideas needs (1) operators that modify 

the concept description in reaction to changes in the contents of the window; (2) the 

ability to decide when and how many old examples should be deleted from the window 

('forgotten'); and (3) a strategy that maintains the store of current and old descriptions 

and assesses the relative merits of concept hypotheses. Clearly, items (2) and (3) will 

require the system to make some guesses as to when a context change is occurring. 

The basic approach to learning and forgetting will be elaborated in the following 

section, where we specify a simple algorithm for maintaining a consistent concept hy- 

pothesis. Section 3 looks at computational learning theory for some hints concerning the 

main parameter of this algorithm (the window size). The following sections then describe 

three extensions of the basic method and their realization in experimental systems: the 

algorithm FLORA2 (Section 4) possesses the ability to dynamically adjust the window 

to an appropriate size during learning; FLORA3 (Section 5) stores concepts for later use 

and reassesses their utility when a context change is perceived; and FLORA4 (Section 6) 

is designed to be particularly robust with respect to noise in the input data. Experiments 

with all three algorithms under varying conditions are presented in Section 7. Finally, 

Section 8 relates the FLORA approach to other research in machine learning. 

2. Learning and Forgetting: The General FLORA Framework 

Currently, our algorithms are restricted to the relatively simple representation language 

based on attribute-value logic without negation. Throughout the paper we will often use 

the notion of a description item, which is a conjunction of attribute-value pairs. We will 

say that a description item matches an example if it is true for it. For instance, ( co lo r  

- white) /~ (temperature = low) matches 'snow' and (shape : cube) does not 

match the Globe. Formally, a description item matches the description of an object if all 

its literals (attribute-value pairs) occur in the object's description. 

In the FLORA framework, a concept description or hypothesis is represented in the 

form of three description sets: the set ADES (Accepted DEScriptors) contains description 

items matching only positive examples. Like the other two sets, ADES can be interpreted 

as a disjunctive normal form (DNF) formula. The set NDES (Negative DEScriptors) 

similarly summarizes the negative examples; and PDES (Potential DEScriptors) contains 

description items that are too general, matching positive examples, but also some negative 

ones. 1 The set ADES, representing the current (positive) concept hypothesis, is used to 

classify new incoming examples. NDES summarizes the negative examples and is used 

to prevent over-generalization of ADES (see below), while PDES acts as a reservoir of 

hypotheses that are currently too general but might become relevant in the future. 

Assume the following structure: 
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ADES = {ADesl /AP1,ADes2/AP2, . . .}  

PDES = {PDes l /PP1 /PN1 , . . . }  

NDES = {NDes l /NN1 , . . . }  

where ADesi, PDesi, and NDesi are conjunctive description items; APi and PP~ 

are counters that specify how many positive examples in the current window match the 

individual description items in ADES and PDES respectively; similarly, PNi and NNi 

count how many negative examples match the respective description items. The counters 

are updated with any addition to or deletion from the window and are used to decide 

when to move an item from one set to another or when to drop it altogether from the 

hypotheses. In any case, items are retained only if they cover at least one (positive or 

negative) example in the current window. 

The description items in ADES and NDES are generated by incremental generalization 

in response to positive and negative instances. When new instances are added to or 

deleted from the window, some items will be moved from one set to another. In particular, 

the set PDES of 'potential hypotheses' contains items that were once in ADES or NDES, 

but are contradicted by some examples. They are kept in PDES in the hope that they 

may become relevant again when old instances are dropped from the window. More 

precisely, modifications to the window can affect the contents of the description sets in 

the following ways: 

Adding a positive example to the window may cause a new description item to be 

included in ADES, or some existing items to be either 'confirmed' or generalized to 

accommodate the new instance, and/or existing items to be transferred from NDES 

to PDES. 

Similarly, adding a negative example to the window may cause a new description 

item to be included in NDES, or some existing items to be 'reinforced' or generalized, 

or existing items to be transferred from ADES to PDES. 

Forgetting an example (dropping it from the window) can cause existing description 

items to be 'weakened' (i.e., the corresponding counters are decremented), or even 

deleted from the current description set (if the counter drops to zero), or moved from 

PDES to ADES (if the example was the only negative instance covered) or to NDES 

(if the example was the only positive one). 

Figure 2 helps visualize what is going on during the learning process. The arrows 

indicate possible migrations of hypotheses between description sets after the arrival or 

deletion of a positive (G) or negative (8) instance, respectively. The extent of these 

transitions for the case of n arrivals and m deletions is quantified by Kubat (1991). 

The complete basic FLORA algorithm for maintaining the hypotheses when a positive 

example is processed is sketched in Table 1 (if the example is negative, the algorithms 

work analogously - -  just substitute NDES for ADES). Note that there are two procedures, 

one for the case when a new example is added and one for the case when the oldest 

example is deleted from the window. 
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Function learn-from(I) for a positive instance I 

functions: 

• match(l, XDes i )  . . .  determines whether the XDes~ is true for instance I 

• delete(X, XDES) . . .  deletes X from XDES 

• include(X, XDES) . . .  puts X into XDES if  not subsumed by an existing item 

• generalize(LXDES, YDES, ZDES) . . .  performs minimal generalization of some 

item X in XDES to cover instance I (if possible without subsuming some item 

in the other sets YDES, ZDES); tries to select X that requires least amount 

of generalization; returns true upon success; 

algorithm: 

MATCH := false; 

for i := 1 to {ADES [ 

if match(I, ADesO then 

begin APi :=  APi + 1; 

MATCH := true 

end; 

if not MATCH then G := generalize(I, ADES, PDES, NDES); 

if not MATCH and not G then include(I/1,ADES); 

for i := 1 to [PDES [ 

if match(I, P D e s d  then PPi :=  PPi + 1; 

for i := 1 to [NDES I 

if match(I, NDesO then 

begin delete(NDesi, NDES); 

include( N DesJ1 /N Ni,PD ES ) 

end; 

Function forget(l) for a positive instance I 

algorithm: 

for i := 1 to lADES ] 

begin if match(I, ADesd  then APi := APi - 1; 

if AP~ = 0 then delete(ADesi, ADES); 

end; 

for i := 1 to I PDES I 

begin if match(l, P D e s d  then PPi :=  PPi - 1; 

if PPi = 0 then 

begin delete(PDesi,PDES); 

include( P Desi /P N~,NDES) 

end 

end; 

Table 1. The basic FLORA algorithm: Functions learn,C?om(X) and./orget(X) 
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Figure 2. Transitions among the description sets 

The actions taken when removing an example from the window are rather straight- 

forward. In the case when a new (positive) example arrives, the respective counters in 

the set of potential descriptors, PDES, are incremented and description items in NDES 

matching the instance are moved to PDES. For ADES (accepted descriptors), there are 

three possible cases: if the example matches some items, the counters are simply incre- 

mented; otherwise, if some item can be generalized to accommodate the instance without 

becoming too general (i.e., subsuming some item in PDES or NDES), generalization is 

performed. Otherwise, the description of the instance is added as a new description to 

ADES. The only generalization operator used is the dropping condition rule (Michalski, 

1983), which drops attribute-value pairs from a conjunctive description item. 

Generally, the three description sets are kept non-redundant and consistent by check- 

ing for subsumption within and between the sets. In this way, for instance, over- 

generalization of ADES is avoided by checking it against PDES and NDES whenever 

one of the description items is generalized. 

Note also that there is no specialization operator in this framework: if a new positive 

(negative) instance cannot be incorporated consistently into any of the generalizations, 

its full description is added to ADES (NDES); the instance acts as a specific 'seed' which 

may be generalized later. Overly general descriptions are discarded when old examples 

are forgotten. 

The general approach presented here assumes that only the latest examples are relevant 

and should be kept in the window, and that only description items consistent with the 

examples in the window are retained. While each new example is automatically included 

in the window, the question of how many examples should be deleted is more difficult. 

In the following section, we briefly review some theoretical results from computational 

learning theory as they relate to this question. Then we present a heuristic solution to 

the problem. 
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3. Theoretical results concerning learning under drift 

The notion of concept drift has received some attention in the literature on computational 

learning theory in recent years. For instance, Helmbold and Long (1991, 1994) and 

Kuh, Petsche, and Rivest (1991, 1992) have investigated various conditions under which 

effective drift tracking is possible. They start from the observation that drift tracking is 

strictly impossible if there are no restrictions on the type of concept changes allowed. (As 

an extreme example, consider a sequence of concepts that randomly alternates between 

the constant function 1 and the constant function 0 after every example). They then go 

on to study various restrictions on the severity (extent) or the frequency (rate) of concept 

changes. 

In particular, Helmbold and Long (1994) assume a permanent (possibly with each 

example) but very slight drift. In the following statement of results, the ci's are positive 

constants, e is the maximum allowed probability of misclassifying the next incoming 

example, n is the number of available attributes, and d is the Vapnik-Chervonenkis 

dimension (see, e.g., Blumer et al., 1989) of the target class. The extent of concept 

drift A is measured in terms of the relative error of two successive concepts, i.e., the 

probability that they will disagree on a randomly drawn example. Their main results are: 

• an algorithm that tolerates drift of extent up to A < cle2/(dln ( l /e)) ;  

• a randomized version of this algorithm that is potentially more efficient computa- 

tionally but tolerates drift of lower extent (A < c2~2/(d 2 In (l /e)));  and 

upper bounds on the tolerable amount of drift for two particular concept classes (half- 

spaces and axis-aligned rectangles) - -  no algorithm can track concept drift greater 

than c3e2/r~ if the prediction error is to stay below e. 

Helmbold and Long also show that it is sufficient for a learner to consider only a fixed 

number of previous examples (i.e., a fixed window sliding over the input stream). Their 

analysis leads to rough estimates as to the window size needed for effective tracking; in 

the case of the first of the above algorithms, for instance, they show that a window size 

m = (cod~e) log (1/c) (together with the above restriction on the allowable amount of 

drift) is sufficient to guarantee trackability. 

"Computationally efficient", in their framework, means that updating the hypothesis 

and classifying the next incoming example should be feasible in polynomial time. In 

effect, their algorithm recomputes the current hypothesis from the entire window after 

every new instance ("batch learning"). This is a reasonable assumption in complexity 

theory, but it may not be what we desire for a practical application. What we are looking 

for is a truly incremental algorithm that only looks at the new example to modify its 

current hypothesis. 

Kuh et al. (1991) introduce the notion of PAC-tracking as a straightforward extension 

of Valiant's (1984) PAC framework. Again, their general results relate to the batch- 

learning scenario, where a hypothesis is recomputed from the entire window after each 

instance. Their approach is somewhat orthogonal to the work of Helmbold and Long: 
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rather than restricting the extent of drift, they set out to determine the maximum rate of 

drift (i.e., how frequently a concept is allowed to change) that is tolerable by a learner. 

Their main general result is a lower bound on the allowed drift rate: A < -~m(e, 6/2) 

(where a drift rate A means that on average, a concept is stable for at least 1/A time 

steps or instances). Again, this result assumes a minimum (fixed) window size of 

w(e,~) = m(e,~/2) where m(e,~) is derived from the general bound on the num- 

ber of training examples that guarantee PAC-learning (Blumer et al., 1989): re(e, 6) = 

m a z (  4 log 3 , -~  log !~). The similarity to the sample size derived by Helmbold and 

Long is evident. 

Attempts to characterize fully incremental learning under concept drift (Kuh et al., 

1992) have led to bounds on the expected mistake rate of drift trackers for some very 

specific concept classes (e.g., half-planes and intersections thereof). No general results 

for arbitrary concept classes are known to us. 

For many practical applications with real-world data, truly incremental learning is im- 

portant, and so are reasonably sized windows. On the other hand, we cannot always 

demand or expect an arbitrarily small error. With respect to the large window size pre- 

scribed by theoretical analysis, Kuh et al. (1991) conclude that "[a]n algorithm that 

removes inconsistent examples more intelligently, e.g., by using conflicts between ex- 

amples or information about allowable changes, will be able to track concept sequence 

spaces that change more rapidly." That is exactly what we attempt to do in the FLORA 

family of algorithms. In the tradition of "AI-type" learning, we will take a heuristic 

approach to dynamically adjusting the window size based on strategies for explicitly 

detecting context changes. We will assume that the rate of context changes is rather 

low (i.e., that there are phases of stability between periods of change), but on the other 

hand we will allow concept changes of arbitrarily large extent (successive versions of the 

target concept may be very different). Of course, under these circumstances one cannot 

expect the prediction error e always to be bounded; but our heuristic approach aims at 

enabling the learner to recover very quickly from low predictive accuracy after a context 

change. 

4. Flexible Windowing: FLORA2 

The first realization of the FLORA framework that we discuss is the algorithm FLORA2 

(Widmer & Kubat, 1992), which attempts to dynamically adapt the size of its window 

during the learning process. 

4.1. Description of  FLORA2 

Let us start with an intuitive look at the effects of an inappropriate window: basically, 

a narrow window will not accommodate a sufficient number of examples for a stable 

concept description; a wide window, on the other hand, will slow down the learner's 

reaction to concept drift, particularly if the change in the concept is quite dramatic. Ob- 

viously, the ideal setting depends on the extent of the concept drift and on the momentary 
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denotations" 

N . . .  number of positive instances covered by ADES 

S . . .  size of ADES in terms of number of literals 

Ace . . .  current predictive accuracy (monitored over recent classification attempts) 

I W I ...  window size 

parameters lc, hc and p are user-defined 

algorithm: 

if (N/S  < lc) or ((Ace < p) and decreasing(Ace) /* drift suspected */ 

then L := 0.2. ] W I 

else if (N /S  > 2 * he) and (Ace > p) 

then L := 2 

else if (N /S  > hc) and (Ace > p) 

then L := 1 

else L := 0. 

/* reduce window by 20% */ 

/* extremely stable */ 

I* reduce window by 1 */ 

/* stable enough */ 

/* keep window fixed */ 

/* grow window by I */ 

Table 2. Window Adjustment Heuristic (WAH): how-many_to~orget(le, he, p) 

state of learning, Both of  these variables can only be determined dynamically, during 

learning. Moreover, the occurrence of  a concept change can only be guessed at. A 

good heuristic for dynamic window adjustment should shrink the window (and forget 

old instances) when a concept drift seems to occur, and keep the window size fixed when 

the concept seems stable. Otherwise the window should gradually grow until a stable 

concept description can be formed. 

In trying to guess when a concept change occurs, FLORA2 uses two heuristic indica- 

tors: the system's predictive performance Ace (monitored over a fixed number of  past 

classifications) and syntactic properties of the evolving hypotheses. The basic assump- 

tion is that serious drops in Ace or an explosion of  the number of description items in 

ADES may signal a possible concept drift. As both of  these indicators depend heavily on 

characteristics of the learning task, three parameters are used to customize the heuristic 

to the application domain: 

lc ( = threshold for low coverage of  ADES); 

he ( = threshold for high coverage of  ADES); and 

p ( = threshold for acceptable predictive accuracy). 

By the coverage of  a description set we mean the ratio of the number of instances 

covered by items in the set and the size (in terms of the total number of  literals over all 

descriptions) of the set. This definition of coverage trades off the number of examples 

covered and the "cost" (syntactic complexity) of  description items. 

Table 2 shows the Window Adjustment Heuristic (WAH) that is used in FLORA2. The 

WAH decreases the window size by 20% if a concept drift is suspected. In contrast, 

the window size is decreased by 1 (after the addition of a new example, the two oldest 

examples are deleted) if the hypothesis seems to be extremely stable; this is to avoid 

retention of unnecessarily large numbers of examples. If the current hypothesis seems 
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sufficiently stable, the window size is simply left unchanged. If none of these conditions 

is satisfied, the program assumes that more information is needed and it does not forget 

the oldest example, thus incrementally increasing the window size by 1. 

The particular parameter settings currently used in FLORA2 are le = 1.2, he = 4.0 

and p = 70%. The parameters were set after some preliminary experiments with the 

'STAGGER concepts' (see below) and were left unchanged in all the other experiments 

to be reported. 2 

Given that the heuristic is (necessarily) very syntactically oriented and is thus very 

sensitive to the description language used, it seems hopeless (or at least difficult) to 

make it completely free of parameters. 

4.2. A simple experiment: The STAGGER concepts 

For a quick comparison with one of the first concept drift trackers, STAGGER (Schlimmer 

& Granger, 1986), FLORA2 was tested on the same artificial learning problem as used 

by Schlimmer and Granger. The instance space of a simple blocks world is defined 

by the three attributes size E {small ,  medium,  large}, color E {red, green, blue}, 

and shape E {square, circular, tr iangular}.  There is a sequence of three target 

concepts (1) size = small  A color = red, (2) color = green v shape = circular 

and (3) size = (med ium V large ). 120 training instances are generated randomly, 

labeled according to the hidden concept, and after processing each instance, the predictive 

accuracy is tested on an independent test set of 100 instances, also generated randomly. 

The underlying concept is made to change after every 40 training examples) The results 

are averaged over 10 runs. Figure 3 shows FLORA2's predictive accuracy on the test 

set after processing each training example. The dotted vertical lines indicate where the 

underlying concept changes. 
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Figure 3. Adjusting to drift: predictive accuracy. 
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Figure 4. Adjusting to drift: dynamic window size. 

It can be seen that the dramatic concept shifts lead to a sharp decrease of the predictive 

accuracy, but FLORA2 adjusts very quickly and soon approaches the 100% mark again. 

Figure 4 indicates that this is due to the workings of the Window Adjustment Heuristic. 

Figure 4 plots the development of the window size in a typical (single) run. The WAH 

behaves as expected: a change in the definition of the underlying concept first leads to 

a short increase in the size of the window, before the system reacts to the concept shift 

by narrowing the window and forgetting old, now irrelevant or contradictory instances. 

A comparison of these curves with the respective figures in (Schlimmer & Granger, 

1986) suggests that FLORA2 is comparable to STAGGER in terms of convergence and 

re-adjustment speed on this basic task. In a second experiment, Schlimmer and Granger 

showed that STAGGER is sensitive to over-training. The longer it has been trained on 

a stable concept, the slower it will be in 'letting go' and changing its hypothesis when 

the underlying context changes. When the same experiment (making each of the three 

concept periods 150 instances long) is performed with FLORA2, there is no such effect, 

which is, of course, due to the fact that FLORA2 stops the window growth once its 

hypotheses are stable. We will return to this point in Section 8. 

In any case, FLORA2's explicit drift detection mechanism (the WAIl) has additional 

advantages, as will be seen in the following section, where we introduce an algorithm 

for explicit context handling. 

5. Dealing with Recurring Contexts: FLORA3 

There are many natural domains where there is a finite number of hidden contexts that 

may reappear, either cyclically or in an unordered fashion. For instance, there are four 

seasons that follow each other in a cyclic order and cause regular changes in many natural 
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phenomena. Biological and economic systems tend to go through cycles of development 

with recurring patterns. 

In domains where contexts and associated concept versions reappear, it would be a 

waste of effort to relearn an old concept from scratch for each recurrence. Instead, 

concepts or hypotheses should be saved so that they can be reexamined at some later time, 

when there are indications of a context change. The effect should be faster convergence if 

the concept (or a similar one) has already occurred. This section introduces an extension 

of FLORA2 that includes a mechanism for context storage and recall. The mechanism 

is tightly coupled with the window adjustment algorithm. 

5.1. Description of FLORA3 

The top level of FLORA3 is similar to FLORA2. The system first tries to classify the 

new incoming example, updates its on-line classification accuracy, then learns from the 

instance by incorporating it into the window and updating the description sets, and, 

after calling the WAH to decide whether and how to adjust the window size, 'forgets' 

the appropriate number of old instances. However, after each learning cycle, FLORA3 

inspects the current state of learning in order to decide whether it should reconsider 

concept descriptions that were useful in some old context. 

The idea is that when a context change seems to occur, the system should consult 

its store of old concept descriptions to see whether some old concept might better de- 

scribe the examples currently in the window. Conversely, when a stable concept hy- 

pothesis has been reached, it might be worthwhile to store the current hypothesis for 

later reuse. It is the Window Adjustment Heuristic (WAH), as embodied in the function 

how_many_to_forget in Table 2, that tries to determine the relevant conditions (the oc- 

currence of a context change and the stability of the learning situation). So in FLORA3, 

storage and reexamination of old hypotheses are tightly linked to changes in the window 

size. 

The corresponding function choose_context, which is called at the end of each learning 

loop, is sketched in Table 3. When the current hypothesis is stable according to the 

WAH, the system saves it for later reuse, unless there is already a stored concept with 

the same set of ADES descriptions. On the other hand, if there is reason to believe that a 

context change is taking place (i.e., when the WAH enforces a narrowing of the window), 

the system examines its store of old concept descriptions in an attempt to find one that 

fits the current situation. If one is found that seems more appropriate than the current 

hypothesis, it is reinstalled as the new hypothesis. 

Note that when a concept description pertaining to an old context is retrieved, it will 

usually not agree 100% with the examples in the current window. Therefore, all examples 

in the current window must be regeneralized. The counters associated with the items of 

the retrieved hypothesis are set to zero, and then the regular FLORA learning algorithm 

(Table 1) is invoked for each example in the window. All description items that have 

counters equal to zero after re-generalization are removed as irrelevant. The algorithm 

for reassessing old concepts proceeds in three steps (see Table 3): 
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denotations: 

Stable. .  boolean variable; true if the current hypothesis is stable 

according to the WAH; 

Drift_suspected... boolean variable; true if the WAH suspects a 

concept drift and has narrowed the window; 
functions: 

• store_current . . .  store current description sets 

• find_best_candidate . . .  find best matching old context 

• regeneralize_old_description . . .  regeneralize according to current window 

• replace_if_applicable.., reinstall old hypothesis, if better than current 

algorithm: 

if Stable 

then store_current 

else if Drift_suspected then 

begin Best  :=find_best.candidate; 

G := regeneralize_old_description(Best); 

replace_if_applicable(G) 

end. 

Table 3. Function choose_context 

. Find the best candidate among the stored concepts: an old hypothesis becomes a 

candidate if it is consistent with the current example. All the candidates are evaluated 

with respect to the ratio of the numbers of positive and negative instances they match 

(from the current window); 

2. Update the best candidate w.r.t, the current data by setting all the counters in the 

description sets to 0 and then reprocessing all the examples in the window; 

. Compare the updated best candidate Cb to the current concept description C: use 

some 'measure of fit' to decide whether Cb is better than C; if so, replace 6'  with 

Cb. In the current version of FLORA3, the measure of fit is simply the relative 

complexity of the description: a concept description is considered better if its ADES 

set is more concise. (Remember that by construction, the ADES sets of both C and 

Cb cover all the positive and no negative instances from the window). 

The algorithm tries to maintain efficiency by limiting the number of expensive repro- 

cessing episodes. Old concepts are not reconsidered after every new training instance; 

they are only retrieved when the window adjustment heuristic suspects a concept drift. 

In addition, the expensive part of  reconsidering an old concept - -  the regeneralization of 

all the instances in the window - -  is done only for one of them - the best candidate. The 

best candidate is determined through a simple heuristic measure, which, of course, can 

sometimes lead to an inappropriate candidate being chosen• Thus, efficiency is achieved 

at the possible expense of  quality. 
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It seems worth emphasizing that the role of the retrieved old concept/hypothesis is to 

act as a model or bias for regeneralizing the current examples. The retrieved candidate 

provides a list of generalizations that were useful in the past and that might, at least in 

part, also be useful in the new context. That reflects the insight that when an old context 

returns, the target concepts will tend to be similar, but not necessarily identical to how 

they appeared in the old context. 

5.2. An Experiment with recurring contexts 

To measure the effectiveness of the context tracking (store/recall) mechanism, we created 

a situation of recurring contexts by repeating the three STAGGER concepts three times, in 

the cyclic order 1-2-3-1-2-3-1-2-3. Training and test instances were generated according 

to the same procedure as above. Again, results are averages over 10 runs. 

Figure 5 compares FLORA3 (solid line) to FLORA2 (dashed line) on this task. Storing 

and reusing old concepts leads to a noticeable improvement over the simpler system 

when contexts actually reappear: starting from the fourth period (the first reoccurrence 

of context 1) the solid line shows faster readjustment to higher accuracy levels in four 

out of six cases (the differences in the last two periods are too small to be significant). 

An interesting phenomenon appears in the third period of the plot - -  the first occurrence 

of context 3. Here, FLORA2 did better than FLORA3. That may seem odd at first sight, 

as there is no context recurrence at this point, so ideally, both systems should behave the 

same. But the concept retrieval and adaptation algorithm is driven by heuristics and can 

sometimes lead the system to reinstall an old concept erroneously. 4 The context tracking 

mechanism thus adds another degree of freedom (and source of potential errors) to the 

learning process. However, when old contexts actually do reappear, the advantages of 

the context tracking approach begin to outweigh the disadvantages, as can be seen from 

the following phases in the experiment. 

Similar results were achieved in experiments with a more complex world (see Widmer 

& Kubat, 1993). However, there it also turned out that very slow concept drift and 

especially noise in the training data destabilized FLORA3's (and equally FLORA2's) per- 

formance more than seemed strictly necessary. That observation led to the development 

of FLORA4. 

6. Drift  vs. Noise: FLORA4 

Generally, it is very difficult in incremental learning to distinguish between 'real' concept 

drift and slight irregularities that are due to noise in the training data. Methods designed 

to react quickly to the first signs of concept drift may be misled into overreacting to 

noise. This results in unstable behavior and low predictive accuracy. On the other 

hand, an incremental learner that is designed primarily to be highly robust in the face of 

noise runs the risk of not recognizing real changes in the target concepts and may adjust 

to changing conditions very slowly, or only when the concepts change radically. An 

ideal learner should combine stability and robustness with flexible and effective context- 
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Figure 5. Learning in domain with recurring contexts: FLORA3 (solid) vs. FLORA2 (dashed). 

tracking capabilities. On the face of it, the two requirements seem diametrically opposed. 

Nonetheless, we can at least try to achieve a compromise between them. 

A simple analysis of FLORA2 and FLORA3 reveals that their brittleness in the face 

of  noise is a result of the strict consistency condition that is used to decide which 

generalizations to keep in ADES. As hypotheses in ADES (and NDES) must be strictly 

consistent with the examples (e.g., an expression in ADES must not cover any negative 

instances), one negative example is sufficient to invalidate a description item and cause it 

to be moved from ADES to PDES, even if it covers a large number of  positive examples. 

That can lead to somewhat unstable behavior even in noise-free domains, especially when 

a concept change is taking place, but it is particularly problematic when the input data 

are noisy, i.e., when some of the training examples may be mislabeled. 

6.1. Description of FLORA4 

To counter this problem, FLORA4 drops the strict consistency condition and replaces it 

with a 'softer '  notion of reliability or predictive power of generalizations. The idea is 

to continuously monitor the predictive accuracy of each generalization in the description 

sets and to statistically evaluate the confidence of these accuracy estimates: FLORA4, like 

its predecessors, uses its current hypothesis (ADES) to classify each incoming example 

before learning from it. Now the central idea is ' to keep a classification record for each 

individual description item (conjunction) and to construct statistical confidence intervals 

around these measures. Decisions as to when to move an item from one set to another or 

when to drop it altogether are based on the relation between these confidence intervals and 

the observed class frequencies: a hypothesis is kept in ADES as long as its predictive 
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accuracy is higher (with high confidence) than the observed frequency of the class it 

predicts. 

More precisely, let # = required confidence level (parameter); assume that each de- 

scription item is associated with two numbers, c~l and c~, that represent the lower and 

upper endpoints, respectively, of the statistical confidence interval (with confidence #) 

around the item's classification accuracy, computed over the instances in the current win- 

dow. Let 7l and 74 be the lower and upper endpoints, respectively, of the confidence 

interval (with confidence #) around the relative frequency of the positive class observed 

so far (i.e., the percentage of processed training instances that are positive examples of 

the target concept). 5 

FLORA4 then uses the following criteria to maintain its description sets (compare this 

to Table 1): 

a description item X is kept in ADES if the lower endpoint of its accuracy confidence 

interval is greater than the class frequency interval's upper endpoint (c~t > 7~); 

similarly, any X in PDES that satisfies this condition is moved to ADES - -  we say 

that X is (temporarily) accepted as a predictor; 

a description item X in ADES whose accuracy interval overlaps with the class fre- 

quency interval (C~u > "Yz) is moved to PDES - -  X is a mediocre predictor (it does 

not do significantly better than guessing); expressions in PDES are not used for 

classification; 

a description item X is dropped completely if the upper endpoint of its accuracy 

interval is lower than the class frequency interval's lower endpoint (c~4 < 3'l) - -  X 

is rejected; 

description items in NDES are kept as long as they are acceptable predictors of 

negative instances (c~ z > 3'4, computed over the negative examples in the window). 

In contrast to FLORA2 and FLORA3, there is no migration of generalizations between 

NDES and PDES. Unacceptable hypotheses in NDES are simply dropped. 

The general approach to deciding which hypotheses to trust has been adopted from 

the instance-based learning method IB3 (Aha et al., 1991), which uses similar mea- 

sures to distinguish between reliable and unreliable predictors (exemplars in IB3). The 

terms accepted, mediocre, and rejected are used here to highlight this similarity, In all 

experiments with FLORA4, a confidence level of p = 80% was used. 

The main effect of the strategy is that generalizations in ADES and NDES may be 

permitted to cover some negative or positive instances, respectively, and still to remain 

in ADES or NDES if their overall predictive accuracy warrants it. PDES is a reservoir of 

alternative generalizations that are recognized as unreliable at the moment, either because 

they cover too many negative examples, or because the absolute number of instances 

they cover is still too small (and thus the confidence intervals are large). The rest of the 

FLORA3 strategy, including the generalization operator and the context reuse mechanism, 

remains unchanged. After every learning step the window adjustment heuristic is invoked 

and may decide to grow or shrink the window. Predictive accuracy of hypotheses is 
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always computed with respect to the current window, In this way, FLORA4 combines 

the advantages of the windowing approach with a less brittle strategy for maintaining 

generalizations. 

6.2. Two prefiminary experiments 

The following two experiments briefly compare FLORA4 to its predecessors and to its 

'cousin' IB3, from which its statistical hypothesis evaluation strategy was adopted. They 

are again based on the STAGGER concepts. More thorough experiments are described 

in Section 7. 

6.2.1, Basic drift tracking 

Figure 6 compares FLORA4 to FLORA2 and FLORA3 on the basic noise-free drift 

tracking task. The characteristic effect that can be seen in this plot (at least in the 

second period) and that appears even more clearly in the experiments in the next section, 

is that FLORA4 is initially a bit slower in reacting to the change in the target concept, 

but then soon picks up and eventually regains high accuracy faster than both FLORA2 

and FLORA3. 
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Figure 6. FLORA4 vs. FLORA2 and FLORA3 on STAGGER concepts. 

The explanation is to be found in FLORA4's statistical confidence measure. FLORA4 

reacts more reluctantly initially because several contradicting examples are necessary 

to invalidate a hitherto stable hypothesis in ADES, while FLORA2 and FLORA3 will 

drop a description item as soon as the first contradicting instance appears. The same 

observation also explains why FLORA4 later reaches high accuracy faster: a consequence 

of FLORA2's strict consistency condition is that one old negative instance (pertaining to 

the outdated context) erroneously still in the window may prevent a good generalization 
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from being included in ADES. FLORA4, with its 'softer' consistency condition, is less 

disturbed by remnants of the old context still in the window and thus readjusts faster to 

the new context. 

6.2.2. FLORA4 vs. IB3 

Figure 7 compares FLORA4 to the publicly available version of IB3 (Aha et al., 1991). 

IB3 was modified so that it used different test sets according to the current context (which 

changed after every 40 instances). The improvement of FLORA4 over IB3 is evident. 

Generally, our experience from various experiments with IB3 is that IB3 requires sig- 

nificantly more examples to converge to a high level of predictive accuracy, and that it 

is slower in recovering from changes in the target concept. The first effect is due to 

the general instance-based learning method. The latter difference is clearly attributable 

to the combination in FLORA4 of IB3's statistical confidence measures with a highly 

reactive window-based forgetting strategy, which permits the system to get rid of out- 

dated information much faster. As a side note, one could also point out that a symbolic 

generalizer like FLORA4 has certain advantages over an instance-based learner in terms 

of the comprehensibility of the results of learning. 
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Figure 7. FLORA4 vs. IB3. 

7. Systematic Experiments 

The following experiments study the behavior of the FLORA systems in some more 

detail, by systematically varying different aspects of the learning task. Again, we use 

artificial domains, as they make it easy to control the learning situation. 

In particular, we study the following dimensions: (1) the level of classification noise 

in the training data - -  that is of particular interest to FLORA4, which we claimed is 
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more robust in the face of noise than its predecessors; (2) the speed of (a gradual) drift, 

which is the time it takes for a new context to completely take over; this seems to us a 

more natural dimension for practical scenarios than the notion of drift rate, which is one 

of the two main parameters in theoretical investigations (see Section 3); (3) the extent of 

drift, i.e., the degree of dissimilarity of successive concepts, quantified in terms of the 

relative error between the concepts; and (4) the effect of additional, irrelevant attributes 

on the effectiveness of the learning process. 

As none of the following experiments involves recurring contexts, FLORA3's concept 

store/recall mechanism was disabled in FLORA4. That is, FLORA4 resembles FLORA2, 

with the exception of the statistical hypothesis maintenance criterion. This was done to 

help separate the effects of concept reuse (as performed by FLORA3) and accuracy-based 

hypothesis maintenance. All the results in the following sections arc averages over 10 

r u n s .  

7.1. Varying the amount of  noise 

The conjecture motivating the first experiment is that FLORA4 should have significant 

advantages in noisy environments due to its combined strategy: the statistical confidence 

measures provide a certain robustness against noise, especially in relatively stable situa- 

tions, and the window adjustment heuristic should recognize persistent misclassifications 

as indicators of a concept change and should lead to effective adjustment by shrinking the 

window in such situations. The targets in this experiment are again the three STAGGER 

concepts, but now the training data are corrupted with various levels of classification 

noise. 
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Figure 8. FLORA2, FLORA3, FLORA4 at 10% noise. 

Figures 8 through 10 compare the performance of the three FLORA algorithms at noise 

levels in the training data of 10%, 20%, and 40%, respectively. (In this article, r/% class 
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Figure 9. FLORA2, FLORA3, FLORA4 at 20% noise. 

noise means that with probability r//100, the class label of an instance will be assigned 

randomly. Thus, completely random data will be generated when r / =  100.) 

Again, we see that FLORA4 is usually a bit slower in its initial reaction to the concept 

change, but then soon outperforms FLORA2 and FLORA3. The difference is markedly 

greater than in the noise-free case. FLORA2 and FLORA3 have obvious problems, while 

FLORA4's accuracy quickly rises to a mark that corresponds roughly to the given level 

of classification noise (remember that N %  noise means N/2% misclassified instances 

on average in a two-class learning task). 
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Figure I0. FLORA2, FLORA3, FLORA4 at 40% noise• 

A comparison of the average window sizes in the experiment with 40% noise (Figure 

11) confirms our expectations: in the FLORA4 curve, the characteristic shape (growing 
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Figure 11. Average window sizes at 40% noise. 

the window to a reasonable size during phases of concept stability, shrinking it in reaction 

to a perceived context change) is still clearly recognizable, whereas the behavior of the 

other two systems is less predictable. They apparently misinterpret noisy examples 

as indicators of concept drift, as evidenced by the constant growing and shrinking of 

the window, which in many cases prevents them from reaching a window size that is 

sufficient for stable concept identification. In FLORA4 this kind of erratic behavior is 

largely prevented by the robustness of the generalizer's statistical criteria. 

As a side note, we also notice that there is almost no difference between FLORA2 

and FLORA3. One might expect FLORA3 to exhibit even less stable behavior than 

FLORA2, as erroneous reactions to perceived drift would lead it to constantly reexam- 

ine and sometimes reinstall previously stored hypotheses. However, the fact is that in 

this noisy environment, FLORA3 hardly ever reaches a situation that it considers stable 

enough to store its current hypothesis for possible future use, so there simply are no old 

concepts that could be reinstalled by mistake. 

Schlimmer and Granger (1986) have noted that STAGGER distinguishes between ran- 

dom (examples of both classes affected) and systematic noise (only positive or only 

negative instances corrupted). In our experiments, we could not detect a similar ten- 

dency in FLORA4. That seems reasonable, as there are no components in our model 

comparable to STAGGER's LS and LN measures, which are sensitive to one-sided vari- 

ations. We conjecture that STAGGER may be more robust than FLORA4 in situations 

with extremely high, but systematic noise. 

7.2. Varying the speed of drift 

The following experiment is concerned with what might be called the speed of concept 

drift. Sometimes concepts will change only gradually, creating a period of uncertainty 
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between stable states. The new concept only gradually takes over, and some examples 

may still be classified according to the old concept. An example is the behavior of a 

device beginning to malfunction - -  it first fails (classifies in a new way) only sometimes, 

until the new failure mode becomes dominant. 

Speed of drift can modelled by a function c~ (see Figure 12) that represents the degree 

of dominance of the old concept A over the new concept B or, in other words, the 

probability that the current concept still belongs to the old context, c~ = 1 means that A 

is fully in effect, c~ = 0 means that B has completely taken over. The x axis in Figure 

12 represents the number of examples processed so far; assuming that instances arrive at 

constant intervals this can also be regarded as a dimension of time. X1 is the point where 

the concept begins to drift. The slope of the function c~ can then be characterized by 

Ax, the number of training instances until c~ reaches zero. Between X1 and X1 + Ax, 

c~ * 100% of the examples are still classified according to A, and B labels ( 1 -  c~)* 100% 

of the cases. 

0 

fZ 
1-(X 

, / 

, / 

, / / 

X l  - A x  

Figure 12. The function c~. 

This situation was modelled in a simple artificial domain. In a universe spanned by 

six boolean attributes {al •. • a6}, we defined a sequence of two (rather different) target 

concepts A 4,  aa Aa2 and B ~ (a3 Aa4)V (as Aa~), where A would gradually change 

into B. In order to ensure that the test set also reflected the changing environment, 

the same set of 200 testing examples was used throughout each run, but the instances 

in the set were relabeled after each training example was processed; the relabeling was 

probabilistic in the same way as the labeling of training examples (i.e., it was also 

determined by the function c0. The drift rates compared were Ax = 50 (moderately fast 

drift), Ax = 100, and Ax = 200 (very slow drift). X1 (the point where the concept 

begins to drift from A to B) was at 100 instances. As in all other experiments in this 

paper, the following results are averages over 10 runs. 

Figures 13 through 15 compare our three learners in each of the three different drift 

situations. In addition, for purposes of orientation, the dotted horizontal lines in the 

figures indicate simple hypothetical upper and lower bounds on predictive accuracy in 

this task. The upper line plots the maximum accuracy that could be achieved if a learner 

had perfect information (i.e., if it knew both when the concept starts to change, and 

what the target concepts are). In effect, the upper bound indicates the effect of the 

noise created by the slow drift. The lower bound is simply the accuracy of guessing the 

majority class (which is always G in our case). 
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Figure 16. Window size for different speed of drift (FLORA4). 

The most important finding is that the qualitative behavior of the learners s'eems to 

be quite robust. As expected, the shape of the valley of decreased accuracy depends 

on the slope of the drift function c~. All three algorithms usually start to recover and 

readjust before the concept change is complete (i.e., while there is still noise in the data). 

FLORA4 seems to do best overall, at least for A z  = 50 and Ax  = 100. No significant 

difference can be found in the case with the longest period of uncertainty (Acc = 200), 

which seems to confuse all three learners alike. 
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The robustness of the Window Adjustment Heuristic is also documented in Figure 

16, which plots FLORA4's  window sizes (again averaged over the 10 runs) in the three 

experiments. The characteristic shape (narrowing of window at beginning of drift, then 

increase until stable concept is learned) is clearly recognizable in all three curves. The 

more sudden the drift, the easier it is to detect, and the steeper is the window narrowing 

curve. Note also the stable range of the window size over the entire experiment: in none 

of the three conditions did the window grow to an unreasonable size, nor did it collapse 

except in situations of concept drift or noise. 

7.3. Varying the extent o f  drift 

Another important dimension is the extent of drift, i.e., the dissimilarity between two 

successive concepts A and B. Computational learning theory quantifies drift extent as the 

relative error between the two concepts, which is the probability that B will misclassify 

a randomly drawn example that is labeled according to A (and vice versa). We can view 

this as the probability of drawing an example from the symmetric difference, A ® B, of 

the two concepts. Theoretical results like those in Section 3 suggest that the smaller the 

extent, the easier it should be for a learner to track the drift. 

Again, we used our artificial domain defined by six boolean attributes { a l . . .  a6} to 

test this conjecture. We devised a 'starting concept' A and four different 'successor' 

concepts Bi with linearly increasing degrees of dissimilarity to A. The concepts are 

defined as follows: 

A ~ al A a2~ 

S l  A A v a4)] V A A A 

t33 ¢=~ [al Aas  A a3 A a4] V [~, A a2 A (a3 V a4)], 

B4 ¢=> -51 A a 2 . 

Assuming a uniform probability distribution over the instance space, the extents of 

difference are as follows: 6 ex t (A ,  B1) = 8/64 = 0.125; ex t (A ,  B2) = 16/64 = 0.25; 

e x t (A ,  B3) = 24/64 = 0.375; and e x t ( A ,  B4) = 32/64 = 0.5. 

As the previous experiments have shown, FLORA4 is the most stable learner overall. 

We ran FLORA4 on the four concept sequences A -+ B1, A ~ B2, A ~ B3, and 

A -+ B4. The results (accuracy measured on test set of 200 instances, plots are averages 

over 10 runs) are shown in Figure 17. 

At first sight, the results seem rather surprising. To be sure, the drops in accuracy 

after the context change are as expected: the smaller the extent of change, the smaller 

the drop. That is a trivial consequence of applying the old concept A to a new test 

set that reflects the instance distribution of the new concept Bi and its overlap with A. 

But contrary to what theory seems to tell us - -  namely, that the smaller the extent, the 

quicker the learner's recovery - -  we see that in fact the concept sequence with the largest 

extent (0.5) led to the fastest readjustment! 

Closer examination of the results and learning protocols reveals the reasons for the 

apparent paradox: learning theory is (of course) right, but it is not applicable to our 
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Figure 17. FLORA4 at drift of varying extent. 

scenario. The theoretical models of Section 3 assume a window of fixed (large) size, 

while FLORA4 reduces its window very effectively once it comes to believe in a concept 

change; this is effective enough to deal with drift of  any extent. 

For the FLORA systems, the effectiveness of adjusting to drift depends on (l) whether 

the concept drift is perceived at all - -  which may in fact be easier when the difference 

between concepts is larger - -  and (2) what the new concept looks like. It is the complexity 

of the concept descriptions that causes problems for the FLORA systems, in particular 

through the Window Adjustment  Heuristic. Whether the window grows to an appropriate 

size depends on the syntactic complexity of the concept's description and the absolute 

and relative frequency with which incoming examples confirm a particular conjunct of 

the hypothesis. That is also a function of the sparsity of the concept. In our experiment, 

the concept with the largest drift extent (B4) was also the simplest one, syntactically 

speaking, and that is why it was learned much more easily than the others. We can 

easily get better results for this experiment by modifying those parameters of  the WAH 

that relate to the complexity of a hypothesis vis-a-vis the number of examples covered 

(Ic and hc - -  see Table 2), but that is not the point of this exercise. 

Our analysis points to a fundamental problem with all the FLORA systems: the Window 

Adjustment  Heuristic - -  and, by implication, the entire hypothesis maintenance algorithm 

- -  is rather sensitive to the form and complexity of the target concept. For practical 

applications, preliminary experiments with the aim of  finding good parameter settings 

for the WAH will be essential. From a theoretical point of view, the situation is not very 

satisfactory, but we have not been able to devise a general solution so far. 
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Figure 18. FLORA4 at drift of varying extent (10 attributes). 

7.4. Adding irrelevant attributes 

For a test of whether more irrelevant attributes would have a detrimental effect on 

FLORA4"s performance, we repeated the above experiment with examples that possessed 

four additional boolean attributes with randomly assigned values. That gives a total of 

10 attributes and increases the size of the instance space from 26 = 64 to 2 l° = 1024 and 

the number of possible hypotheses (all of which FLORA4 can theoretically represent) 

from 226 v 10 is to 221° ~ 103°°. The target concepts were the same as above. 

The experimental result, as given in Figure 18, does not show any grave effects. The 

simplest concept (/34) is still easily learned. The more complex concepts show some 

slight deterioration in comparison to Figure 17, which was to be expected, but no inor- 

dinate degradation occurs. This is a consequence of the explicit symbolic generalization 

(projection into a lower-dimensional attribute space) in FLORA4; the performance of 

an instance-based learner like 1t73 would degrade much more dramatically, as has been 

shown in various empirical and theoretical studies (see, e.g., Langley & Iba, 1993). 

Again, we suspect that the more complex the target concepts, the stronger will be the 

detrimental effect of irrelevant features. 

8. Related Work  

Although the notion of context drift is rarely discussed explicitly in the machine learning 

literature, several well-known learning techniques can be ascribed a certain plasticity in 

the face of changes. For instance, the momentum function in the delta rule used in neural 

nereeorks (see, e.g., Hecht-Nielsen, 1990) essentially realizes a form of memory decay; 
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recent experience can be made to have a stronger influence on the network's internal 

weight configuration than very old examples. In principle, neural networks can adjust to 

changing contexts. For instance, Adaptive Resonance Theory (Grossberg, 1987) repre- 

sents a significant step in this direction. However, even though this architecture explicitly 

facilitates incremental learning, it is rather reluctant to dismiss outdated information. 

Simple Instance-Based Learning algorithms like IB1 (Aha et al., 1991) can be viewed 

as incremental on-line learners that first classify each new example by some nearest- 

neighbor method and then store it as a new exemplar. The basic IB1 algorithm cannot 

adjust to drift, since all exemplars will remain in memory, even if the context changes. 

The more sophisticated variant IB3 (Aha et al., 1991) possesses a mechanism similar 

to FLORA4's for deciding which of the exemplars are 'trustworthy' predictors, which of 

them should be discarded as possibly noisy or outdated, and which are as yet undecided. 

The decision about the quality of an exemplar is based on its success in the tentative 

classification of the newly arriving examples. In the process, the individual exemplars can 

move between the three categories in a way similar to the description items in FLORA. 

This property gives the algorithm a strong capability to track concept drift. However, 

as our experiments have confirmed, there is a certain amount of inertia in the statistical 

criterion used to assess the quality of exemplars. IB3 is well-suited to situations of slow 

drift, but it is somewhat reluctant to adjust quickly to radical changes. Also, instance- 

based algorithms are known to be sensitive to attribute relevance: irrelevant attributes 

have a detrimental effect on predictive accuracy, though some approaches to improve on 

this have recently been suggested (Salzberg, 1991; Cost & Salzberg, 1993). 

In recent years, some authors have begun to explicitly address the problem of concept 

drift and context dependence. Probably the first system to attack the problem of drift 

was STAGGER (Schlimmer & Granger, 1986), which learns symbolic characterizations 

from classified examples. The main adjustment mechanism in STAGGER is again of 

a statistical nature: for each description item, STAGGER maintains statistics of logical 

sufficiency (LS) and necessity (LN) of the item for the target concept, and these determine 

which description items will be used in further generalization, and which ones will be 

dropped. STAGGER adjusts to changes quite effectively. 

As briefly noted in Section 4.2, STAGGER exhibits a strong sensitivity to overtraining: 

the longer it has been trained on a particular target concept, the slower it is in adapting 

to changes and tracking a concept drift. Schlimmer and Granger regard that as an asset 

- -  it mirrors empirical results from the psychology of learning. The FLORA systems 

show no such behavior, because their windows do not grow linearly with the number of 

examples processed. The window is kept at a more or less fixed size once the learner's 

hypotheses are stable. Psychological plausibility may be lost, but the guarantee of quick 

adjustment to changes irrespective of the learning history may be an advantage in certain 

practical applications. 

In contrast to FLORA3, STAGGER does not possess the ability to recognize recurring 

contexts and take advantage of that in periodic o1" otherwise regular environments. On 

the other hand, it can use already learned concepts in the characterization of other, more 

abstract concepts. This capability of constructive induction (Michalski, 1983) is not 

implemented in FLORA3, although the contexts recognized by FLORA3 can be viewed 
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as constructed higher-level attributes that might be used explicitly to characterize different 

situations. 

The idea of introducing a forgetting operator to improve learning was discussed in 

(Markovitch & Scott, 1988), in the context of a system that learned macro operators for 

search. Their experiments had nothing to do with concept drift, but were motivated by 

the so-called utility problem in Explanation-Based Learning (Mitchell et al., 1986), which 

is the problem that learned macro-operators or schemata, even if correct, are not always 

helpful, but may actually decrease the performance of the system. Similar observations 

were made by Tambe and Newell (1988) and Minton (1988). The general conclusion is 

that forgetting can be beneficial even in stable domains. 

Forgetting as a means of adjusting to concept drift was used in the original FLORA 

system described in (Kubat, 1989), which was also applied to a practical problem (Kubat, 

1992). Forgetting was controlled by a window of fixed size, which was sufficient for 

the particular application, but turned out to be ineffective in dealing with various types 

of concept drift. The window adjustment heuristic introduced in this paper significantly 

increased the system's flexibility and power. 

An alternative to a time window as a means of controlling forgetting is ageing of 

knowledge, This method was used in the concept formation system FAVORIT (Kriza- 

kova & Kubat, 1992), which performs conceptual clustering in a way similar to Lebowitz' 

UNIMEM (Lebowitz, 1987). In FAVORIT, each exemplar is assigned a weight which 

slowly decays with time. If the same exemplar reappears, the weight is incremented. 

Exemplars whose weight drops below some threshold are forgotten. Another recent con- 

cept formation system using a forgetting operator is COBBIT (Kilander & Jansson, 1993), 

which adapted FLORA's windowing philosophy to unsupervised clustering scenarios. 

Both ageing and window-based forgetting refer to the temporal order of the incoming 

training examples, i.e., to time. For numeric domains, an alternative approach named 

density-adaptive forgetting has been proposed by Salganicoff (1993a). The idea is not 

to rely solely on the age of exemplars. Rather, exemplars are forgotten only if there 

is subsequent information in their vicinity in attribute space to supersede them. In this 

way, the algorithm is more robust to drifting sampling distributions during incremental 

learning. The integration of some variant of this approach into the FLORA systems might 

further add to the stability of their behavior. 

Finally, Turney (1993) discusses the problem of context-dependence from a different 

angle. In his scenario, the testing examples may come from a different context than the 

training examples. He presents various techniques for normalization of learning results 

and for adapting learned concepts for prediction in new contexts. Though this problem 

is somewhat different from ours, some of the techniques might well be transferable to 

the FLORA setting. 

9. Conclusion 

To recapitulate briefly, the article has presented a family of algorithms for on-line learning 

in domains with context-dependent concepts and concept drift. The main techniques 

constituting the basic method are (1) representation of hypotheses in the form of three 
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description sets that summarize both the positive and the negative information; (2) a 

forgetting operator, controlled by a time window over the input stream; and (3) a method 

for the dynamic control of forgetting through flexible adjustment of the window during 

learning. The central idea is that forgetting should permit faster recovery after a context 

change by getting rid of outdated and contradictory information. 

Experiments with an initial implementation of the basic method in the program FLORA2 

showed that the method behaves essentially as expected. In particular, the window 

adjustment heuristic proved to be rather robust under a variety of types of concept drift. 

FLORA3 extends FLORA2 with a mechanism for storing concepts in stable situations 

and recalling them in similar contexts. In environments with a relatively small number 

of contexts, this capability speeds up the process of re-learning concepts by biasing the 

learner towards generalizations that have proven useful in the past. Again, the window 

adjustment heuristic plays an important role in this process as an indicator of context 

changes. 

Finally, FLORA4 uses a refined strategy based on the monitored predictive performance 

of individual description items to deal with the problem of noisy data. FLORA4's robust- 

ness derives from the fact that it integrates two different learning strategies. The statistical 

criteria used to distinguish between reliable and unreliable generalizations make it robust 

against noise, and the 'forgetting' of outdated information, controlled by reactive win- 

dow adjustment, enables it to quickly adapt to new contexts. In terms of the framework 

of Salganicoff (1993b), FLORA4 can be characterized as integrating "performance-error 

weighted forgetting" and "time-weighted forgetting". 

There are numerous possibilities for further improvement. As noted before, a central 

problem is that the window adjustment heuristic (WAIt) is dependent on parameters. Al- 

though the parameter settings we chose early on turned out to yield rather robust behavior 

in most of our artificial domains, this is not satisfactory. One possible solution might be 

to adapt a technique presented in (Moore, 1992), which estimates task-specific forgetting 

parameters (for instance-based learning) via cross-validation. Another possibility is to 

perform some kind of beam search in the space of parameter settings by having several 

versions of, say, FLORA4 run in parallel and tune their parameters during learning. 

The algorithm's flexibility could be further increased by combining the dynamic win- 

dowing approach with more selective forgetting mechanisms like those described in 

(Salganicoff, 1993b). That is, decisions as to which instances (and generalizations) to 

discard would be based not only on the items' age, but also on other characteristics like 

the relative proximity of observations and observed distributions. 

In some domains, there may be contextual attributes or combinations of attributes that 

are characteristic of the current context and whose change signals a context change. As a 

simple example, as long as we are in one particular country, say, Austria, all or almost all 

of the cars we see will have Austrian license plates. As soon as we move to a different 

country, this feature will change in a systematic manner. An interesting idea might be to 

try to explicitly learn to recognize such clues, for example by keeping track of attributes 

that have a constant value over all instances in the current window. 7 

Another interesting extension would be the integration of a notion of expectation. 

In many domains, the order in which contexts can occur is not random, but highly 
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constrained, The  four seasons usually fo l low each other in a cycle,  and countries border  

only on a l imited number  o f  neighbors.  A learner should be able to deve lop  expectat ions 

as to which context(s)  will  most  l ikely become relevant  next. This  will  require an explici t  

representation of  contexts,  an extension that would  open the door  to a number  of  other  

interesting possibil i t ies.  

Finally, the representat ion language can be extended.  The  introduction of  numeric  

attributes, though a relat ively s imple  step, will  be important  for possible  applications 

in control or moni tor ing  tasks. An extension of  the approach to (some subset of) first- 

order logic will  certainly be more  difficult; incremental  general izat ion and subsumption 

checking are not trivial problems.  Nonetheless ,  the general  ideas o f  dynamic  forgett ing 

and context  tracking might  be of  interest for relat ional  learners. 
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Notes 

1. The name FLORA is an acronym for FLOating Rough Approximation, which indicates that the original 

framework as conceived in (Kubat, 1989) was inspired by Rough Set Theory (Pawlak, 1982). ADES 

was a lower approximation of the concept; the union ADES LA PDES formed its upper approximation. 

This interpretation is no longer valid in the current implementation of the FLORA systems. The sets are 

maintained for practical masons, to summarize information from the training examples. 

2. One might ask why p (the threshold for acceptable predictive accuracy) should not be much higher (or 

even 100% if one knows that the data are noise-free). Closer investigation reveals that that would seriously 

destabilize FLORA2's behavior. Especially during phases of concept drift, too high a threshold prevents 

the system from ever growing the window to a sufficient size. The value p = 70% is, of course, purely 

heuristic. 

3. In the terminology of Section 3, the extent of drift is 0.59 (16/27) between concepts (1) and (2) and 0,48 

(13/27) between concepts (2) and (3). 

4. In fact, the system does not know how many hidden contexts there are. In the experiment reported here, 
the number of contexts that FLORA3 stored was never exactly 3, as we would expect, knowing the target 

concept. In most cases, it was between 4 and 7, 

5. The formula used to compute confidence intervals is the same as in (Aha et al., 1991) and (Kaelbling, 

1994, p.283). 

6. The total size of the instance space (the number of distinct examples describable with 6 boolean attributes) 

is 26 = 64; the 'size" (the number of instances belonging to the concept) of each of the concepts is 

I A I = ] B1 I = [ B2I = I B3] = I B41 = 16; set intersections and differences are I A n B1 [ = 12, 

[ A ® B R [  = 8, lAmB21 = 8, I A @ B 2 [  = 16, l A m B 3 [  = 4, I A ® B 3 ]  = 24, I A N B 4 1  = O, 

] A ® B 4 [ = 3 2 .  

7. This idea was suggested by one of the anonymous reviewers of this paper. 
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