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Figure 1: Speech-to-gesture translation example. In this paper, we study the connection between conversational gesture and speech.

Here, we show the result of our model that predicts gesture from audio. From the bottom upward: the input audio, arm and hand pose

predicted by our model, and video frames synthesized from pose predictions using [10]. (See http://people.eecs.berkeley.

edu/˜shiry/gestures.html for video results.)

Abstract

Human speech is often accompanied by hand and arm

gestures. We present a method for cross-modal translation

from “in-the-wild” monologue speech of a single speaker

to their conversational gesture motion. We train on unla-

beled videos for which we only have noisy pseudo ground

truth from an automatic pose detection system. Our pro-

posed model significantly outperforms baseline methods in

a quantitative comparison. To support research toward

obtaining a computational understanding of the relation-

ship between gesture and speech, we release a large video

dataset of person-specific gestures.

1. Introduction

When we talk, we convey ideas via two parallel channels

of communication — speech and gesture. These conversa-

tional, or co-speech, gestures are the hand and arm motions

we spontaneously emit when we speak [30]. They comple-

ment speech and add non-verbal information that help our

∗Indicates equal contribution.

listeners comprehend what we say [6]. Kendon [22] places

conversational gestures at one end of a continuum, with sign

language, a true language, at the other end. In between the

two extremes are pantomime and emblems like “Italianite”,

with an agreed-upon vocabulary and culture-specific mean-

ings. A gesture can be subdivided into phases describing

its progression from the speaker’s rest position, through the

gesture preparation, stroke, hold and retraction back to rest.

Is the information conveyed in speech and gesture corre-

lated? This is a topic of ongoing debate. The hand-in-hand

hypothesis claims that gesture is redundant to speech when

speakers refer to subjects and objects in scenes [38]. In

contrast, according to the trade-off hypothesis, speech and

gesture are complementary since people use gesture when

speaking would require more effort and vice versa [15]. We

approach the question from a data-driven learning perspec-

tive and ask to what extent can we predict gesture motion

from the raw audio signal of speech.

We present a method for temporal cross-modal transla-

tion. Given an input audio clip of a spoken statement (Fig-

ure 1 bottom), we generate a corresponding motion of the

speaker’s arms and hands which matches the style of the
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Figure 2: Speaker-specific gesture dataset. We show a representative video frame for each speaker in our dataset. Below each one is a

heatmap depicting the frequency that their arms and hands appear in different spatial locations (using the skeletal representation of gestures

shown in Figure 1. This visualization reveals the speaker’s resting pose, and how they tend to move—for example, Angelica often keeps

her hands folded, whereas Alamaram puts them at his sides and frequently lifts them. Note that some speakers, like Kagan, Conan and

Ellen, alternate between sitting and standing and thus the distribution of their arm positions is bimodal.

speaker, despite the fact that we have never seen or heard

this person say this utterance in training (Figure 1 middle).

We then use an existing video synthesis method to visualize

what the speaker might have looked like when saying these

words (Figure 1 top).

To generate motion from speech, we must learn a map-

ping between audio and pose. While this can be formu-

lated as translation, in practice there are two inherent chal-

lenges to using the natural pairing of audio-visual data in

this setting. First, gesture and speech are asynchronous, as

gesture can appear before, after or during the correspond-

ing utterance [4]. Second, this is a multimodal prediction

task as speakers may perform different gestures while say-

ing the same thing at different occasions. Moreover, ac-

quiring human annotations for large amounts of video is in-

feasible. We therefore need to get a training signal from

pseudo ground truth of 2D human pose detections on unla-

beled video.

Nevertheless, we are able to translate speech to gesture

in an end-to-end fashion from the raw audio to a sequence

of poses. To overcome the asynchronicity issue we use a

large temporal context (both past and future) for prediction.

Temporal context also allows for smooth gesture prediction

despite the noisy automatically-annotated pseudo ground

truth. Due to multimodality, we do not expect our predicted

motion to be the same as the ground truth. However, as this

is the only training signal we have, we still use automatic

pose detections for learning through regression. To avoid

regressing to the mean of all modes, we apply an adversar-

ial discriminator [18] to our predicted motion. This ensures

that we produce motion that is “real” with respect to the

current speaker.

Gesture is idiosyncratic [30], as different speakers tend

to use different styles of motion (see Figure 2). It is there-

fore important to learn a personalized gesture model for

each speaker. To address this, we present a large, 144-hour

person-specific video dataset of 10 speakers that we make

publicly available1. We deliberately pick a set of speakers

for which we can find hours of clean single-speaker footage.

Our speakers come from a diverse set of backgrounds: tele-

vision show hosts, university lecturers and televangelists.

They span at least three religions and discuss a large range

of topics from commentary on current affairs through the

philosophy of death, chemistry and the history of rock mu-

sic, to readings in the Bible and the Qur’an.

1http://people.eecs.berkeley.edu/˜shiry/

gestures.html
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2. Related Work

Conversational Gestures McNeill [30] divides gestures

into several classes [30]: emblematics have specific conven-

tional meanings (e.g. “thumbs up!”). iconics convey physi-

cal shapes or direction of movements. metaphorics describe

abstract content using concrete motion. deictics are point-

ing gestures, and beats are repetitive fast hand motions that

provide a temporal framing to speech.

Many psychologists have studied questions related to co-

speech gestures [30, 22] (See [41] for a review). This vast

body of research has mostly relied on studying a small num-

ber of individual subjects using recorded choreographed

story retelling in lab settings. Analysis in these studies was

a manual process. Our goal, instead, is to study conversa-

tional gestures in the wild using a data-driven approach.

Conditioning gesture prediction on speech is arguably an

ambiguous task, since gesture and speech may not be syn-

chronous. While McNeill [30] suggests that gesture and

speech originate from a common source and thus should co-

occur in time according to well-defined rules, Kendon [22]

suggests that gesture starts before the corresponding utter-

ance. Others even argue that the temporal relationships be-

tween speech and gesture are not yet clear and that gesture

can appear before, after or during an utterance [4].

Sign language and emblematic gesture recognition

There has been a great deal of computer vision work that

deals with recognizing sign language gestures from video.

This includes methods that use video transcripts as a weak

source of supervision [3], as well as recent methods based

on CNNs [33, 24] and RNNs [13]. There has also been work

that recognizes emblematic hand and face gestures [16, 14],

head gestures [31], and co-speech gestures [34]. By con-

trast, our goal is to predict co-speech gestures from audio.

Conversational agents Researchers have proposed a

number of methods for generating plausible gestures, par-

ticularly for applications with conversational agents [8]. In

early work, Cassell et al. [7] proposed a system that guided

arm/hand motions based on manually defined rules. Sub-

sequent rule-based systems [25] proposed new ways of ex-

pressing gestures via annotations.

More closely related to our approach are methods that

learn gestures from speech and text, without requiring an

author to hand-specify rules. Notably, [9] synthesized ges-

tures using natural language processing of spoken text, and

Neff [32] proposed a system for making person-specific

gestures. Levine et al. [28] learned to map acoustic prosody

features to motion using a HMM. Later work [27] extended

this approach to use reinforcement learning and speech

recognition, combined acoustic analysis with text [29], cre-

ated hybrid rule-based systems [36], and used restricted

Boltzmann machines for inference [11]. Since the goal of

these methods is to generate motions for virtual agents, they

use lab-recorded audio, text, and motion capture. This al-

lows them to use simplifying assumptions that present chal-

lenges for in-the-wild video analysis like ours: e.g., [28]

requires precise 3D pose and assumes that motions occur

on syllable boundaries, and [11] assumes that gestures are

initiated by an upward motion of the wrist. In contrast

with these methods, our approach does not explicitly use

any text or language information during training—it learns

gestures from raw audio-visual correspondences—nor does

it use hand-defined gesture categories: arm/hand pose are

predicted directly from audio.

Visualizing predicted gestures One of the most common

ways of visualizing gestures is to use them to animate a

3D avatar [40, 27, 19]. Since our work studies personal-

ized gestures for in-the-wild videos, where 3D data is not

available, we use a data-driven synthesis approach inspired

by Bregler et al. [2]. To do this, we use the pose-to-video

method of Chan et al. [10], which uses a conditional gen-

erative adversarial network (GAN) to synthesize videos of

human bodies from pose.

Sound and vision Aytar et al. [1] use the synchronization

of visual and audio signals in natural phenomena to learn

sound representations from unlabeled in-the-wild videos by

transferring knowledge from trained discriminative models

in the visual domain.

Synchronization of audio and visual features can also be

used for synthesis. Langlois et al. [26] try to optimize for

such synchronous events by generating rigid-body anima-

tions of objects falling or tumbling that temporally match an

input sound wave of the desired sequence of contact events

with the ground plane. More recently, Shlizerman et al. [37]

animated the hands of a 3D avatar according to input mu-

sic. However, their focus was on music performance, rather

than gestures, and consequently the space of possible mo-

tions was limited (e.g., the zig-zag motion of a violin bow).

Moreover, while music is uniquely defined by the motion

that generates it (and is synchronous with it), gestures are

neither unique to, nor synchronous with speech utterances.

Several works have focused on the specific task of syn-

thesizing videos of people speaking, given audio input.

Chung et al. [12] generate an image of a talking face from

a still image of the speaker and an input speech segment

by learning a joint embedding of the face and audio. Simi-

larly, [39] synthesizes videos of Obama saying novel words

by using recurrent neural network to map speech audio to

mouth shapes and then embedding the synthesized lips in

ground truth facial video. While both methods enable the

creation of fake content by generating faces saying words

taken from a different person, we focus on single-person

models that are optimized for animating same-speaker ut-

terances. Most importantly, generating gesture, rather than
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lip motion, from speech is more involved as gestures are

asynchronous with speech, multimodal and person-specific.

3. A Speaker-Specific Gesture Dataset

We introduce a large 144-hour video dataset specifically

tailored to studying speech and gesture of individual speak-

ers in a data-driven fashion. As shown in Figure 2, our

dataset contains in-the-wild videos of 10 gesturing speak-

ers that were originally recorded for television shows or

university lectures. We collect several hours of video per

speaker, so that we can individually model each one. We

chose speakers that cover a wide range of topics and ges-

turing styles. Our dataset contains: 5 talk show hosts, 3
lecturers and 2 televangelists. Details about data collection

and processing as well as an analysis of the individual styles

of gestures can be found in the supplementary material.

Gesture representation and annotation We represent

the speakers’ pose over time using a temporal stack of 2D

skeletal keypoints, which we obtain using OpenPose [5].

From the complete set of keypoints detected by OpenPose,

we use the 49 points corresponding to the neck, shoulders,

elbows, wrists and hands to represent gestures. Together

with the video footage, we provide the skeletal keypoints

for each frame of the data at a 15fps. Note, however, that

these are not ground truth annotations but a proxy for the

ground truth from a state-of-the-art pose detection system.

Quality of dataset annotations All ground truth,

whether from human observers or otherwise, has associated

error. The pseudo ground truth we collect using automatic

pose detection may have much larger error than human an-

notations, but it enables us to train on much larger amounts

of data. Still, we must estimate whether the accuracy of the

pseudo ground truth is good enough to support our quantita-

tive conclusions. We compare the automatic pose detections

to labels obtained from human observers on a subset of our

training data and find that the pseudo ground truth is close

to human labels and that the error in the pseudo ground

truth is small enough for our task. The full experiment is

detailed in our supplementary material.

4. Method

Given raw audio of speech, our goal is to generate the

speaker’s corresponding arm and hand gesture motion. We

approach this task in two stages — first, since the only sig-

nal we have for training are corresponding audio and pose

detection sequences, we learn a mapping from speech to

gesture using L1 regression to temporal stacks of 2D key-

points. Second, to avoid regressing to the mean of all pos-

sible modes of gesture, we employ an adversarial discrim-

inator that ensures that the motion we produce is plausible

with respect to the typical motion of the speaker.

T
im

e

Audio

Frequency

G

G(t1), . . . , G(tT)

Real or Fake 

Motion Sequence?

D

L1 regression loss

Figure 3: Speech to gesture translation model. A convolutional

audio encoder downsamples the 2D spectrogram and transforms

it to a 1D signal. The translation model, G, then predicts a corre-

sponding temporal stack of 2D poses. L1 regression to the ground

truth poses provides a training signal, while an adversarial dis-

criminator, D, ensures that the predicted motion is both temporally

coherent and in the style of the speaker.

4.1. SpeechtoGesture Translation

Any realistic gesture motion must be temporally coher-

ent and smooth. We accomplish smoothness by learning an

audio encoding which is a representation of the whole ut-

terance, taking into account the full temporal extent of the

input speech s, and predicting the whole temporal sequence

of corresponding poses p at once (rather than recurrently).

Our fully convolutional network consists of an audio en-

coder followed by a 1D UNet [35, 21] translation architec-

ture, as shown in Figure 3. The audio encoder takes a 2D
log-mel spectrogram as input, and downsamples it through

a series of convolutions, resulting in a 1D signal with the

same sampling rate as our video (15 Hz). The UNet transla-

tion architecture then learns to map this signal to a temporal

stack of pose vectors (see Section 3 for details of our gesture

representation) via an L1 regression loss:

LL1
(G) = Es,p[||p−G(s)||1] (1)

We use a UNet architecture for translation since its bot-

tleneck provides the network with past and future tempo-

ral context, while the skip connections allow for high fre-

quency temporal information to flow through, enabling pre-

diction of fast motion.

4.2. Predicting Plausible Motion

While L1 regression to keypoints is the only way we

can extract a training signal from our data, it suffers from

the known issue of regression to the mean which produces

overly smooth motion as can be seen in our supplementary

video results. To combat this and ensure that we produce re-

alistic motion, we add an adversarial discriminator [21, 10]

D, conditioned on the differential of the predicted sequence

of poses. i.e. the input to the discriminator is the vector

m = [p2 − p1, . . . , pT − pT−1] where pi are 2D pose key-

points and T is the temporal extent of the input audio and

predicted pose sequence. The discriminator D tries to max-
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imize the following objective while the generator G (the

translation architecture, section 4.1) tries to minimize it.

LGAN (G,D) = Em[logD(m)] + Es[log(1−G(s))] (2)

Where s is the input audio speech segment and m is the

motion derivative of the predicted stack of poses. Thus, the

generator learns to produce real-seeming speaker motion

while the discriminator learns to classify whether a given

motion sequence is real. Our full objective is therefore

min
G

max
D

LGAN (G,D) + λLL1
(G). (3)

4.3. Implementation Details

We obtain translation invariance by subtracting (per

frame) the neck keypoint location from all other keypoints

in our pseudo ground truth gesture representation (section

3). We then normalize each keypoint (e.g. left wrist) across

all frames by subtracting the per-speaker mean and divid-

ing by the standard deviation. During training, we take as

input spectrograms corresponding to about 4 seconds of au-

dio and predict 64 pose vectors, which correspond to about

4 seconds at a 15Hz frame-rate. At test time we can run

our network on arbitrary audio durations. We optimize us-

ing Adam [23] with a batch size of 32 and a learning rate

of 10−4. We train for 300K/90K iterations with and with-

out an adversarial loss, respectively, and select the best per-

forming model on the validation set.

5. Experiments

We show that our method produces motion that quanti-

tatively outperforms several baselines, as well as a previous

method that we adapt to the problem.

5.1. Setup

We describe our experimental setup including our base-

lines for comparison and evaluation metric.

5.1.1 Baselines

We compare our method to several other models.

Always predict the median pose Speakers spend most of

their time in rest position [22], so predicting the speaker’s

median pose can be a high-quality baseline. For a visualiza-

tion of each speaker’s rest position, see Figure 2.

Predict a randomly chosen gesture In this baseline, we

randomly select a different gesture sequence (which does

not correspond to the input utterance) from the training set

of the same speaker, and use this as our prediction. While

we would not expect this method to perform well quantita-

tively, there is reason to think it would generate qualitatively

appealing motion: these are real speaker gestures—the only

way to tell they are fake is to evaluate how well they corre-

sponds to the audio.

Nearest neighbors Instead of selecting a completely ran-

dom gesture sequence from the same speaker, we can use

audio as a similarity cue. For an input audio track, we find

its nearest neighbor for the speaker using pretrained audio

features, and transfer its corresponding motion. To repre-

sent the audio, we use the state-of-the-art VGGish feature

embedding [20] pretrained on AudioSet [17], and use co-

sine distance on normalized features.

RNN-based model [37] We further compare our motion

prediction to an RNN architecture proposed by Shlizerman

et al. Similar to us, Shlizerman et al. predict arm and hand

motion from audio in a 2D skeletal keypoint space. How-

ever, while our model is a convolutional neural network

with log-mel spectrogram input, theirs uses a 1-layer LSTM

model that takes MFCC features (a low-dimensional, hand-

crafted audio feature representation) as input. We evaluated

both feature types and found that for [37], MFCC features

outperform the log-mel spectrogram features on all speak-

ers. We therefore use their original MFCC features in our

experiments. For consistency with our own model, instead

of measuring L2 distance on PCA features, as they do, we

add an extra hidden layer and use L1 distance.

Ours, no GAN Finally, as an ablation, we compare our

full model to the prediction of the translation architecture

alone, without the adversarial discriminator.

5.1.2 Evaluation Metrics

Our main quantitative evaluation metric is the L1 regres-

sion loss of the different models in comparison. We ad-

ditionally report results according to the percent of correct

keypoints (PCK) [42], a widely accepted metric for pose de-

tection. Here, a predicted keypoint is defined as correct if

it falls within αmax(h,w) pixels of the ground truth key-

point, where h and w are the height and width of the person

bounding box, respectively. We take the PCK value with a

grain of salt, as it was not designed with gesture prediction

for partially visible speakers in mind. First, unlike L1, PCK

is not linear and correctness scores fall to zero outside a hard

threshold. Since our goal is not to predict the ground truth

motion but rather to use it as a training signal, L1 is more

suited to measuring how we perform on average. Second,

PCK is sensitive to large gesture motion as the correctness

radius depends on the width of the span of the speaker’s

arms. Third, the dependence on the person bounding box

introduces an artificial sensitivity to how much of the per-

son is shown in the frame and whether they are seated or

standing. While [42] suggest α = 0.1 for data with full

people and α = 0.2 for data where only half the person is

visible, we take an average over α = 0.1, 0.2 and show the

full results in the supplementary.

3501



5.2. Quantitative Evaluation

We compare the results of our method to the baselines

using our quantitative metrics. To assess whether our re-

sults are perceptually convincing, we conduct a user study.

Finally, we ask whether the gestures we predict are person-

specific and whether the input speech is indeed a better pre-

dictor of motion than the initial pose of the gesture.

5.2.1 Numerical Comparison

We compare to all baselines on 2,048 randomly chosen test

set intervals per speaker and display the results in Table 1.

We see that on most speakers, our model outperforms all

others, where our no-GAN condition is slightly better than

the GAN one. This is expected, as the adversarial dis-

criminator pushes the generator to snap to a single mode

of the data, which is often further away from the actual

ground truth than the mean predicted by optimizing L1 loss

alone. Our model outperforms the RNN-based model on

most speakers. Qualitatively, we find that this baseline pre-

dicts relatively small motions on our data, which may be

due to the fact that it has relatively low capacity compared

to our UNet model.

5.2.2 Human Study

To gain insight into how synthesized gestures perceptually

compare to real motion, we conducted a small-scale real

vs. fake perceptual study on Amazon Mechanical Turk.

We used one speaker, Oliver, who is always shot from the

same camera viewpoint and whose gestures are relatively

dynamic. We visualized gesture motion using videos of

skeletal wire frames. To provide participants with addi-

tional context, we included the ground truth mouth and fa-

cial keypoints of the speaker in the videos. We show exam-

ples of skeletal wire frame videos in our video supplemen-

tary material.

Participants watched a series of video pairs. In each

pair, one video was produced from a real pose sequence;

the other was generated by an algorithm—our model or a

baseline. Participants were then asked to identify the video

containing the motion that corresponds to the speech sound

(we did not verify that they in fact listened to the speech

while answering the question). Videos of about 12 seconds

each of resolution 400×226 (downsampled from 910×512
in order to fit two videos side-by-side on different screen

sizes) were shown, and after each pair, participants were

given unlimited time to respond. We sampled 100 input

audio intervals at random and predicted from them a 2D-

keypoint motion sequence using each method. Each task

consisted of 20 pairs of videos and was performed by 200
different participants. Each participant was given a short

training set of 10 video pairs before the start of the task,

Figure 4: Our trained models are person-specific. For every

speaker audio input (row) we apply all other individually trained

speaker models (columns). Color gradients correspond to L1 loss

values on a held out test set (lower is better). For each row, the en-

try on the diagonal is lightest as models work best using the input

speech of the person they were trained on.

and was given feedback indicating whether they had cor-

rectly identified the ground-truth motion.

We compared all the gesture-prediction models (Sec-

tion 5.1.1) and assessed the quality of each method using

the rate at which its output fooled the participants. Inter-

estingly, we found that all methods that generate realistic

motion fooled humans at similar rates. As shown in Ta-

ble 2, our results were comparable to real motion sequences,

whether selected by an audio-based nearest neighbor ap-

proach or randomly. While these baselines are significantly

less accurate quantitatively (Table 1), they are perceptually

convincing because their components are realistic.

5.2.3 The Predicted Gestures are Person-Specific

For every speaker’s speech input (Figure 4 rows), we predict

gestures using all other speakers’ trained models (Figure 4

columns). We find that on average, predicting using our

model trained on a different speaker performs better than

predicting random motion but significantly worse than al-

ways predicting the median pose of the input speaker (and

far worse than the predictions from the model trained on

the input speaker). The diagonal structure of the confusion

matrix in Figure 4 exemplifies this.

5.2.4 Speech is a Good Predictor for Gesture

Seeing the success of our translation model, we ask how

much does the audio signal help when the initial pose of the

gesture sequence is known. In other words, how much can

sound tell us beyond what can be predicted from motion dy-

namics. To study this, we augment our model by providing

it the pose of the speaker directly preceding their speech,

which we incorporate into the bottleneck of the UNet (Fig-

ure 3). We consider the following conditions: Predict me-

dian pose, as in the baselines above. Predict the input initial
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Model Meyers Oliver Conan Stewart Ellen Kagan Kubinec Covach Angelica Almaram Avg. L1 Avg. PCK

Median 0.66 0.69 0.79 0.63 0.75 0.80 0.80 0.70 0.74 0.76 0.73 38.11

Random 0.93 1.00 1.10 0.94 1.07 1.11 1.12 1.00 1.04 1.08 1.04 26.55

NN [20] 0.88 0.96 1.05 0.93 1.02 1.11 1.10 0.99 1.01 1.06 1.01 27.92

RNN [37] 0.61 0.66 0.76 0.62 0.71 0.74 0.73 0.72 0.72 0.75 0.70 39.69

Ours, no GAN 0.57 0.60 0.63 0.61 0.71 0.72 0.68 0.69 0.75 0.76 44.62 54.50

Ours, GAN 0.77 0.63 0.64 0.68 0.81 0.74 0.70 0.72 0.78 0.83 0.73 41.95

Table 1: Quantitative results for the speech to gesture translation task using L1 loss (lower is better) on the test. The rightmost column is

the average PCK value (higher is better) over all speakers and α = 0.1, 0.2 (See full results in supplementary).

Model Percent Fooled

Median 6.9%± 1.8

Random 24.6% ± 3.0

NN [20] 23.6% ± 2.9

Ours, no GAN 15.0%± 2.5

Ours, GAN 23.0% ± 2.9

Table 2: Human study for the speech to gesture translation task on

12-second video clips of a single speaker. As a metric for com-

parison, we use the percentage of generated motion sequences that

participants labeled as real. We found that humans were not sensi-

tive to the alignment of speech and gesture. Gestures with realis-

tic motion—whether randomly selected from another video of the

same speaker or generated by our GAN-based model—fooled hu-

mans at equal rates (no statistically significant difference between

the bolded numbers).

pose, a model that simply repeats the input initial ground-

truth pose as its prediction. Speech input, our model. Initial

pose input, a variation of our model in which the audio in-

put is ablated and the network predicts the future pose from

only an initial ground-truth pose input, and Speech & initial

pose input, where we condition the prediction on both the

speech and the initial pose.

Table 3 displays the results of the comparison for our

model trained without the adversarial discriminator (no

GAN). When comparing the Initial pose input and Speech

& initial pose input conditions, we find that the addition

of speech significantly improves accuracy when we average

the loss across all speakers (p < 10−3 using a two sided

t-test). Interestingly, we find that most of the gains come

from a small number of speakers (e.g. Oliver) who make

large motions during speech.

5.3. Qualitative Results

We qualitatively compare our speech to gesture transla-

tion results to the baselines and the ground truth gesture

sequences in Figure 5. Please refer to our supplementary

video results which better convey temporal information.

Model Avg. L1 Avg. PCK

P
re

d
.

Predict the median pose 0.73 38.11

Predict the input initial pose 0.53 60.50

In
p

u
t Speech input 0.67 44.62

Initial pose input 0.49 61.24

Speech & initial pose input 0.47 62.39

Table 3: How much information does sound provide once we

know the initial pose of the speaker? We see that the initial pose

of the gesture sequence is a good predictor for the rest of the

4-second motion sequence (second to last row), but that adding

audio improves the prediction (last row). We use both average

L1 loss (lower is better) and average PCK over all speakers and

α = 0.1, 0.2 (higher is better) as metrics of comparison. We com-

pare two baselines and three conditions of inputs.

6. Conclusion

Humans communicate through both sight and sound,

yet the connection between these modalities remains un-

clear [22]. In this paper, we proposed the task of predict-

ing person-specific gestures from “in-the-wild” speech as a

computational means of studying the connections between

these communication channels. We created a large person-

specific video dataset and used it to train a model for pre-

dicting gestures from speech. Our model outperforms other

methods in an experimental evaluation.

Despite its strong performance on these tasks, our model

has limitations that can be addressed by incorporating in-

sights from other work. For instance, using audio as input

has its benefits as audio is a rich representation that con-

tains information about prosody, pitch, intonation, timbre,

rhythm, tone and more. However, audio does not directly

encode high-level language semantics that may allow us to

predict certain types of gesture (e.g. metaphorics), nor does

it separate the speaker’s speech from other sounds (e.g. au-

dience laughter). Second, We are treating pose estimations

as though they were ground truth, which introduces signifi-

cant amount of noise—particularly on the speakers’ fingers.

We see our work as a step toward a computational anal-
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Figure 5: Speech to gesture translation qualitative results. We show the input audio spectrogram and the predicted poses overlaid on the

ground-truth video for Dr. Kubinec (lecturer) and Conan O’Brien (show host). See our supplementary material for more results.

ysis of conversational gesture, and opening three possible

directions for further research. The first is in using gestures

as a representation for video analysis: co-speech hand and

arm motion make a natural target for video prediction tasks.

The second is using in-the-wild gestures as a way of train-

ing conversational agents: we presented one way of visual-

izing gesture predictions, based on GANs [10], but, follow-

ing classic work [8], these predictions could also be used

to drive the motions of virtual agents. Finally, our method

is one of only a handful of initial attempts to predict mo-

tion from audio. This cross-modal translation task is fertile

ground for further research.
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