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Abstract—This paper proposes a set of methods for building
informative and robust feature point representations, used for
accurately labeling points in a 3D point cloud, based on the type
of surface the point is lying on. The feature space comprises
a multi-value histogram which characterizes the local geometry
around a query point, is pose and sampling density invariant,
and can cope well with noisy sensor data. We characterize
3D geometric primitives of interest and describe methods for
obtaining discriminating features used in a machine learning
algorithm. To validate our approach, we perform an in-depth
analysis using different classifiers and show results with both
synthetically generated datasets and real-world scans.

I. INTRODUCTION

Scene segmentation and interpretation in robotics is an

important research topic. In particular, obtaining accurate and

informative object models out of sensed data can greatly

benefit applications such as robot manipulation or navigation.

Most of the research on object and surface classification has

been done in the areas of computer vision (e.g [1]), with

only a few exceptions in the area of point cloud sensing and

processing [2]–[4]. Creating object maps from point cloud

based representations requires the recognition of geometric

primitives, typically solved as an optimization problem (e.g.

non-linear model fitting), but this approach has to cope with a

big number of parameters (increased complexity). To deal with

such large solution spaces, heuristic hypotheses generators can

provide candidates which reduce the number of models that

need to be verified.

In this paper, we investigate robust point feature representa-

tions using multi-value histograms that characterize the surface

on which the points lie based on their local neighborhood, and

present an in-depth analysis on their usage for efficient point

cloud classification. These classifiers can be used as accurate

and reliable labeling procedures which segment point clouds

into candidate regions for parameterized geometric primitive

fitting. Using point labels like: point on cylinder, point on

torus, etc. and the geometric relationships between them, we

speed up and improve the recognition and segmentation of

objects in real world scenes.

Figure 1 presents a snapshot of our classification results for

a scanned dataset representing an indoor kitchen environment.

Notice how points on the two cups are labeled as cylinders

(body) and edge (handle), and the surface they are lying on

(table top) as planar.

Point cloud models have been studied under several aspects,

and different feature or label types have been proposed. Two

Fig. 1. Classification results for a dataset acquired in a kitchen environment.
In and Out represent concave and convex surface types.

of the most widely used geometric point features are the

underlying surface’s estimated curvature and normal [5]. Both

of them are considered local features, as they characterize a

point using the information provided by the k closest neighbors

of the point. Their estimated values are sensitive to sensor

noise and the selection of the k neighbors, and they are not

able to differentiate between points except at a very low level

(e.g. points with a small curvature might lie on planes). Other

proposals for point features include moment invariants [6],

spherical harmonic invariants [7], and integral volume descrip-

tors [8]. They have been successfully used in applications such

as point cloud registration, and are known to be translation and

rotation invariant, but they are not discriminative enough for

determining the underlying surface type.

In general, descriptors that characterize points with a single

value are not expressive enough to make the necessary distinc-

tions for point-surface classification. As a direct consequence,

most scenes will contain many points with the same or very

similar feature values, thus reducing their informative char-

acteristics. Alternatively, multiple-value point features such as

curvature maps [9], or spin images [10], are some of the better

local characterizations proposed for 3D meshes which got

adopted for point cloud data. However, these representations
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require densely sampled data and are not able to deal with the

amount of noise usually present in 2.5D scans.
We extend the work presented in [11] by computing local

point feature histograms for each point in the cloud. We make

an in-depth analysis of the points’ signatures for different

geometric primitives (i.e. planes, spheres, cylinders, tori, etc)

and show classification results using different machine learning

methods: Support Vector Machines (SVM), K-Nearest Neigh-

bors (KNN) and K-Means clustering. The best classification

results are obtained using Support Vector Machines which gave

good results on other types of histogram-based classification,

for images [12] as well as face-detection [13].
The remainder of the paper is organized as follows. Sec-

tion II presents our implementation for computing informative

point feature histograms. In Section III we analyze 3D geomet-

ric primitives from point cloud data, present our method for

selecting the most discriminating point features from a given

set, and discuss machine learning techniques for training a

robust classifier. We discuss experimental results in Section IV,

and conclude with Section V.

II. POINT FEATURE HISTOGRAMS

The goal of our work is to identify a feature space in

which 3D points (obtained from real-world laser scans) lying

on primitive geometric surfaces can be easily identified. For

this purpose, the discriminating power of the feature space

has to be high enough so that points on the same surface

can be grouped in the same class, while points on different

surfaces should be assigned to different classes. Furthermore,

we require this feature space to be invariant to 3D rotations

and translations, as well as insensitive to point cloud density

and noise to a certain degree.
To formulate the feature space computational model, we

first introduce the following notations:

• pi is a 3D point having {xi, yi, zi} coordinates;

• ni is a surface normal estimate at point pi having a

{nxi, nyi, nzi} direction;

• r is the radius of the sphere centered at a query point

pi, used for determining the nearest k neighbors of pi

(k-neighborhood) given a certain distance metric, i.e.

dist(pi, pj) ≤ r, with j ≤ k;

• P i
k is the set of points pj , (j ≤ k), located in the k-

neighborhood of a query point pi;

• 〈pi, pj〉 describes the dot product between pi and pj ;

• F i is a feature histogram for the point pi, represented as

a multi-value array with each bin (F i
idx) containing the

percentage of point pairs from P i
k which have a specific

combination of feature values.

We propose the computation and usage of a histogram of

values which encodes the local neighborhood’s geometrical

properties by generalizing the mean curvature at a point p,

and provides an overall density and pose invariant multi-value

feature. Given a set of points P = {p1, ..., pn}, the feature

histograms are computed as follows:

1) for each point pi in P , if normal ni does not exist, then:

i) select all Pkα
neighbors of pi within a given radius

rα; ii) approximate ni by the normal of the least-squares

plane to the Pkα
surface using Principal Component

Analysis; iii) use the existing viewpoint information v
to re-orient ni consistently1:

if
〈v − pi, ni〉

‖v − pi‖
< 0, then ni = −ni

2) for each point pi in P , select all Pkβ
neighbors of pi

within a given radius rβ > rα;

3) for each pair of points pj1 and pj2 (j1 < kβ , j1 6= j2,

j2 < j1) in Pkβ
, and their estimated normals nj1 and

nj2 , select a source ps and target pt, the source being

the one having the smaller angle between the associated

normal and the line connecting the points:

if 〈nj1 , pj2 − pj1〉 ≤ 〈nj2 , pj1 − pj2〉
then ps = pj1 , pt = pj2 , ns = nj1 , nt = nj2

else ps = pj2 , pt = pj1 , ns = nj2 , nt = nj1

and then define the Darboux frame (see Figure 2) with

the origin in the source point as:

u = ns, v = (pt − ps) × u / ||pt − ps||, w = u × v

Fig. 2. The Darboux frame (vectors u, v and w) placed at ps.

4) from ps, pt, ns, and nt, compute a set of 4 features

that measure the angle differences between the points’

normals and the distance vector between them and bin

the values into a histogram [11]:

f0 = 〈v, nt〉

f1 = ||pt − ps||

f2 = 〈u, pt − ps〉/f1

f3 = atan(〈w, nt〉, 〈u, nt〉)



















idx =

i≤3
∑

i=0

[

fi · d

fimax
− fimin

]

· di

where the []-operator denotes the integer part operation, d
is the number of subdivisions of the features’ maximum

theoretical value range (fimax
− fimin

) and idx is the index

of the histogram bin in which the point pair falls (F i
idx). We

increase the bin’s value by 1, and normalize each bin with the

1if viewpoint information is unavailable (e.g. the dataset is not 2.5D), use
an algorithm similar to [14]



total number of point pairs (k · (k + 1)/2) to achieve point

density invariance.

The number of histogram bins that can be formed using

these four geometric features is d4. We empirically obtained

good results by dividing the feature values in three parts,

therefore obtaining a total of 34 = 81 bins as the total

number of combinations between the four features. Increasing

the number of bins even further did not improve the results

significantly, and since it increases exponentially by the power

of 4, using more than 3 subdivisions would result in a large

number of extra dimensions for each point (e.g. 44 = 256D).

III. LEARNING 3D GEOMETRIC PRIMITIVES

Once the feature space is defined, we need to select a set of

classes for labeling each point. The set is comprised of feature

histograms for points lying on various 3D geometric surfaces.

For our experiment, we have chosen the following geometric

primitive shapes as class labels: plane, sphere, cylinder, cone,

torus, edge and corner. The last two were selected due to the

fact that data coming from indoor environments contains a high

number of instances where they are present, hence it makes

sense to differentiate between them and the rest.

To obtain histograms representing these shape primitives

we apply the noise level found in our real-world laser scans

to synthetically generated data. We use these histograms as

training examples for machine learning techniques and test the

classification both using marked (ground truth) point clouds

and visually on the real-world dataset.

When computing the histograms, the selection of rα and

rβ should be adjusted to the size of the shapes that need to

be detected and to the level of noise that is expected from the

sensor. The value of rα should be big enough to balance the

effect of noise, but small enough to preserve the local nature

of the computed normal. Similarly, the value of rβ should be

big enough to capture enough information about the shape, but

small enough to avoid too many surfaces in the neighborhood.

As we apply the method to indoor scenes with objects of

every day use (e.g. cups, bottles, cereal boxes, oranges, etc),

we generated the shape primitives used for training to have

appropriate dimensions, and set rα = 1.5cm and rβ = 2.5cm.

These values are required for accurate normal estimation and

distinctive feature generation for a cup’s handle – the smallest

shape (torus) we want to detect, given the noise level found in

our scans (see subsection III-B).

A. Synthetically Generated Data

Since the chosen feature space requires consistently oriented

normal information and bases its computational model on that,

we need to account for two types of situations: i) when the

estimated normals of a shape are oriented towards the concave

(inner) part of the surface; and ii) when they are oriented

towards the convex (outer) part. This does not mean that the

feature space is variant to the object’s pose, but that we will be

able to identify the way the object is oriented to some degree

(e.g. a corner of the room will be marked differently than a

corner of a piece of furniture in the room – inner and outer

corner respectively). Figure 3 presents the normal information

for a cylinder in both the above mentioned cases.

Fig. 3. Estimated and oriented surface normals for a cylinder pointing towards
the concave (left) and convex (right) part of the surface.

Therefore, the number of classes has to be multiplied by

two, with the exception of the plane. Figure 4 presents feature

histograms for points lying on the selected geometric shapes.

Fig. 4. Feature Histograms for points lying on several 3D geometric
primitives: normals oriented towards concave (top) and convex (bottom) part.

The presented histograms were computed for shape primi-

tives that were generated synthetically and are noiseless. The

results show that the different geometrical properties of each

surface produce unique signatures in the feature histograms

space. We found that point density on the surface did not

influence the feature histograms significantly, however the

histograms for points that are on the edges of the generated

shape primitives have small differences compared to those

computed for points in the middle of the surface, producing

the variations that can be seen in Figure 4.



B. Noise Analysis on Real-World Scans

An important requirement of the selected feature space is

that it has to be able to cope with noisy datasets, acquired using

real hardware sensors. To see whether the point histograms will

be discriminating enough, we will analyze the level of noise

in a scanned point cloud, add the same level of noise to our

synthetic datasets, and compare the resulted histograms. The

datasets have been acquired using SICK LMS laser sensors in

an indoor kitchen environment [15].

Fig. 5. Planar and cylindrical surface patches used for noise analysis.

For determining accurate noise models, we manually se-

lected two portions of a scan (see Figure 5) to represent both

linear shapes (e.g. planes) and non-linear (e.g. cylinders). To

compute the noise parameters for the underlying shape model,

we performed the following steps:

1) using a Sample-Consensus based method (MLESAC

[16]), a search for the best support is performed;

2) a linear least-squares fit for the plane and a non-linear

Levenberg-Marquardt optimization for the cylinder is

used to refine the obtained model, and get the shape

parameters;

3) by computing the distances from all the points in the

dataset to the estimated shape model, and assuming their

distribution to be Gaussian (see Figure 6), the mean and

standard deviation of the noise is computed.

The left part of Figure 6 presents the distance distributions

of the cylinder’s points from the computed underlying shape

model. Due to space constraints we are unable to show the

resulted distance distribution for the planar patch, but the val-

ues obtained for mean and standard deviation were practically

the same as the ones for the cylinder. In the figure, µraw

and σraw represent the noise mean and standard deviation

for the raw dataset. By adding the same level of noise to

our synthetically generated datasets, and repeating the above

computational steps, we obtained a new distance distribution

with similar mean and standard deviation values, µsyn and

σsyn (see the right part of Figure 6). The fitted Gaussian

distribution is shown in black, the ±σ standard deviation in

red, and the mean µ in blue.
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Fig. 6. Point to surface distance distributions for a point cloud representing
a cylinder: raw scan (left), synthetic dataset with added noise (right).

Figures 7 and 8 show the feature histograms for points

lying on planar and cylindrical surfaces: synthetically noiseless

generated data on top, the noisy raw dataset in the middle, and

the synthetic dataset with added noise on the bottom.
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Fig. 7. Feature Histograms for points on a plane for synthetic noiseless data
(top), raw point cloud data (middle) and synthetic noisy data (bottom).

C. Most Discriminating Features Selection

After obtaining enough datasets representing our geometric

primitives of choice, and after their appropriate features have

been computed and extracted, a selection of the most relevant

features has to be performed. The selection is motivated by the

fact that for a given shape, there could be tens of thousands to

millions of feature histograms, which, if used directly, would

render the learning problem costlier than needed. Therefore, a

subset of features has to be extracted for each shape, which

reduces the number of training examples but still preserves

the discriminating power of the shape’s histograms from other

shapes. This can be viewed as a clustering problem, in the

sense that the goal is to find the most relevant k clusters in
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Fig. 8. Feature Histograms for points on a cylinder for synthetic noiseless
data (top), raw point cloud data (middle) and synthetic noisy data (bottom).

the data, which taken together form the overall shape histogram

without losing or modifying its discrimination. Therefore we

could apply a direct clustering method such as K-Means,

where k could be determined empirically. However, since our

proposed feature space has 81 dimensions, it’s very likely that

the iterative clustering method will be trapped in local minima,

and the optimal cluster centers will not be found. A solution

is to reduce the dimensionality of the space and perform the

clustering there. However, even in a lower dimensional space,

the risk of converging to a false solution is directly related

to the initial starting position of the clusters. Our solution

consists in computing the mean µ-histogram of the shape,

then creating a distance distribution from all the point feature

histograms to it, divide it into equally distributed parts, and

select a representative from each part as a starting solution for

the k cluster centroids. In detail, the procedure for determining

the most discriminating features is presented in the following

computational steps:

1) for each shape candidate, compute the mean µ-histogram

of the shape;

2) for each point in the shape, compute a distance metric

Dm between the point’s feature histogram and the mean

µ-histogram of the shape;

3) arrange all the distance values in a distribution, divide

it into k intervals, and uniformly sample an index value

from each interval;

4) use the sampled distances as initializers for the k center

clusters, and search for an optimal solution in the L2-

Euclidean distance space with a K-Means like algorithm.

Our method gives similar results to [17]. For determining

the optimal Dm, we have performed an in-depth analysis using

multiple distance metrics and norms (such as L1-Manhattan,

L2-Euclidean, Bhattacharyya, Chi-Square, Jeffries-Matusita,

Kullback-Leibler) and have empirically discovered that the L1,

Bhattacharyya and Chi-Square give the best results for our

data. Analyzing distance metrics for histograms has already

been performed in similar research initiatives such as [11],

[18], and will not be covered again here.
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Fig. 9. Most discriminating 40 feature histograms for points lying on a
concave conic surface. All 10815 feature histograms are shown on the upper
part, and the resulted 40 feature histograms at the bottom.

Figure 9 presents the results of the selection process for

a conic shape with 10815 feature histograms. Note that the

number of k clusters was set to 40 just for the purpose of this

example. In practice, we require the same number of training

examples for each candidate shape. To achieve this, we first

compute the feature histograms for all the shape primitives,

and then we select k = min(α, nrs
i), i ≤ n, where nrs

is the number of feature histograms for shape s, n is the

total number of primitive shape classes, and α is a maximum

tolerated number of clusters set by the user.

Selecting the most discriminating features using our pro-

posed K-Means clustering approach has the advantage that the

learning time will be drastically reduced while the discrimi-

nating feature information will be preserved.

D. Supervised vs Semi-Supervised Learning

Our goal is to learn models for 3D geometric primitives

(see Figure 4) and then apply these models to classify scanned

data coming from sensors. Therefore, a decision has to be

made on what type of learning method to use to achieve

the best results. For supervised learning, the Support Vector

Machines (SVM) are considered good classifiers, for their good

performance on high dimensional spaces [12]. Given a set of

training examples, the SVM learner attempts to find optimally

separating hyperplanes which group sets of training examples

belonging to the same class and separate those from different

classes. The support vectors are usually found in a higher

dimensional feature space where the data is mapped by making

use of a kernel function. Choosing or designing a new kernel

function is however a cumbersome process, and selecting the

wrong kernel can lead to inadequate results.

However, by applying the most discriminating feature selec-

tion algorithm above, our training datasets are not voluminous,

so trying out different kernels and optimally determining their

best coefficients in a large parameter space is possible by

training different models in parallel and selecting the best one.

Besides the classical linear, sigmoid, and polynomial kernels,

and motivated by the results in [12], we have selected the



family of Radial Basis Functions kernels:

KRBF (x, y) = e−γ·dist(x,y)

By changing the distance metric, we obtain the following

kernel functions:

dist =
∑

i

|xi − yi|, KRBF → KRBF−Laplacian

dist =
∑

i

|xi − yi|
2, KRBF → KRBF−Gaussian

dist =
∑

i

√

|xi − yi|, KRBF → KRBF−Sublinear

Both the Laplacian and sublinear kernels are shown to

outperform the Gaussian kernel for histogram matching, as

described in [1], [12].

Supervised learning techniques such as SVM have the

advantage that while the model learning is slow (solved in our

case through the use of most discriminating feature selection),

the classification of new unseen instances is very fast.

Another category of learning techniques have been re-

ceiving increasing attention in classification problems lately:

Semi-Supervised Learning techniques [19]. The problem of

classifying new point features can be formulated differently,

that is without directly specifying the target output classes.

A rather effective and simple histogram classification method

can be obtained by looking at different distance spaces and

performing a K-Nearest Neighbor (KNN) search for the closest

match, where k = 1. That is, for every shape training set,

compute the mean µ-histogram, and assign the shape class to

a point p, if the point’s histogram pf
i has the closest distance to

it than to any other mean shape histogram. We evaluated the

following distance metrics: Manhattan (L1), Euclidean (L2),

Bhattacharyya, and Chi-Square (χ2).

A similar method for classification is K-Means clustering,

where instead of assigning the shape class directly as KNN

does, an iterative search for the optimal k clusters is performed.

Histograms belonging to the same class tend to be grouped

together in the same cluster, which can be then verified whether

it belongs to a required shape class by looking at its proximity

to the shape’s mean histogram. However, K-Means is sensitive

to local minima and can easily be trapped based on how the

cluster centroids are initialized. To account for this problem,

in our implementation, we proceed as follows:

1) k is set to the the number of output shape classes, and for

every shape class i, its ki cluster centroid is initialized

with the mean histogram of the geometric primitive;

2) a K-Means algorithm is run iteratively until convergence;

3) a distance metric between each obtained ki cluster cen-

troid and the mean histogram of each geometric primitive

is computed and the cluster k is assigned to the closest

shape class.

The last step is performed because we cannot be certain

that the initial given centroids (and therefore labeling) is still

the same at the end of the algorithm. For example the centroid

cluster which was initialized with the mean histogram of a

cylindrical shape could end up closer to the conical one, and

viceversa.

IV. DISCUSSIONS AND EXPERIMENTAL RESULTS

We have applied our algorithms to a synthetically generated

scene to find out the accuracy of the classification results.

Table 1 presents the results obtained using different kernels for

Support Vector Machines [20], and various distance metrics for

the K-Nearest Neighbors and K-Means clustering algorithms.

The best classification support for both noiseless and noisy

data with Support Vector Machines was obtained using the

RBF sublinear kernel, confirming the findings in [12]. The

RBF Laplacian kernel gave similar results, albeit the RBF

Gaussian kernel provided better results for noisy data. An

interesting result was obtained using the linear kernel, which

had the second best results for noiseless data. This means

that when a lower computational cost is desired with small

acceptable penalty losses in performance, a linear SVM could

be used instead. Note that the numbers presented in the table

are directly related to the synthetic dataset used – if ground

truth would be available for real datasets, the outcome of the

classification might result in bigger differences between the

kernels. Figure 10 presents the classification results using the

best parameters with each of the three methods (SVM, KNN,

and KMeans) for our synthetic noiseless scene (left part) and

for the scene with added noise (right part). In the legend

presented at the bottom of Figure 10, we included two types

of tori for detecting cups handles: one rounded type, close to

the ideal torus, and another type more flat. Instantiations of

the two different types of handles can be seen in Figure 11.

Table 1. Classification results

Method used Noiseless Noisy

SVM Linear kernel 95.17% 87.66%

SVM Polynomial kernel 94.39% 88.88%

SVM Sigmoid kernel 86.15% 83.44%

SVM RBF Gaussian kernel 94.55% 88.83%

SVM RBF Laplacian kernel 95.18% 88.14%

SVM RBF Sublinear kernel 95.26% 89.55%

KNN L1-Manhattan (µ-dist) 78.08% 78.03%

KNN L2-Euclidean (µ-dist) 67.22% 71.94%

KNN Bhattacharyya (µ-dist) 87.11% 83.53%

KNN Chi-Square (µ-dist) 83.64% 82.84%

K-Means (81D) 59.40% 55.24%

K-Means (81D) L1-Manhattan 73.63% 68.58%

K-Means (81D) L2-Euclidean 61.30% 68.58%

K-Means (81D) Bhattacharyya 73.63% 70.74%

K-Means (81D) Chi-Square 73.63% 68.58%

The KNN based classification gave very promissing results,

especially when using the Bhattacharyya distance metric. This

is due to the fact that the discriminating power of the feature

histograms is high enough so that in certain distance spaces

they can be easily separated. The presented results make the

KNN method very attractive, especially for situations where a

model does not have to be learned a priori.



Fig. 10. Classification results for the synthetic scene. From left to right:
noiseless and noisy synthetic scenes. From top to bottom: SVM sublinear
kernel, KNN with Bhattacharyya distance, and K-Means with Bhattacharyya
distance.

Not surprisingly, the K-Means clustering algorithm had the

worst results of the three methods. Even though the k cluster

centroids where initialized as close as possible to the true solu-

tion, the classical K-Means metric distance – the L2 Euclidean

norm, is simply inadequate for such high dimensional spaces

(81D) obtaining a rather poor 59.40% classification accuracy.

The motivation for the 3rd K-Means implementation step as

explained in Section III-D can be observed in the last part of

the table. Once the final k cluster centroids are set, we compare

them again with the mean histograms of each shape and re-

assign the cluster’s label to the shape which is the closest, in

a distance metric sense. The best results overall were obtained

again with the Bhattacharyya distance.

Another aspect that needs to be verified is how the his-

tograms classification copes with partial scans taken from

different positions and angles. Figure 11 presents the classifica-

tion results for 4 types of cups scanned from 3 different poses.

In the first row, the acquired scans contain the cup handles as

seen from a 45◦ angle and slightly from above; in the second

row, the handles are precisely in the middle of the scan and

are perpendicular to the viewpoint, while the position is above

the cup almost looking down upon the inside bottom of the

cup; and finally, in the third row, the handles are exactly at a

90◦ angle with the viewing direction, allowing them and the

cup to be seen from the side. Our results indicate the following

findings:

• all scans could identify the concave and convex cylin-

drical components of the cups with a reasonable error

margin;

• the handles for the first 3 cups were identified as flat

tori in situations where more than half of the handle was

visible, and as rounded tori when seen from the side (e.g.

the bottom row of the figure);

• the third cup had an unusual shape (i.e. not perfectly

cylindrical) and has been classified as a composition

between a normal concave cylinder (bottom), a convex

cylinder (middle) and a convex torus (top), showing that

the classification of more complex objects is possible, but

has to be interpreted differently.

Fig. 11. Classification results for 4 types of cups scanned from different
positions and angles.

To verify the robustness of the feature histograms on a

more complex dataset where objects are grouped closer and

occluding each another, we analyzed the scene presented in

Figure 12 and obtained 90.26% classification results using a

sublinear SVM kernel. Notice that our ground truth labels were

expecting edges at the intersection of shape candidates, such

as cylinder with plane, or sphere with plane, as well as torus

with cylinder. Due to the radius rβ used, the torus representing

the handle of the smaller cup was not classified as a torus,

but as an edge. This leads to the conclusion that the overall

classification accuracy could be improved if different levels of

details are used (i.e. different radii rα and rβ).

The results obtained by applying the same model to a real-

world scene are shown in Figure 13. The top part of the figure

presents the point cloud in intensity scale, and the bottom the

classified results. Results obtained on raw laser scans acquired

in an indoor kitchen environment have already been presented

in Figure 1.



Fig. 12. A more complex noisy synthetic scene with 90.26% classification
results using a sublinear SVM kernel.

Fig. 13. A table-top with kitchen objects shown as an intensity image (top)
and the results after classification (bottom).

V. CONCLUSION

We have presented a system for estimating informative point

features as multi-value histograms which characterize the local

geometrical properties of their underlying surface. The features

are pose invariant and cope well with different dataset densities

and noise levels.

By carefully selecting a machine learning classifier with

an appropriate distance metric, and learning models of fea-

ture histograms for 3D shape primitives, we can robustly

segment point cloud scenes into geometric surface classes.

Our approach has been validated using synthetic datasets with

ground-truth information and visually on real-world scans. The

results show that the method works well in a wide range of

situations, with the only tradeoff that the scale parameters

(most importantly rβ) has to be chosen a priori by the user.

As future work, we plan to investigate topics such as feature

persistence over a range of radii to be able to select the correct

parameters depending on the object type.
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