
Learning Instance-wise Sparsity for Accelerating Deep Models

Chuanjian Liu1∗ , Yunhe Wang1 , Kai Han1 , Chunjing Xu1 and Chang Xu2

1Huawei Noah’s Ark Lab
2School of Computer Science, FEIT, University of Sydney, Australia

{liuchuanjian, yunhe.wang, kai.han, xuchunjing}@huawei.com, c.xu@sydney.edu.au

Abstract

Exploring deep convolutional neural networks of
high efficiency and low memory usage is very es-
sential for a wide variety of machine learning tasks.
Most of existing approaches used to accelerate deep
models by manipulating parameters or filters with-
out data, e.g., pruning and decomposition. In con-
trast, we study this problem from a different per-
spective by respecting the difference between data.
An instance-wise feature pruning is developed by
identifying informative features for different in-
stances. Specifically, by investigating a feature de-
cay regularization, we expect intermediate feature
maps of each instance in deep neural networks to
be sparse while preserving the overall network per-
formance. During online inference, subtle features
of input images extracted by intermediate layers
of a well-trained neural network can be eliminated
to accelerate the subsequent calculations. We fur-
ther take coefficient of variation as a measure to
select the layers that are appropriate for accelera-
tion. Extensive experiments conducted on bench-
mark datasets and networks demonstrate the effec-
tiveness of the proposed method.

1 Introduction

Deep learning methods, especially convolutional neural net-
works have been successfully applied a number of computer
vision tasks, such as image classification [Krizhevsky et al.,
2012; He et al., 2016], object detection [Ren et al., 2015], im-
age super-resolution [Kim et al., 2016], etc. However, most
of deep CNNs are well designed with huge parameters and
computational complexities for the accuracy reason. For ex-
ample, VGG16 [Simonyan and Zisserman, 2015] needs about
60 MB memory and 15.4 GFLOPs (floating-number opera-
tions) for a 224× 224 image. This limits their usage in edge
devices, e.g., mobile phones, smart camera. Thus, effective
methods for compressing and speeding-up these deep models
are urgently required.

To this end, considerable methods have been proposed
to reduce memory and FLOPs. [Vanhoucke et al., 2011]

∗Contact Author

(a) Easy examples with about 65% feature pruning ratio.

(b) Hard examples with about 40% feature pruning ratio.

Figure 1: Examples with different pruning ratios selected using the
VGG16 learned on the CIFAR-10 dataset.

employed vector quantization which makes use of a clus-
ter center to represent similar connections. [Denton et al.,
2014] exploited the singular value decomposition approach
and decomposed the weight matrices of fully connect lay-
ers. Considering that 32-bit floating numbers are too fine for
CNNs, [Rastegari et al., 2016] and [Courbariaux et al., 2015]

explored binarized neural networks, whose weights and acti-
vations are -1/1. [Han et al., 2016] utilized pruning, quan-
tization and Huffman coding together. In addition, [Wang
et al., 2016] introduced the discrete cosine transform (DCT)
bases and converted convolution filters into the frequency do-
main, thereby producing much higher compression ratio and
speed improvement. Although these approaches can provide
considerable compression and speed-up ratios for the origi-
nal heavy CNNs, most of them are equally applied on all in-
stances in the train and test set, which ignore the differences
between instances.

Actually, natural images are of different complexities for a
given neural network, e.g., an image with clean background
and moderate objects is easier to be accurately recognized

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3001

than an image filled with complex textures and multiple ob-
jects as shown in Figure 1. To this end, some recent works
proposed to explore accelerating methods for different in-
stances, [Lin et al., 2017] embedded a RNN to discard use-
less channels, [Liu and Deng, 2018] proposed a multi-branch
scheme, etc. In fact, convolution filters are designed for learn-
ing some intrinsic patterns in natural images, e.g., edges,
blobs and color, and natural images are combined by these
patterns. Thus, discarding same features for all instances is
not the optimal solution for reducing the complexity of deep
neural networks. Moreover, a higher sparsity ratio is possi-
ble for each instance than on entire dataset. Therefore, these
methods have a very huge potential for real-world applica-
tions.

Although the above mentioned approaches have made
tremendous efforts to address the existing problems for ap-
plying deep models, most of them discard useless features by
introducing additional operations on the output feature maps
such as RNN, RL, etc. Thus, we propose a new framework
for learning the instance-wise sparsity in well designed neu-
ral networks by exploiting a feature decay regularization. In
practice, a feature decay regularization is utilized to make fea-
tures of different training instances sparse during the training
procedure. Then, some features of instances can be discarded
without significantly affecting the performance of the result-
ing network at runtime. Extensive experiments conducted
on benchmark models and datasets demonstrate the proposed
method can achieve competitive performance but with lower
computational complexities.

2 Related Works

Conventional model compression and acceleration ap-
proaches are designed for removing redundant filters, weights
and blocks to obtain compact architectures from pre-trained
deep neural networks, which ignore the complexities of dif-
ferent instances in image datasets.

In order to excavate the complexity of each instance, sev-
eral works are proposed for assigning different parts of the
designed network to different input data dynamically. For ex-
ample, [Gao et al., 2018; Lin et al., 2017; Hua et al., 2018]

utilized attention and gate layers to evaluate each channel and
discard some of them with subtle importances during the in-
ference phrase. [Wang et al., 2018; Figurnov et al., 2017;
Veit and Belongie, 2018] utilized a gate cell to discard some
layers in pre-trained deep neural networks for efficient in-
ference. [Teerapittayanon et al., 2016; Liu and Deng, 2018;
McGill and Perona, 2017; Teja Mullapudi et al., 2018;
Bolukbasi et al., 2017] further proposed the branch selec-
tion operation to allow the learned neural networks to change
themselves according to different input data. [Almahairi et
al., 2016; Dong et al., 2017; Ren et al., 2018] applied the
dynamic strategy on the activations of feature maps in neural
networks.

In summary, most of the above mentioned approaches did
not directly process convolution filters or features and intro-
duce extra components, i.e., gates, attention layers, impor-
tance predictors and multi-branches to original CNNs, which
involves more computations and parameters. In this paper, we

attempt to address the dynamic strategy in the feature pruning
aspect, and discard redundant features to reduce the compu-
tational complexity during the online inference.

3 Methods

In this section, we investigate the structural sparsity of deep
neural networks by a feature decay regularization for ob-
taining efficient CNN models. In the training procedure,
instance-wise ℓ2,1-norm is included for making features of all
instances sparse, while less important features will be elim-
inated to reduce computational complexity during the infer-
ence, as shown in Figure 2.

3.1 Weight Pruning for Neural Networks

Given a deep convolutional neural network, denote weights
of the l-th convolutional layer as a sequence of 4D tensors,

i.e., W (l) ∈ RCl+1×Cl×Dl×Kl , where Cl+1, Cl, Dl and Kl

are the dimensions of the l-th weight tensor along the axes of
filter, channel, height and width, respectively. The conven-
tional method for compressing deep neural networks can be
formulated as:

min
W

L(W,X ,Y) + λ ·
L
∑

l=1

R(W (l)), (1)

where L(·) stands for classification loss for training sample
(X ,Y), R(·) is the weight regularization item in deep neural
networks, and λ is a hyper parameter for seeking the trade-off
between accuracy and model size.

According to different concerns, the weight regularization
R(·) could have various formulations,

- R(W (l)) =
∑Cl+1

cl+1=1|W
(l)
cl+1,:,:,:|1 is utilized for remov-

ing useless convolution filters [Luo et al., 2017];

- R(W (l)) =
∑Cl

cl=1|W
(l)
:,cl,:,:|1 can be applied to elimi-

nate redundant channels [Wen et al., 2016];

- R(W (l)) =
∑Dl

dl=1

∑Kl

kl=1|W
(l)
:,:,dl,kl

|1 is often embed-

ded into deep neural networks for discarding subtle
weights in CNNs [Han et al., 2016].

Wherein, the ℓ1-norm applied on each convolution filters,
i.e., filter pruning is the most effective scheme for remov-
ing useless filters in the pre-trained network and provide a
new network with the same number of layers but signifi-
cantly fewer parameters and FLOPs. However, pruning fil-
ters is equal to discard some of output features for all in-
stances, which ignores the difference between complexities
of various images. In fact, convolution filters are designed
for learning some intrinsic patterns in natural images, e.g.,
edges, blobs, and color, and images consist of various com-
binations of these patterns. Thus, discarding all features is
not the optimal solution for reducing the complexity of deep
neural networks.

3.2 Instance Feature Sparse Regularization

As mentioned above, we can obtain a network with fewer
convolution filters compared to the original network by mini-
mizing the regularization of convolution filters in pre-trained

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3002

Figure 2: The framework of our methods, includes train procedure with feature regularization and test procedure with feature sparsification.

deep neural networks. In fact, the regularization applied on
convolution filters can be shifted to the corresponding fea-
tures. For an optimal feature elimination, we propose to
utilize the ℓ2,1-norm to learn sparse features of different in-
stances, which is a widely used regularization to select fea-
tures [Yang et al., 2011]. In practice, the ℓ2,1-norm for an
arbitrary matrix M with n rows and m columns is defined as:

|M |2,1 =
n
∑

i=1

√

√

√

√

m
∑

j=1

M2
ij , (2)

which first calculates the ℓ2-norm for each row and then stack
them by utilizing the ℓ1-norm.

Then, we incorporate Eq.2 in the training procedure of
deep neural networks as shown in the left part in Figure 2.
Specifically, let F l

N×Cl×Hl×Wl
be the features of l-th con-

volutional layer, N , Cl, Hl and Wl are batch size, channel
number, height and width of this layer, respectively. For the
cl-th channel of l-th layer of n-th instance, we compute ℓ2-
norm for this channel:

N l
n,cl

=

√

√

√

√

Hl
∑

hl=1

Wl
∑

wl=1

(F l
n,cl,hl,wl

)
2
. (3)

For each instance, we then compute its ℓ1-norm over all layers
in the network:

Nn =
L
∑

l=1

Cl
∑

cl=1

N l
n,cl

. (4)

Thus, the entire objective function of the proposed method
can be formulated as

Ltask + λ ·
N
∑

n=1

Nn, (5)

where Ltask is final loss function of the given visual task such
as classification or detection. λ is regularization parameter
used for controlling the effect of corresponding feature regu-
larization item. In contrast to weight sparsity, Eq.5 learns the
feature sparsity of each instance in the training procedure si-
multaneously, which is a more accurate approach for remov-
ing redundancy in deep neural networks.

3.3 Instance-wise Sparsity Inference

A novel framework for learning instance-wise feature redun-
dancy is proposed in the above section. In order to implement
the online inference efficiently, we further explore the testing
procedure of the proposed method. The right part of Figure 2
illustrates the detailed inference procedure of the proposed
method. For an arbitrary input image, we first compute the
ℓ2-norm of feature maps of each convolutional layer using
Eq.3.

The feature regularization in training leads to multi-
polarization of features, so we utilize the coefficient of varia-
tion (CV) to calculate dispersion of norm distribution for each
layer in the online inference. It is defined as the ratio of the
standard deviation to the mean as follows:

CV l =

√

1
Cl

∑Cl

cl=1(N
l
n,cl

− µl)2

µl

, (6)

where

µl =

∑Cl

cl=1 N
l
n,cl

Cl

. (7)

In probability theory and statistics, CV is a standard measure
of dispersion of a probability distribution, and it is indepen-
dent of data scales. The larger CV value of some layer means
greater changes in importance of channels, and we tend to
drop channels from such layer. We set a global CV threshold
as α, the layers whose CV values are larger than α could be
pruned.

After determined the prunable layers, we further find the
specific channels that could be pruned in these layers. Since
the magnitude of feature norms in different layers is various,
we cannot use a global threshold to eliminate useless features.
Alternatively, we compute the mean µ as Eq.7 of ℓ2-norms for
each layer and set a drop threshold β ∈ [0, 2). The channels
whose ℓ2-norm value is under β · µ are discarded, and only
the remained channels will be transmitted into the following
layers.

3.4 Computation Complexity

Let F l
N×Cl×Hl×Wl

be feature map on the l-th layer, and the

size of filters on the (l+ 1)-th layer is WCl+1×Cl×k×k. Stan-
dard convolutions have the computation cost of: Cl×Cl+1×

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3003

Network λ = 0 λ = 1e-8 λ = 1e-7 λ = 1e-6

VGG16 0.942 0.939 0.934 0.560
Res18 0.934 0.934 0.930 0.735
MNet2 0.918 0.915 0.900 −

Table 1: The baseline accuracy of CIFAR-10 test set by different
networks and feature regularization factors. ’−’ means no test.

Hl × Wl × k × k. The computation cost of L2-norms is
Cl ×Hl ×Wl, and the computation cost of mean and CV is
about 4Cl. This added computation cost could be ignored in
contrast to the convolution. As a result, if we discard C chan-
nels for a layer, then we can save C/Cl ratio of computation
cost approximately at runtime.

4 Experiments

In this section, we evaluate feature regularization on general
image classification task. Detailed analysis on instance-wise
feature sparsity brought by the feature regularization loss are
presented. In addition, we demonstrate the instance-wise
channel pruning results and reduced FLOPs.

4.1 Datasets and Experimental Settings

We extensively evaluate our methods on two popular clas-
sification datasets: CIFAR-10 [Krizhevsky, 2009] and Im-
agenet(ILSVRC2012) [Deng et al., 2009]. Three net-
works are considered: VGG16 [Simonyan and Zisserman,
2015], resnet-18(Res18 for simplicity) [He et al., 2016] and
mobilenet-v2 (MNet2 for simplicity) [Sandler et al., 2018].
The MNet2 is more challenging to accelerate because of its
compactness. Besides, to further verify our method’s effec-
tiveness, we did experiments on the network which is com-
pressed by network slimming [Liu et al., 2017].

For VGG16, we substitute the fully connection layer with
global average pooling in all experiments. We use filters with
size 3 × 3 and stride 1 on the first convolutional layer for
Res18 in CIFAR-10. For MNet2, we reset the strides in first
convolutional layer and the second inverted residual block
layer to 1. For preprocessing and other super-parameters in
training, we follow the same routines proposed for these net-
works.

4.2 CIFAR-10

In this section, we make comprehensive experiments and
analysis on the instance-wise feature sparsity on CIFAR-10
dataset. A number of ℓ2,1-norm regularization factors are
considered, λ = 0, 1e-6, 1e-7, 1e-8 respectively. When
λ = 0, it is equivalent to standard approach. The baseline
results are shown in Table 1. The feature regularization re-
stricts the feature representation power of deep models, so
larger λ leads to lower accuracy.

Variation of feature distribution. In our method, CV is a
metric measuring the changes in importance of channels. In
Table 2, we show the changes of the CV values of some con-
volutional layers. The standard VGG16 has small CV values
usually, which means the importance of different channels are
similar. In contrast to standard VGG16, we get higher CV
values for VGG16 with proposed feature regularization. Ad-
ditionally, the CV values increase with λ. With the increase

Figure 3: The channel pruning results of VGG16. The x-axis is
the index of channels. The label convi j in y-axis means the i j-
th layer, and each layer contains 10 categories of CIFAR-10. Light
color means more samples have this channel been dropped, and vice
versa. This result is got when α = 0.5, β = 1.0.

λ conv1 1 conv3 1 conv5 1 conv5 3

0 1.3221 0.3412 0.7518 0.9855

1e-8 1.7955 0.3256 1.1926 1.3256

1e-7 2.2815 0.4185 2.2749 1.9029

1e-6 5.6362 6.1605 3.3022 4.3541

Table 2: The mean value of CV for some layers in VGG16.

of CV value, the importance of channels produces polariza-
tion. In the following, we will explore the trade-off between
different CV value thresholds and prune ratio and accuracy.

Visualization of pruned channels. In Figure 3 each grid
in the heatmap represents the number of samples of one cat-
egory that discard this channel (there are 1000 samples for
each category in CIFAR-10 test set). The low level layers
of VGG16 have the similar channel prune results for differ-
ent categories. In our opinion, the low layers in CNN usu-
ally learn the pixel level information, which are shared by all
categories. In the higher layer, more differences of dropped
channels presented by this figure. The higher layer has more
semantic information of categories, so they tend to discard
different channels for different categories. In our model, the
middle layers such as conv3 x have merely been pruned due
to small CV value. The 10 easy samples that dropped more
channels and 10 hard samples that dropped less channels dur-
ing inference are shown in Figure 1. From these examples, we
acknowledge that easy samples usually have pure background
or texture, moderate size, etc. The hard samples present com-
plex background and texture, truncated objects, etc.

Statistics of easy and hard samples. We group the sam-
ples from easy to hard in accordance with the number of
pruned channels. From less to more, we compute the accu-
racy of every 100 samples by the number of pruned channels
for VGG16 in Figure 4. Unusually, the first 100 easy sam-
ples have low accuracy in contrast to the global average ac-
curacy. So we check all these images manually, and find the
misclassified samples usually have small object or confusing
background. The hard samples have poor accuracy as we be-
lieved, and more attention should be paid to these examples to
improve accuracy. Besides, we find no significant difference
in channel pruning ratio for different categories, the reason
lies in that CIFAR-10 has few categories and the test set col-
lects all kinds of instances for each category.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3004

Figure 4: The accuracy of different classes of samples in CIFAR-10
test set. From left to right in x-axis, the number of pruned channel
gradually increases. The accuracy is computed every 100 samples
in the blue line. The red line is the global average accuracy across
the whole test set.

Results of instance-wise feature pruning of VGG16. We
evaluate the proposed instance-wise feature pruning method
with random pruning strategy and ℓ2-norm based pruning.
The random pruning strategy is randomly discarding fixed ra-
tio of channels, while the ℓ2-norm based pruning is discarding
fixed ratio of channels with minimum ℓ2-norm values. Our
method is pruning channels that exceed predefined thresholds
CV factor α and drop threshold β. From Table 3 and 4, the
model with large feature regularization factor λ = 1e-6 gets
56.0% accuracy after pruning 95.6% channels for VGG16.
The reason lies that large regularization factor limits the rep-
resentation ability of features, which leads to low accuracy
but high feature sparsity. The random method leads to bad
accuracy under the same prune ratio, and the norm based
method gets relative better results. Our methods has higher
accuracy and pruned ratio simultaneously. We use different
combinations of CV value α and drop threshold β. In Ta-
ble 4, for low α and β, the standard VGG16 gets 94.0% accu-
racy and 20.7% pruned ratio, and the regularized VGG16 gets
93.6% accuracy and 46.9% prune ratio when λ = 1e-7. With
low α and high β, the standard VGG16 gets low accuracy
79.2%, and the regularized VGG16 still gets 92.6% accuracy
after pruned 53.2% channels. This proves that feature regu-
larization leads to the uneven distribution of features. Then
for high α and β, the standard VGG16 gets 93.8% accuracy
but very low prune ratio 4.2%, and the regularized VGG16
gets 93.3% accuracy under 45.1% pruned ratio. For all these
methods, with the increase of λ(except λ = 1e-6), the test
accuracy grows under the same prune ratio. This certificates
that large regularization factor λ produces large feature spar-
sity, and more channels could be pruned without sacrificing
performance.

Results of instance-wise feature pruning of light-weight
CNNs. To further verify the effectiveness of feature regu-
larization, the results on light networks, MNet2 and pruned
VGG16 by nets slimming [Liu et al., 2017], are shown in
Table 5 and Table 6. For MNet2, the average prune ratio is
bigger than 0.7, which suggests that the features in MNet2
are redundant. By check the prune ratio of each layer, we

pr 10% 20% 30% 40%

λ rand min rand min min min

0 0.673 0.921 0.151 0.842 0.420 0.145

1e-8 0.746 0.925 0.205 0.884 0.695 0.265

1e-7 0.820 0.933 0.443 0.929 0.920 0.894

1e-6 0.560 0.560 0.560 0.560 0.560 0.560

Table 3: The accuracy after pruning fixed ratio of channels for
VGG16 by random and minimum norm value methods on CIFAR-
10 test set. The abbreviation ’rand’ and ’min’ means two pruning
method, respectively.

thresh 0.5, 0.5 0.5, 1.0 1.0, 1.0

λ acc pr acc pr acc pr

0 0.940 0.207 0.792 0.388 0.938 0.042

1e-8 0.938 0.300 0.783 0.474 0.938 0.259

1e-7 0.934 0.469 0.926 0.532 0.933 0.451

1e-6 0.560 0.956 0.560 0.956 0.560 0.956

Table 4: Prune channels with different combinations of threshold α
and β for VGG16. The abbreviation ’acc’ and ’pr’ means accuracy
and prune ratio, respectively.

find that the expand layer(expand ratio is 6) in inverted resid-
ual block of MNet2 are pruned much more than the shrink
layer, even exceed 95% channels are pruned in the higher
expand convolutional layers. The depthwise separable con-
volution itself in standard MNet2 is beneficial to the feature
sparsity, which leads to better accuracy and higher prune ratio
in contrast to standard VGG16. The regularized MNet2 gains
an advantage when CV thresh becomes larger. For pruned
VGG16, the baseline of VGG16 with BN scale factor regu-
larization is 0.938. The accuracy becomes 0.574 after prune
67% channels with minimum BN scale factor. The we fine-
tune this pruned model with proposed feature regularization.
In Table 6, the second column when α = 0 and β = 0 is the
baseline accuracy of fine-tuned on pruned VGG16 with dif-
ferent regularization factors. From the last column, we find
that another 20.1% or 27.2% computations could be saved
when the accuracy drops about 0.8% or 1.7%, respectively.

Comparative analysis. We compare our methods with sev-
eral dynamic accelerate methods. [Dong et al., 2017] used
low-cost collaborative layer(LCCL) to pre-compute the non-
zero elements in the out feature maps, then ignored the loca-
tions with zeros. Channel gating(Gating) [Hua et al., 2018]

worked by identifying the unimportant channels and turn-
ing off them. [Gao et al., 2018] proposed feature boost-
ing and suppression, a new method to predictively amplify
salient convolutional channels and skip unimportant ones at
run-time. As shown in Table 7, the feature regularization
method provides a better trade-off between error and FLOPs
reduction under the similar network architecture. The fea-

thresh 1.5, 1.0 1.25, 0.75 1.0, 0.5

λ acc pr acc pr acc pr

0 0.845 0.742 0.899 0.754 0.915 0.758

1e-8 0.889 0.746 0.902 0.766 0.913 0.766

Table 5: Prune channels with different combinations of thresholds α
and β for MNet2 on CIFAR-10.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3005

thresh 0, 0 0.5, 1.0 0.7, 0.7

λ acc pr acc pr acc pr

0 0.938 0 0.414 0.287 0.638 0.232

1e-7 0.937 0 0.891 0.203 0.930 0.201

1e-6 0.925 0 0.921 0.203 0.921 0.272

Table 6: Prune channels with different combinations of thresholds α
and β for pruned VGG16 by net slimming on CIFAR-10.

Methods Network Error prune ratio FLOPs(108)

LCCL Res20 8.32 65.11 0.26

Gating Res18 6.00 73.1 1.35

FBS M-Cifar2 8.45 30.0 1.7

Ours
VGG16 6.61 46.9 1.84
Res18 6.63 40.3 0.98
MNet2 8.72 76.6 0.31

1 Ratio of zero elements, not channels.
2 This is computed according to the 2× speed-up ratio in pa-

per.

Table 7: Comparisons of error rate and prune ratio between different
methods. Gating uses large batch size(256) and more epochs(300).
FBS constructs 8-layer M-CifarNet with 1.3M parameters.

ture regularization method is easy to implement in contrast to
other methods which need extra network structures. These
dynamic accelerated methods are complementary to static
methods such as pruning, quantification and low rank decom-
position. It is possible to obtain better accuracy and FLOPs
reduction by combining these methods to statical models.

4.3 Imagenet

ImageNet is a large dataset, which has 1.3M images and 1000
categories. Due to the diversity of categories and richness
of images, more features are expected to be utilized by deep
neural networks in order to get higher discriminability.

Figure 5 presents the easy and hard samples of Imagenet.
There are more categories in Imagenet in contrast to CIFAR-
10, the skew of channel prune ratio for different categories
emerged. Some categories like ’window screen’, ’space bar’
and ’window shade’ have more channels been dropped, these
categories can be regarded as easy categories. The hard cate-
gories contains ’butcher shop’, ’jinrikisha’, ’oxcart’, etc.

From Table 8, some interesting results are found. Firstly,
the MNet2 has near half of channels been dropped in spite
of its compactness, which is less than the pruned channels in
CIFAR-10. The inverted residual block in MNet2 expands the
channels for the inputs initially, then shrink channels in the
last convolutional layer of this block. Detailed analysis on the
dropped channels show that almost all the dropped channels
locate in the expand layer, which means that one small expand
ratio in inverted residual block may get equivalent accuracy

thresh 0, 0 1.0, 0.3 0.8, 0.3

λ acc pr acc pr acc pr

0 0.706 0 0.702 0.335 0.694 0.385

1e-8 0.701 0 0.698 0.439 0.692 0.475

Table 8: Prune channels with different combinations of thresholds α
and β for MNet2 on Imagenet.

(a) Easy examples selected by VGG16 on Imagenet.

(b) Hard examples selected by VGG16 on Imagenet.

Figure 5: The easy and hard samples selected from Imagenet with
inference feature pruning. The easy samples have more channels
been pruned, and hard samples have less channels been discarded.

with large expand ratio. The result is consistent with CIFAR-
10. Secondly, we find the standard MNet2 also has better
accuracy under relatively lower prune ratio in contrast feature
regularization method. But in the similar accuracy 69.4% and
69.2%, feature regularized model has more channels 47.5%
to 38.5% been pruned.

5 Conclusion

The differences between instances make the dynamical prun-
ing become possible. This paper introduces structural feature
regularization on CNN models in the training procedure to
get instance-wise sparsity, and prune useless channels during
inference for each instance. The proposed method is not de-
signed for reducing disk memory occupation and GPU space.
In fact, we tend to accelerate the inference by selectively com-
puting only a subset of channels that are important for the in-
put. As a side effect, the amount of cached activations and
the number of read, write and arithmetic operations would be
largely decreased, which leads to the improvement of mem-
ory occupation and computation at runtime. Within 1% accu-
racy loss, we demonstrate that VGG16 can drop 50% chan-
nels on CIFAR-10, and MNet2 can drop 47% channels on
Imagenet. In addition, the inference channel pruning method
can be easily combined with other existing static network
compression methods to get better speed-up ratio. Further to
mine the restrictions on features maps to improve efficiency
or performance of networks will be studied.

Acknowledgments

Chang Xu was supported by the Australian Research Council
under Project DE180101438.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3006

References

[Almahairi et al., 2016] Amjad Almahairi, Nicolas Ballas,
Tim Cooijmans, Yin Zheng, Hugo Larochelle, and Aaron
Courville. Dynamic capacity networks. In ICML, 2016.

[Bolukbasi et al., 2017] Tolga Bolukbasi, Joseph Wang,
Ofer Dekel, and Venkatesh Saligrama. Adaptive neural
networks for efficient inference. In ICML, 2017.

[Courbariaux et al., 2015] Matthieu Courbariaux, Yoshua
Bengio, and Jean-Pierre Binaryconnect David. Training
deep neural networks with binary weights during propaga-
tions. arXiv preprint arXiv:1511.00363, 2015.

[Deng et al., 2009] Jia Deng, Wei Dong, Richard Socher, Li-
Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

[Denton et al., 2014] Emily L Denton, Wojciech Zaremba,
Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting
linear structure within convolutional networks for efficient
evaluation. In NIPS, 2014.

[Dong et al., 2017] Xuanyi Dong, Junshi Huang, Yi Yang,
and Shuicheng Yan. More is less: A more complicated
network with less inference complexity. In CVPR, 2017.

[Figurnov et al., 2017] Michael Figurnov, Maxwell D.
Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry
Vetrov, and Ruslan Salakhutdinov. Spatially adaptive
computation time for residual networks. In CVPR, 2017.

[Gao et al., 2018] Xitong Gao, Yiren Zhao, Łukasz Dudziak,
Robert Mullins, and Cheng-zhong Xu. Dynamic channel
pruning: Feature boosting and suppression. arXiv preprint
arXiv:1810.05331, 2018.

[Han et al., 2016] Song Han, Huizi Mao, and William J
Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman cod-
ing. In ICLR, 2016.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

[Hua et al., 2018] Weizhe Hua, Christopher De Sa, Zhiru
Zhang, and G. Edward Suh. Channel gating neural net-
works. arXiv preprint arXiv:1805.12549, 2018.

[Kim et al., 2016] Jiwon Kim, Jung Kwon Lee, and Kyoung
Mu Lee. Accurate image super-resolution using very deep
convolutional networks. In CVPR, 2016.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, 2012.

[Krizhevsky, 2009] Alex Krizhevsky. Learning multiple lay-
ers of features from tiny images. Technical report, Cite-
seer, 2009.

[Lin et al., 2017] Ji Lin, Yongming Rao, Jiwen Lu, and Jie
Zhou. Runtime neural pruning. In NIPS, 2017.

[Liu and Deng, 2018] Lanlan Liu and Jia Deng. Dynamic
deep neural networks: Optimizing accuracy-efficiency
trade-offs by selective execution. In AAAI, 2018.

[Liu et al., 2017] Zhuang Liu, Jianguo Li, Zhiqiang Shen,
Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through net-
work slimming. In ICCV, 2017.

[Luo et al., 2017] Jian-Hao Luo, Jianxin Wu, and Weiyao
Lin. Thinet: A filter level pruning method for deep neural
network compression. In ICCV, 2017.

[McGill and Perona, 2017] Mason McGill and Pietro Per-
ona. Deciding how to decide: Dynamic routing in artificial
neural networks. In ICML, 2017.

[Rastegari et al., 2016] Mohammad Rastegari, Vicente Or-
donez, Joseph Redmon, and Ali Farhadi. Xnor-net: Ima-
genet classification using binary convolutional neural net-
works. In ECCV, 2016.

[Ren et al., 2015] Shaoqing Ren, Kaiming He, Ross Gir-
shick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In NIPS, 2015.

[Ren et al., 2018] Mengye Ren, Andrei Pokrovsky, Bin
Yang, and Raquel Urtasun. Sbnet: Sparse blocks network
for fast inference. In CVPR, 2018.

[Sandler et al., 2018] Mark Sandler, Andrew Howard, Men-
glong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In
CVPR, 2018.

[Simonyan and Zisserman, 2015] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks for
large-scale image recognition. In ICLR, 2015.

[Teerapittayanon et al., 2016] Surat Teerapittayanon,
Bradley McDanel, and H.T. Kung. Branchynet: Fast
inference via early exiting from deep neural networks. In
ICPR, 2016.

[Teja Mullapudi et al., 2018] Ravi Teja Mullapudi,
William R. Mark, Noam Shazeer, and Kayvon Fata-
halian. Hydranets: Specialized dynamic architectures for
efficient inference. In CVPR, 2018.

[Vanhoucke et al., 2011] Vincent Vanhoucke, Andrew Se-
nior, and Mark Z Mao. Improving the speed of neural
networks on cpus. In NIPS, 2011.

[Veit and Belongie, 2018] Andreas Veit and Serge Belongie.
Convolutional networks with adaptive inference graphs. In
ECCV, 2018.

[Wang et al., 2016] Yunhe Wang, Chang Xu, Shan You,
Dacheng Tao, and Chao Xu. Cnnpack: Packing convolu-
tional neural networks in the frequency domain. In NIPS,
2016.

[Wang et al., 2018] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor
Darrell, and Joseph E. Gonzalez. Skipnet: Learning dy-
namic routing in convolutional networks. In ECCV, 2018.

[Wen et al., 2016] Wei Wen, Chunpeng Wu, Yandan Wang,
Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In NIPS, 2016.

[Yang et al., 2011] Yi Yang, Heng Tao Shen, Zhigang Ma,
Zi Huang, and Xiaofang Zhou. l2, 1-norm regularized dis-
criminative feature selection for unsupervised learning. In
IJCAI, 2011.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3007

