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a b s t r a c t

For many tasks robots need to operate in human populated environments. Human motion prediction is
gaining importance since this helps minimizing the hinder robots cause during the execution of these
tasks. The concept of social forces defines virtual repelling and attracting forces from and to obstacles
and points of interest. These social forces can be used to model typical human movements given an
environment and a person’s intention. This work shows how such models can exploit typical motion
patterns summarized by growing hidden Markov models (GHMMs) that can be learned from data online
and without human intervention. An extensive series of experiments shows that exploiting a person’s
intended position estimated using a GHMMwithin a social forces basedmotionmodel yields a significant
performance gain in comparison with the standard constant velocity-based models.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

As service robots are expected to perform tasks in human pop-
ulated environments, notion of how people move is gaining im-
portance. Occlusions by other humans or objects and movements
outside the robot’s field of view cause intervals without detections
for time scales up to minutes. During such ‘blind’ periods, a robot
must rely on human motion models. In addition, minimizing the
hinder for humans during, e.g., navigation or delivery tasks is only
possible if robots have information about how people move in the
nearby future. Parameterizing pre-defined models is difficult due
to the dependency on the environment and the person’s intentions
and a simple motion model assuming a constant velocity or accel-
eration is typically not valid over longer periods of time.

To overcome these problems, part of the relevant literature
assumes that people, or moving objects in general, tend to follow a
limited set of motion patterns given an environment [1,2]. These
patterns are assumed to exist among a limited set of positions,
e.g., doors, tables, chairs. By learning these patterns, motions can
be predicted during periods without detections. Another solution
models the interactions between objects and their environment

∗ Corresponding author. Tel.: +31 402473580.

E-mail address: J.Elfring@tue.nl (J. Elfring).

based on the concept of social forces [3]. By estimating attractive
and repulsive forces to and from target locations and obstacles,
predictions respecting the physical constraints of the environment
can be made.

The questions investigated in this work are: (i) how can
typical motion patterns be learned and exploited for human mo-
tion prediction, and (ii), how can the knowledge about the possibly
dynamic environment a robot is operating in be exploited during
humanmotion prediction? Based on these questions, four require-
ments are formulated.

(R1) Goal prediction must exploit the experience summarized
by a collection of observation sequences. Simple linear
extrapolation is not sufficient for predictions over time
intervals in the order of seconds.

(R2) The number of possible destinations in a given environment
usually is limited, e.g., dinner table, office A, desk B, however,
the world in between these destinations should not be
discretized since infinitely many trajectories are possible
dependent on the presence of, e.g., dynamic obstacles or doors
that are open or closed.

(R3) The probability of a person moving towards a specific target
location can vary over time. For this reason itmust be possible
to update a human motion model given new observation
sequences.
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Table 1
Summary of the requirements satisfied by related work. Requirements are either

fulfilled (✓), not fulfilled (×) or not applicable (�).

Reference R1 R2 R3 R4

Bennewitz et al. [1] ✓ × × ✓

Vasquez et al. [2] ✓ × ✓ ✓

Luber et al. [3] × ✓ × ✓

O’Callaghan et al. [4] × � × ✓

Chung et al. [5] ✓ × × ✓

Tseng et al. [6] × ✓ × ✓

Yamaguchi et al. [7] ✓ ✓ × ×
Rohrmüller et al. [8] × ✓ × ✓

Kanda et al. [9] ✓ × × ✓

Foka et al. [10] ✓ ✓ × ×
Kitani et al. [11] ✓ × × ✓

Chen et al. [12] ✓ × × ✓

Pellegrini et al. [13,14] × ✓ × ✓

Chung et al. [15] × ✓ × ✓

Luber et al. [16] × ✓ × ✓

Ziebart et al. [17] ✓ × � �

Required ✓ ✓ ✓ ✓

Fig. 1. Simplified visualization of the approach. A person’s trajectory can be

predicted by incorporating an intended position (colored ellipses) estimated using

a hiddenMarkovmodel (blue ellipses and arrows) into amotionmodel based on the

concept of social forces (large colored arrows). (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this

article.)

(R4) Updating some humanmotion model as required in the third
requirementmust happen autonomously, i.e., without human
intervention of any form (see Fig. 1).

2. Related work

Various authors define a finite number of discrete states
and estimate a path, using observed trajectories, by a state
sequence. In [1] motion patterns are represented by hidden
Markov models (HMMs) learned from data clustered using
expectation maximization. Although being a good starting point,
the discretization of the paths in a finite number of states and the
disability to update the model online conflict with requirements
R2 and R3. In [2] growing HMMs (GHMMs) are learned. Contrary
to [1], both the HMM structure and parameters can be learned
online. However, predicting human motions on a discretized
world grid contradicts the continuous world requirement R2,
as shown in Table 1. In [9] the goal is to let a robot actively
approach humans in a shopping mall based on their intention.
Human motion primitives such as walking or running are used
to predict the human behavior, e.g., stopping at a shop. In [12]
trajectories are clustered and summarized by a mean and a left
and right boundary. Based on the match between a sequence
of observations and each cluster, a credibility level is calculated
which is used during prediction. Bothworks fulfill the requirement

of estimating a person’s goal, however, during short deviations
from the learned trajectories, e.g., because of a person crossing
the intended path, the correspondence between the learned and
observed trajectory drops and the accuracy of the prediction
deteriorates. In addition, themodels are not updated online, hence
both of the aforementioned methods fail to fulfill the continuous
world requirement R2 and lack the ability to update models online
as formulated in requirement R3. In [10], linear extrapolation is
used for the goal prediction. Potential goals are given by a user
and the mismatch between predicted heading direction and goal
location is translated into a probability. The prediction method
using linear extrapolation is considered overly simplistic and both
the need for human input and the disability of online updating the
model contradict our requirements, as shown in Table 1. The work
of [11] researches activity forecasting which contains ‘destination
forecasting’ as a subproblem. Their approach combines semantic
scene understanding with ideas from the optimal control theory.
Main drawbacks are the discretized world and the focus on the
static part of the environment only.

A second group of work uses the concept of so-called social
forces. A person is attracted by its goal, whereas it is repelled
by other objects. This adds robustness and enables estimating
trajectories in a continuous domain. Important work on this topic
is performed by Helbing in, e.g., [18,19]. In [14,13] the forces
are based on energy potentials, in [3] these forces are based on
existing models for crowd simulation [18,19]. In either of the
cases, a constant velocity motion model is used to incorporate the
interactions into the motion model of an object by introducing
an acceleration term. The authors in [3] estimate a person’s goal
based on constant velocity extrapolation and show that the model
leads to improved tracking performance and up to two times
less data association errors. The work of [13] does not deal with
intention estimation since defining either the left or the right
hand edge of a camera image suffices in their experiments, so
both works do not meet the goal prediction requirement R1.
Online updating the human motion model is not dealt with in
both [3] and [13]. The work of [6] is based on similar ideas,
however, stream field based human motion models are used.
The forces are calculated at a grid map for efficiency purposes
and the persons’ goal is estimated using a constant acceleration
motion model. This goal estimation is considered too simplistic
and online updating is impossible. In [7] an energy function
incorporating social effects is used for prediction. The intended
position of a person is estimated using a support vector machine
trained off-line using past trajectories and possible destinations
given by a human user, hence both requirements R3 and R4
are violated. The work of [15] uses a cost function incorporating
various social factors. Prediction is performed using a grid map
in which transition probabilities are learned from the data. The
grid map contradicts the continuous world requirement R1 and
the transition probabilities are not learned online. Finally, [16]
learn a set of dynamicmotion prototypes from the data. Estimating
a human’s intended position is excluded since the focus is on
estimating a person’s path in the presence of another person given
the starting and end positions of the path.

Interesting work in which prediction is a means for improved
robot path planning is [4,8,17]. The authors in [8] use Markov
chains for pre-computing transition probabilities in a grid. The
probabilities are used to predict people movements, however, the
intended goal is not estimated. In [4] a navigational map is learned
for each possible location. During an offline learning phase a de-
viation function describing how humans deviate from the map is
learned. The main application is planning paths to given locations
hence the intention estimation problem is not dealt with in [4].
In [17] goal-directed trajectories are estimated using a strategy
the authors refer to as maximum entropy inverse optimal control.
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Strongest feature of this approach in the context of our require-
ments is the robustness against changes in the environment, main
drawbacks are the discretization of the environment into a fixed
grid and the lack of modeling the interactions between humans.

None of the related works fulfill all of our requirements. In the
next section, the new contribution of this paper will be presented.

3. Contributions

The research presented in this paper uses the concept of social
forces, as in [3] as a starting point. This way, there is no need
for predicting human trajectories on a discretization of the world.
Contrary to the number of paths towards a goal, the number of
possible goals given an environment is considered to be limited.
For that reason, we tailored the advanced goal estimation method
presented in [2] and incorporated it in the human motion models
used by [3], which is our main contribution. With this human
motion prediction framework, many experiments using a large
existing data set have been performed during which both the
strengths and weaknesses of the proposed algorithm are analyzed.

The proposed approach contains two steps. First, motion
patterns are learned for the purpose of human goal estimation.
Section 4 explains how this is done and how the work in [2] was
modified and applied. Then in step two, the learned patterns are
combinedwith the social forces based approach. Section 5 explains
how this combination ismerged into a framework that can be used
for human motion prediction. After that, Section 6 presents the
experimental results and in Section 7 conclusions are drawn.

4. Learning of statistical motion patterns

The first step of the proposed algorithm is estimating a person’s
goal using a growing hidden Markov model (GHMM). Section 4.1
explains how the world is discretized for the purpose of goal
estimation. Sections 4.2 and 4.3 transform this discretized world
into a GHMM. Section 4.4 explains how the parameters of the
GHMM are updated and Section 4.5 explains how the intended
position of a person is estimated using the GHMM.

4.1. Updating the topological map

This section explains how a set of observed person trajectories
is summarized by a topological map. This is a data reduction step
that is considered reasonable since the map, and later the GHMM,
will be used to estimate the person’s goal and not the path towards
this goal.

A topological map contains nodes connected by undirected
edges. Each node represents a region in the environment and
the edges represent the connectivity among nodes, i.e., a node
represents a Voronoi region, an edge a Delaunay edge. In [2] the
Instantaneous Topological Map (ITM) algorithm [20] is used. Here
a modified version is used instead. The algorithm has linear time
and memory complexity with respect to the number of nodes in
the map.

An observation of a person’s position obtained at time t is
denoted by the vector Ot , an observation sequence up to time t is
denoted by the setO1:t = {O1, . . . ,Ot}. Each observation sequence
is assumed to originate from one person, hence data association
is excluded from this work. For each observation in the sequence
O1:t , the topological map is updated in four steps. Fig. 2 visualizes
the various steps.

1. For the current observation represented by the cross in
Fig. 2(a), find the nodes n and s with the smallest and second
smallest Euclidean distance to this observation. The dashed
lines indicate the associated Voronoi region for each node, the
black solid lines the edges between the nodes. If nodes n and s
are not connected, a link is added (red line).

2. Check for each neighbor m of n if node s lies in the Thales
sphere1 through n andm. If yes, as is the case in Fig. 2(b), remove
the edge connecting nodes n and m. If not, as is the case in
Fig. 2(c), keep all edges. After removing an edge to node m,
remove node m if it has no neighbors left.

3. If, as in Fig. 2(d), an observation lies both outside the (dashed)
Thales sphere through nodes n and s and outside a (dotted)
sphere with radius emax around node n, a new node is created
at the location of the measurement. If, as is the case in Fig. 2(e),
nodes n and s are closer than 0.5·emax (dash-dotted sphere) [20]
removes node s, however, here nodes n and s are merged (red
node).

4. If no new node is created in one of the previous steps, associate
observation Ot with node n. In this work, the Np,max most
recent observations are stored per node. In [20,2] this step
is absent hence no measurements are stored. However, the
associated observations can be used to estimate the observation
probabilities needed in the GHMM later. The updated node
position equals the average of all associated points. In the
example in Fig. 2(f), the observations associated with the nodes
are represented by the crosses, the dashed lines again indicate
the Voronoi regions associated with each topological map node
and the solid lines represent the edges.
The first two steps are according to the original work in [20],

the third and fourth step aremodified respectively added since this
allows for an improved calculation of the observation probabilities
later. The only parameters that have to be set in this algorithm are
the radius emax, that can be interpreted as the resolution of themap,
and Np,max, which is the size of the sliding window, a measure of
the time horizon that is taken into account during the calculations
explained in Section 4.2.

4.2. Formulation of the GHMM

In the context of estimating a person’s motion, person’s
trajectories can be modeled by state sequences in which each
discrete state represents a region in the real world. A hidden
Markovmodel (HMM) can be used to model and predict a person’s
trajectory by a state evolving stochastically at discrete time steps
t . An important property of HMMs is that they summarize the
continuous state space representing all possible states, in thiswork
the set of all possible locations, by a finite number of discrete states.
The number of states therefore depends on the number of locations
covered by the different trajectories, rather than the number of
persons. The main assumption underlying HMMs is the Markov
property: the complete history of the state at time t is adequately
summarized by the state at the previous time step t − 1 only.

An HMM can be interpreted as being a graph containing nodes
connected by directed edges. Each node represents one of the
discrete states mentioned before, whereas the edges represent
the possible transitions between these states. The existence of
edges between nodes indicates that it is possible to move from
one state to another within one time step. In HMMs the states
itself are hidden, i.e., they cannot be observed directly. Instead, an
observation related to this state is perceived.

In this work, the state at time t is denoted by the vector St .
Each state is associated with a state prior which represents the
probability of a trajectory starting in this state. Furthermore, a
state is associated with an observation probability. For a state i,
denoted by S i

t , the observation probability function determines the
probability of observing a measurement Ot under the assumption
of being in state i. The edges in an HMM are represented by

1 The Thales sphere through two points A and B is the circle with diameter AB

through both points A and B.
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Fig. 2. Four steps of the modified instantaneous topological mapping algorithm. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

transition probabilities representing the probability of evolving
from one state to another in one time step.

A growing HMM (GHMM) is an HMM with a varying number
of states connected by a varying number of directed edges. The
number of states after processing k observation sequences is Ns,k

and the full GHMM is parameterized by:

λ = {πk, Ak, bk}, (1)

in which πk is the set of Ns,k prior probabilities for the Ns,k states
and Ak is the set of transition probabilities among the states. The
transition probability from state i at time t−1 to the state j at time

step t is denoted as p(S
j
t | S

i
t−1) = ai,j. Finally, bk parameterizes the

observation probabilities p(Ot | S
i
t), where i = 1, . . . ,Ns,k.

In this work, all observation probabilities will be represented
by Gaussian distributions, hence p(Ot | S i

t) = N
i(Ot; µi

k, Σ i
k)

and therefore, bk = {µ
1
k, . . . ,µ

Ns,k

k , Σ1
k , . . . , Σ

Ns,k

k }. Each mean µi
k

of a Gaussian distribution is associated with a node center in the
topological map and equals the corresponding node position. The
covariancematrixΣ i

k of the i’thGaussian distribution is set equal to
the covariance of the set of associated points up to some constant
scaling factor. Whenever possible, the subscript k is dropped for
the sake of notational simplicity.

As explained in Section 4.1, each node center in the topological
map is associated with a unique location. The GHMM has a

state vector St =


x x′
T
, in which x is the position vector

of the state and x′ is the vector representing the associated
intended position. Both the current and intended positions are
equal to the position of one of the topological map nodes. By
combining the current position with the intended position in
the GHMM state, different GHMM states can be associated with
the same node in the topological map, i.e., persons at the same
location are associated with different states if their intended
locations differ. Mathematically, the effect of adding the intended
position to the GHMM state is the appearance of distinctive
manifolds in the GHMM. Each manifold is associated with one
unique intended position and describes how a person is expected
to move towards this intended position. Since the observation
probabilities are estimated using the topological map, states
associated with the same topological map node have identical
observation probabilities p(Ot | S

i
t).

The advantage of storing the set of associated points in the
topologicalmapping algorithmexplained in Section 4.1 is shown in
Fig. 3, where the simulated data of a T-junction is shown. The blue
crosses represent observations, the green crosses the nodes in the
topological map and the black dashed lines the edges in this map.
In the originalwork [2], all covariances in bk, represented by the red
ellipses,were constant and set beforehand. This assumptionwill, in
general, only be valid if the topological map has a fine resolution,
i.e., if emax is low and, therefore, the number of nodes in the map
is high as is the case in Fig. 3(a). Furthermore it requires tuning
a reasonable covariance. With the node specific covariance matrix
estimate the resolution can be decreased, as shown in Fig. 3(b). This
lowers the computational complexity and does not deteriorate the
performance, since the GHMM is used for estimating the intended
position, rather than the path towards this position.

4.3. Updating the structure of the GHMM

After updating the topological map with an observation
sequence, the structure of the GHMM is updated accordingly. Each
new node in the topological map leads to a new state at the
position of the node and with the intended position equal to the
last position in the observed sequence. Both the new transition
probabilities ai,j originating fromnew edges and the self-transition
probability ai,i of new states are initializedwith a pre-defined value
a0. The prior probability of being in a new state is set to a pre-
defined value π0. If edges are removed from the topological map,
the corresponding transition probabilities in the GHMM are set
to zero: ai,j = 0. If nodes in the topological map are merged
or removed, the corresponding states in the GHMM are removed
as well. After updating a node in the topological map, both the
corresponding means and covariance matrices in bk are updated
accordingly.

4.4. Updating the parameters of the GHMM

The GHMMparameters are updated using amodified version of
the Baum–Welch method [21]. The Baum–Welch method locally
maximizes the probability p(O1:Tk | λ) of an observed trajectory
O1:Tk given the model in an iterative manner. Tk is defined as the
length of the k’th observation sequence O1:Tk = {O1, . . . ,OTk}.
Since the observationprobabilities are updated in theprevious step
already, only the transition probabilities and state priors have to be
updated. For amore detailed explanation of the process of updating
the parameters the reader is referred to [21,2]. A forward variable
can be defined as [21]:

αt(i) = p(O1,O2, . . . ,Ot , S
i
t | λ), (2)

which is the probability of observing the trajectoryO1:T up to time t
and being in state i at time t given the GHMM. The forward variable
is solved for inductively using the standard algorithm explained
in [21]. Similarly, a backward variable is defined [21]:

βt(i) = p(Ot+1,Ot+2, . . . ,OTk | S
i
t , λ), (3)

which is the probability of observing the partial trajectory, Ot+1:Tk ,
given the GHMM model and the state being i at time t . Solving for
βt(i) can be done using the standard algorithm explained in [21].

By combining the probabilities represented by the forward and
backward variables, the probability of being in state i at time t and
in state j at time t + 1, ξt(i, j), can be calculated [21]:

ξt(i, j) =
αt(i)ai,jp(Ot+1 | S

j

t+1)βt+1(j)

p(O1:Tk | λ)
, (4)

which combines the forward and backward variables with the
probability of going from state i to state j and the probability of the
observation at t+1 if the state at t+1 indeed is j. The denominator
acts as a normalization term. The probability of being in state i at
time t given both the complete trajectory that was observed and
the GHMM can now be calculated using (4):

p(S i
t | O1:Tk , λ) =

Ns


j=1

ξt(i, j). (5)
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a b

Fig. 3. Topological maps generated using the same simulated data for people approaching a T-junction. In order for a fixed covariance to be a reasonable estimate of the

associated points, as in (a), a high topological map resolution is required. In (b), it is shown how an improved covariance estimate allows for a lower resolution of the

topological maps. In this example, the map resolution is emax = 0.09 m in (a) and emax = 0.25 m in (b).

With these definitions, the GHMM parameters can be updated

in four steps:

1. normalize the state priors πi and the transition probabilities ai,j
since they are not guaranteed to sum up to one after adding and

removing edges and states to and from the GHMM;

2. compute the forward variables αt(i), the backward variables

βt(i) and the observation probability p(O1:Tk | λ), which equal

the sum of all forward variables at time Tk, using the standard

algorithms in [21];

3. re-estimate the state priors by the expected number of times of
being in state S i as dictated by the Baum–Welch method:

π̂i ←
α1(i)β1(i)

p(O1:Tk | λ)
. (6)

Tests have shown that using Baum–Welch method leads to too
much bias towards recent observations, therefore the update is
done as proposed in [2], by a weighted average:

πi ←
(k− 1)πi + π̂i

k
. (7)

4. zero transition probabilities will never become non-zero due
to parameter updates. Therefore, only non-zero transition
probabilities are re-estimated by the expected number of
transitions from state S i to S j divided by the expected number
of transitions from state S i:

âi,j ←

Tk


t=2

ξt(i, j)

Tk


t=2

p(St = i | O1:Tk , λ)

(8)

and, again, to avoid too much bias [2]:

ai,j ←
(k− 1)ai,j + âi,j

k
. (9)

Since learning the GHMM parameters requires the full state to
be available, an augmented observation sequence:

Ō1:Tk =



O1

OTk



,



O2

OTk



, . . . ,



OTk

OTk



(10)

serves as input for learning the GHMM. For efficiency reasons,

all observation probabilities are pre-calculated each time a new

observation sequence arrives. This avoids unnecessary calculation

of the same observation likelihood multiple times during the

re-estimation of the parameters. The implementation uses the

C++ linear algebra library Armadillo [22].

4.5. Estimating the intended position

Once all the GHMMparameters are available, Bayes’ rule is used
to update the belief state, i.e., the probabilities of being in any of the
states given the observations up to time t:

p(St | O1:t) =
1

Z
p(Ot | St)



St−1

p(St | St−1)p(St−1 | O1:t−1), (11)

where p(St−1 | O1:t−1) is the prior, i.e., the state estimate at
the previous time step or the state prior for the first observation
O1, Z is a normalizing constant and the observation probability the
Gaussian distribution introduced in Section 4.2. With this belief
state, calculating the probability of an intended position x′ = ℓ
is done using:

p(x′t = ℓ | O1:t) =


St

p(x′t = ℓ | St)p(St | O1:t), (12)

where the probability p(x′t = ℓ | St) equals one for any state St =


∗ ℓ
T
that contains ℓ as intended position and zero otherwise

and p(St | O1:t) is calculated using (11).

Only one intended position is used for the human motion
prediction since a personwill move towards one location at a time.
The most probable intended position, which might change over
time, is selected for this purpose. The strategy can therefore be
interpreted as amultiplemodel tracking filter [23] inwhich exactly
onemodel is considered at each time step. The single model which
is considered may change over time depending on the probability
mass function over possible intended positions as defined by (12).
The way the most probable intended position is used during the
prediction will be explained in Section 5.

5. Prediction

The GHMM can be used to predict human trajectories, how-
ever, these trajectories canonly be representedbydiscrete state se-
quences generated by the GHMM. These states represent discrete
regions and therefore, only non-smooth trajectories can be pre-
dicted. In addition, the GHMM only implicitly models interactions
with the environment via the recursive refinement of the model
and, therefore, is not able to adequately model short, temporarily
interactions, e.g., with dynamic objects. In order to overcome these
drawbacks, the intended position estimate provided by the GHMM
is combined with a motion model incorporating the concept of so-
cial forces. The motion model explained in this section is based on
the model used in [3] and introduced in [18,19], where it was used
to model pedestrian crowds. The motionmodel is part of a Kalman
filter that will be used to do the final predictions and updates.
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Let the state vector of a Kalman filter at time t be the concate-
nation of a person’s estimated position and velocity vectors yt and

vt : xt =


yt vt
T
. The Kalman filter has a motion model:

xt =



yt−1 + vt−11t + 0.5a1t2

vt−1 + a1t



(13)

where the acceleration vector a, not to be confused with a scalar
transition probability ai,j used before, is related to a force using
Newton’s second law:

Mρa = Fρ + ζρ . (14)

Mρ is themass of a personρ, Fρ is the sumof the social forces influ-
encing this person and ζρ is a noise term representing individual
fluctuations not modeled by the deterministic part of the model.
The time index is left out to keep the notation less cluttered. The
social force Fρ equals the sum of three terms andwill be calculated
using the discrete GHMM state St as explained later in this section:

Fρ = Fpersρ + Fsocρ + Fphysρ . (15)

The first term Fpersρ models the human’s intention, i.e., the desire
of a person to adapt his current velocity to his desired speed and
direction within a certain relaxation time:

Fpersρ = Mρ

v̂ρ êe − vρ

τρ

, (16)

where the relaxation time τρ is the time interval needed to go
from the current velocity vρ to the intended velocity v̂ρ and the
intended direction êρ , which direction will be determined using
the estimated intended position provided by theGHMMusing (12).
Throughout this work, both the relaxation time and the desired
velocity are assumed to be constant and identical for all persons.
Future work could be to use better estimates, e.g., the person’s
average velocity during some time interval. The force Fpersρ sums
a driving term and a friction term [19].

The social interaction forces represent the repulsive effect of
other objects or persons. It, therefore, is a summation over all
instances in the world model W , with the exception of the person
with index ρ that is currently considered:

Fsocρ =


w∈W\{ρ}

qw exp



rρ,w − dρ,w

fw



nρ,w. (17)

In (17) qw specifies the magnitude of the social interaction force,
fw specifies the range of this force, dρ,w is the Euclidean distance
between the centers of person ρ and the other world model object
or person w, and rρ,w is the sum of the radii of w and person ρ.
Finally nρ,w is the normalized vector pointing from w to person ρ.
The social interaction force corresponds to the model in [3] with
the strength of the anisotropic factor set to one.

The last term in (15) represents hard physical constraints of
the environment. Again it is a summation over all world model
instances with the exception of person ρ, the person that is
considered:

Fphysρ =


w∈W\{ρ}

cwg(rρ,w − dρ,w)nρ,w, (18)

where cw represents the magnitude of the exerted force and the
function g(χ) = χ if χ > 0 and 0 otherwise. More details on the
origin of themodel can be found in [19] and the references therein.

6. Experiments

This section presents the results of an extensive set of
experiments. A total number of 785 human trajectories are
predicted and fed to theGHMMin the various sections. Thenumber
of persons in the field of view varied roughly between zero and
ten. First, the parameters and some calculation time characteristics
are presented in Section 6.1, then Sections 6.2–6.5 present the
prediction results.

Table 2
Parameters used during experiments.

Parameter Value Unit Description

a0 0.1 – Initial (self-)transition probability

πo 0.1 – Initial prior probability

qw 25 N Magnitude social force

fw 50 pixels Range social force

rρ 15 pixels Radius person

v̂ 40 pixels/s Intended velocity person

τ 4 s Relaxation time

cw 2.5 N Magnitude physical force

Np,max 100 points Maximum number of points per node

emax 30 pixels Resolution of the topological map

Fig. 4. The full set of 785 trajectories used during the various analyses.

6.1. Algorithmic characteristics

In all of our experiments, the settings summarized in Table 2 are
used. Experiments are carried out using aHP EliteBook 8530wwith
Intel 2.8 GHz duo core processor and the average time needed for
a belief state update using (11) and (12) is below 0.5 ms. The total
time needed for updating both the GHMMand the topological map
is analyzed later. The belief state calculation times enable using the
algorithm in an online setting where measurements might arrive
at tens of Hertz.

The series of experiments is based on the data set introduced
in [24]. It consists of a large set of trajectories of humans walking
through the Informatics Forum at the University of Edinburgh.
The data were recorded with a camera fixed approximately 23 m
above the ground. Themain entry/exit points are at the bottom left
(front door), top left (cafe), top center (stairs), top right (elevator
and night exit) and bottom right (labs). The data used here were
recorded on September 10 and July 30. First, ten randomly selected
trajectories were used for learning a GHMM, then 775 different
trajectories were used for validation and recursive refinement of
the model in the various sections below. The complete set of
trajectories used is shown in Fig. 4. The topological map after
learning all 785 trajectories is shown in Fig. 5.

6.2. Analysis of the GHMM

First, themodel size of the intention estimation part is analyzed.
Fig. 6 shows how the number of nodes in the topological map
increases with the number of trajectories learnt. It in addition
shows the number of states and edges in the GHMM. After learning
approximately 500 trajectories, the numbers are more or less
converged. The number of states increases faster than the number
of topological map nodes since different statesmight be associated
with the same node, e.g., movements from A to B and from B to A
might share the set of associated topologicalmap nodes but appear
on different manifolds and result in different states. In the same
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Fig. 5. Topological map, learned from the set of 785 trajectories, projected on the

camera image.

Fig. 6. Number of nodes in the topological map and number of states and edges in

the GHMM as a function of the number of trajectories learnt together with the time

needed to update the GHMM structure and parameters with one measurement.

figure, the time needed to update the GHMM is indicated by the
blue solid line. This time includes updating both the topological
map and the GHMM structure and parameters. As expected, the
computation time increaseswith themodel size. The time is always
below 4 ms and most of the time below 3 ms, which allows for the
online updating of the model even on a rather simple laptop.

Fig. 7 shows three of the manifolds present in the GHMM. Each
of the figures show the discrete GHMM states associated with
one intended position. The green circle represents the person’s
intended position, the red circles represent the states on the
manifold. To keep the visualization uncluttered, both the self-
transition and the directed transition probabilities from and to
states are left out of the visualization. Instead, the black lines show
the connectivity among the GHMM states. This figure shows the
difference in complexity of the models on different manifolds. The

Fig. 8. Ratio of correctly predicted intended positions using both the proposed

method and the benchmark strategy after observing 20% or 40% of the trajectory.

learning data set containedmany different trajectories towards the
front door hence the associated manifold contains many states,
as shown in Fig. 7(a). Fig. 7(b) shows the states on the simplest
manifold representing persons entering and leaving the scene near
the front door. Finally, Fig. 7(c) shows a typical model resulting
from a set of trajectories showing limited variability.

6.3. Failure rate

Wehave used both themotionmodel proposed in thiswork and
the model as proposed by [3] to estimate the exit point of a person
after observing 20% of the trajectory and repeated the analysis
with 40% of the trajectory. An intended exit point estimation was
classified as being correct if the real exit point differed at most
29 pixels. Changing this value will affect the absolute failure rate,
whereas the relative performance of one method compared to
the other is, more or less, invariant to this number. This part of
the analysis is based on 285 trajectories recorded at September
10 with on average 1.49 persons within the field of view. The
analysis focuses on the change in performance after learning a
larger number of trajectories. The main results of the comparison
are shown in Fig. 8, which shows the ratio of correct predictions as
a function of the number of trajectories learnt.

Initially, after learning about ten trajectories, the performance
in all cases is similar with the exception of the prediction using
the benchmark strategy and 20% of the trajectory. After learning
more than 40 trajectories, the proposed method outperforms the
benchmark strategy with a factor three to five times if 40% of the
trajectory is used and six to seven in case 20% is used. Using 40%
instead of 20% improves the absolute success rate for the proposed
method with approximately 10%, whereas it doubles the success
rate for the benchmark strategy.

a b c

Fig. 7. Different manifolds of the GHMM. Each figure shows a manifold associated with a different intended position. The black lines show the connectivity within the

GHMM, the green circle the intended position and the red circles the other states on the manifold. Directed edges representing the (self-)transitions within the model are

left out to keep the visualization readable. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Ratio of correctly predicted intended positions using both the proposed

method and the benchmark strategy after observing the given fraction of the full

path for predicting the remainder of the path.

Two conclusions can be drawn from this first analysis. First of

all, the proposed method using the estimated intended position

provided by the GHMM clearly outperforms the benchmark strat-

egy for the set of 285 person trajectories used during this analysis.

Second, the accuracy of the prediction increases after refining the

GHMM using more trajectories, something that is enabled by the

low computational costs of updating the model. The fact that the

average success rate every now and then shows a mild decrease

despite an increasing number of trajectories being used for learn-

ing is caused by new motion patterns which are observed for the

first time. This effect will be addressed in more detail in the next
section.

The second part of this analysis is based on the data recorded
on a different day: July 30. This different day was selected since
(i) the number of persons walking within the field of view is
typically larger and (ii) it is considered useful to analyze the
performance for the data recorded on different days. The paths
of 500 different humans are predicted and the average number of
people within the field of view on this day was 4.0. This time the
fraction of the full path used to predict the remainder of the path
is varied from 5% to 85%. The results for both the proposed and the
benchmark strategy are shown in Fig. 9.

Fig. 8 showed how the number of correctly estimated intended
positions increases as the number of trajectories learnt increases.
Fig. 9 shows how the accuracy increases as a larger fraction of the
complete trajectory is used in the query. This is in line with the in-
tuition: the closer a person is to its intendedposition, the easier this
intended position can be predicted. After observing only 5% of the
full path, the proposed method is correct in 56% of the 500 paths
tested for. As the fraction of the path which is observed increases
this percentage increases to almost 90%. The benchmark strategy
initially leads to a 5% success rate, which is more than a factor 11
lower than the proposed strategy. As more measurements arrive,
this rate increases to approximately 77%. The proposed strategy
leads to an absolute increase in the success rate which is between
12% and 62% for the 500 trajectories used during this part of the
analysis.

6.4. Predicted path consistency for single persons

This section zooms in on some of the 785 predicted paths that
led to the results presented in Section 6.3. Rather than giving a

a

c

b

d

Fig. 10. Predictions for four different observation sequences (204, 219, 236 and 273). Solid green line is with intended position estimation, whereas the dashed yellow line

shows the linear extrapolation as in, e.g., [3]. Red crosses represent measurements, the red star the ground truth and the magenta squares the most probable estimated

intended positions provided by the GHMM together with the associated probabilities. Cyan represents the ground truth.
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a b

dc

Fig. 11. Prediction for trajectory 201. Initially the intended position estimate is uncertain and the prediction is incorrect. Asmoremeasurements arrive, the intended position

estimate gains trust and the path is predicted correctly and without much oscillations.

complete overview, representative scenarios are selected. Fig. 10
shows four single person scenarios in more detail. Single person
scenarios are selected at this stage since this allows for comparing
the proposed strategy with a benchmark strategy while keeping
the figures readable.

The red crosses represent the incomplete observation sequence
of a single person. The green solid line shows the predicted path
using the proposed strategy,whereas the yellowdashed line shows
thepredictedpathusing the benchmark strategy as used in, e.g., [3].
The red star represents the real exit point, the dotted cyan line
the real path (ground truth) and the magenta squares show the
probabilities of the most probable intended positions as estimated
by the GHMM together with the associated probabilities. The
total number of possible intended positions can be as high as the
number of nodes in the topological map shown in Fig. 5. Using only
the GHMM for predicting the full path would lead to non-smooth
paths on the discrete topological map grid shown in Fig. 5. Such
paths are considered unrealistic and, therefore, are not included in
the performance evaluation.

In order for a robot to be able to correctly anticipate on a
person’s path two things are important: (i) the predicted path
must lead to the correct exit point and (ii) the path towards this
exit point must be consistent over time, i.e., it should not change
unrealistically each time a new measurement arrives. We start
with analyzing the first of these points by further investigating
some of the successes and failures that led to the results in Figs. 8
and 9. After that, the second of these points is analyzed.

Fig. 10(a) and (b) shows typical scenarios in which the linear
extrapolation fails,whereas theGHMMis able to correctly estimate
the intended position. The social forces motion model transforms
the discrete intended position estimate into a smooth path that
takes obstacles such as the stairs in Fig. 10(a) or other persons (if
present) into account. Themismatch between the real path and the

predicted path towards the right location in Fig. 10(b) is mainly
caused by the parameters in the social forces model; not much
effort was put into finding optimal parameters. Future work could
include learning the parameters from the data.

The prediction shown in Fig. 10(c) is correct using both the
proposed method and the method proposed in [3]. Fig. 10(d)
shows a typical scenario in which both the proposed and the
benchmark method fail. The requested trajectory from the lower
right to the light gray tiles on the upper left corner is not included
in the set of learnt trajectories by the time this prediction is
performed. As a result, the GHMMprovides an incorrect estimation
of the intended position with a high probability. Although a high
probability for an incorrect intended position clearly is not desired,
it is inevitable in the case of learning from data that is incomplete.
The bright side of using GHMMs is that the recursive refinement of
the model is facilitated, hence after observing the full trajectory,
the observation sequence can be added to the model thereby
improving the accuracy of future predictions. Section 6.3 already
showed that the benchmark strategy leads to a relatively large
number of failures compared to the proposed strategy.

The second part of the analysis in this section investigates the
consistency of predicted paths over time. Fig. 11 shows the pre-
dicted path for trajectory 201 after receiving four, five, six and
fourteen measurements of the same path. Initially, the GHMM has
three candidate intended positions that all have similar probabili-
ties. The proposed prediction method favors the wrong one and as
a result, the estimated path is incorrect. After receiving one more
measurement, the belief state of the GHMM is updated, as shown
in Fig. 11(b), and as a result the most probable intended posi-
tion matches the actual intention of the person. After six measure-
ments, the ambiguity is largely resolved and again the predicted
path leads to the correct goal. From then on, the path stays more
or less the same, as can be seen in Fig. 11(d). In the same sequence
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a b

c d

e f

Fig. 12. Predictions inmultiple persons scenarios. Each color represents a different person. The crosses representmeasurements, the solid lines predicted paths, the numbers

the probabilities associated with the estimated intended state and the stars the actual intended positions (ground truth).

of figures, the dashed yellow lines show the predicted path using

the benchmark strategy. The collection of predicted paths shows

a much larger variation. If a robot, e.g., during a navigation task,

wants to make sure humans do not have to deviate from their path

it is forced to replan its own path each time the predicted path

changes hence these variations are highly undesirable.

6.5. Multiple person scenarios

This section presents representative results for multiple person

scenarios. In order to keep the figures readable, the benchmark

strategy is left out of this part of the analysis. Fig. 12 shows

some typical examples showing a subset of the 785 predicted

trajectories. Each color represents a person, the crosses represent

measurements, the stars the ground truth, the solid lines predicted

paths and the numbers the probabilities associated with the most

probable estimation of the intended state.

Initially, there is one person in the field of view, as shown

in Fig. 12(a). The estimated intended position is correct and the

path is rather straight forward. A few time steps later, three other

persons have entered the field of view, as shown in Fig. 12(b).

By this time, the first person (blue line) is getting closer to its

intended position. The red line represents the predicted path of the

second person. Again the intended position is correct and the path

is rather straight forward. The third (green line) and fourth (cyan

line) person entered short after each other and as a result, repelling

forces are taken into account during the prediction. The distance

of these persons to the second person (red line) is sufficient to

prevent significant interaction forces. Fig. 12(c) shows the scene

a little later. Now the intended positions are all known with a

high probability and the paths are similar to the ones predicted
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before. Again, persons three and four keep some distance before
converging to the same intended position. In Fig. 12(d) various
things can be noticed. First of all, the second person (red line) left
the scene. Besides this, a fifth (magenta line) and sixth (black line)
person have entered. The predicted paths of these persons almost
overlap, however, the associated times are different. If these times
would have differed less, the social forces would have enforced a
larger spatial difference. The third and fourth persons are still on
their waywhile keeping some relative distance andmeasurements
of the first person keep appearing very close to its estimated
goal position. Only moments later, Fig. 12(e) shows how the first
person left the scene, leaving persons three, four, five and six
behind. The probability of the estimated goal position for person
six (black line) increased from 0.54 to 0.71 and the predicted path
first moves away from the path of person five (magenta) and
then goes in a straight line to the expected goal position. This
sequence of figures shows how the proposed strategy works in a
scenario with many humans sharing the same environment. It in
addition shows the role of the estimated and intended velocities.
These velocities determine when a person arrives where and this
directly affects the social interaction forces with other persons.
Throughout this work, the intended velocity is assumed constant
for all persons. Based on the analyses performed throughout this
work, this assumption appears reasonable, however, it will not be
necessarily true in general. Better estimates could be used instead,
as mentioned in Section 5.

Fig. 12(f) shows a last typical scenario with five different
persons. The person associated with the red linemoves around the
stairs towards its intended position. The green, cyan and black lines
represent persons moving towards the same position but arriving
at different times. Finally, the magenta line represents a person
moving to the upper right corner while keeping some distance
from the other persons.

These multiple person scenarios only show a few of the 785
predicted paths, however, together with the scenarios presented
earlier these are considered to be representative of the full set.

7. Conclusions

This work has shown how a two step approach can be used
for human motion prediction. By learning a growing hidden
Markov model (GHMM) from data, the intended position of a
person can be estimated from a discrete number of possible
goals in a known environment. The algorithm used for learning
the GHMM is tailored for the goal estimation and only requires
a few milliseconds per observation. In order to be able to do
predictions without requiring a discretization of the world and
while taken temporary object interactions into account, theGHMM
is combined with a motion model that is based on the concept
of social forces. Compared to the standard social forces motion
model with linear extrapolation, the prediction accuracy increased
significantly as was shown while predicting the paths of 785
humans. In addition, the oscillations that appear in the predicted
paths using the benchmark strategy are drastically reduced when
using the proposed strategy.

Future work will focus on incorporating semantics into the
prediction framework. Rather than defining intended positions
as coordinates in Cartesian space, intended positions can be
defined relative to objects, e.g., person X is moving towards the
table. This will allow for re-using the learnt motion patterns
in environments that differ from the learnt scene. Furthermore
it increases robustness to movements of the objects associated
with the goal positions. In addition, the possibility to learn the
parameters needed in the social forces based motion model
from the data used to train the GHMM can be investigated and
the proposed motion models can be incorporated in a robot

path planning module. For the integration in a robot navigation
module, [25] seems a useful starting point. Finally, relaxing the
assumption of a person independent constant intended velocity
could further improve the accuracy of the predictions.
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