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Learning Internal Representations

by Error Propagation

DAVID E. RUMELHART, GEOFFREY E. HINTON, and RONALD J. WILLIAMS

THE PROBLEM

We now have a rather good understanding of simple two-layer associative networks in which

a set of input patterns arriving at an input layer are mapped directly to a set of output patterns

at an output layer. Such networks have no hidden units. They involve only input and owput

units. In these cases there is no internal represenatmon. The coding provided by the external

world must suffice. These networks have proved useful in a wide variety of applications (cf.

Chapters 2, 17, and 18). Perhaps the essential character of such networks is that they map simi-

lar input patterns to similar output patterns. This is what allows these networks to make rea-

sonable generalizations and perform reasonably on patterns that have never before been

presented. The similarity of patterns in a PDP system is determined by their overlap. The

overlap in such networks is determined outside the learning system itself-by whatever pro-

duces the patterns.
The constraint that similar input patterns lead to similar outputs can lead to an inability of

the system to learn certain mappings from input to output. Whenever the representation pro-

vided by the outside world is such that the similarity structure of the input and output pat-

tcrns are very different, a network without internal representations (i.e., a network without

hidden units) will be unable to perform the necessary mappings. A classic example of this case

is the exclusive-or (XOR) problem illustrated in Table 1. Here we see that those patterns

which overlap least arc supposed to generate identical output values. This problem and many

others like it cannot be performed by networks without hidden units with which to create

TABLE I

Input Patterns Output oPatterns

01 -0
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TABLE 2

Input Patterns Output Patterns

00 0
010 1.

11 - 0

their own internal representations of the input patterns. It is interesting to note that had the

input patterns contained a third input taking the value 1 whenever the first two have value 1 as
shown in Table 2, a two-layer system would be able to solve the problem.

Minsky and Papert (1969) have provided a very careful analysis of conditions under which
such systems are capable of carrying out the required mappings. They show that in a large

number of interesting cases, networks of this kind are incapable of solving the problems. On
the other hand, as Minsky and Papert also pointed out, if there is a layer of simple perceptron-

like hidden units, as shown in Figure 1, with which the original input pattern can be aug-
mented, there is always a recoding (i.e., an internal representation) of the input patterns in the

hidden units in which the similarity of the patterns among the hidden units can support any
required mapping from the input to the output units. Thus, if we have the right connections
from the input units to a large enough set of hidden units, we can always find a representation

Output Patterns

Internal
O" *Representation

Units

Input Patterns

FIGURE 1. A multilayer network. In this case the information coming to the input units is receded into an inter-
nal representation and the outputs are generated by the internal representation rather than by the original pattern.

Input patterns can always be encoded, if there are enough hidden units, in a form so that the appropriate output pat-

tern can be generated from any input pattern.

6 M



LEARNING miNLRNAL REPRE ENTATIONS 3

that will perform any mapping from input to output through these hidden units. In the case

of the XOR problem, the addition of a feature that detects the conjunction of the input units
changes the similarity structure of the patterns sufficiently to allow the solution to be learned.

As illustrated in Figure 2, this can be done with a single hidden unit. The numbers on the
arrows represent the strengths of the connections among the units. The numbers written in
the circles represent the thresholds of the units. The value of +1.5 for the threshold of the
hidden unit insures that it will be turned on only when both input units are on. The value 0.5
for the output unit insures that it will turn on only when it receives a net positive input
greater than 0.5. The weight of -2 from the hidden uait to the output unit insures that the
output unit will not come on when both input units arc on. Note that from the point of view
of the output unit, the hidden unit is treated as simply another input unit. It is as if the input

patterns consisted of three rather than two units.
The existence of networks such as this illustrates the potential power of hidden units and

internal representations. The problem, as noted by Minsky and Papert, is that whereas there is
a very simple guaranteed learning rule for all problems that can be solved without hidden units,
namely, the perceptron convergence procedure (or the variation due originally to Widrow and
Hoff, 1960, which we call the delta rule; see Chapter 11), there is no equally powerful rule for
learning in networks with hidden units. There have been three basic responses to this lack.
One response is represented by competitive learning (Chapter 5) in which simple unsupervised
learning rules are employed so that useful hidden units develop. Although these approaches are
promising, there is no external force to insure that hidden units appropriate for the required
mapping are developed. The second response is to simply asswne an internal representation
that, on some a priori grounds, seems reasonable. This is the tack taken in the chapter on verb
learning (Chapter 18) and in theinteractive activation model of word perception (McClelland
& Rumelhart, 1981; Rumelhart & McClelland, 1982). The third approach is to attempt to
develop a learning procedure capable of learning an internal representation adequate for per-
forming the task at hand. One such development is presented in the discussion of Boltzmann
machines in Chapter 7. As we have seen, this procedure involves the use of stochastic units,
requires the network to reach equilibrium in two different phases, and is limited to symmetric
networks. Another recent approach, also employing stochastic units, has been developed by
Barto (1985) and various of his colleagues (cf. Barto & Anandan, 1985). In this chapter we

.5 Output Unit

+1 -21 +1

Hidden Unit

S +1 +1

Input Units

FIGURE 2. A simple XOR network with one hidden unit. See text for explanation.

d '% .. - P I .



4 RUMELHAxr, HmroN, and WILLIAMS

present another alternative that works with deterministic units, that involves only local compu-
tations, and that is a clear generalization of the delta rule. We call this the generalized delta

rule. From other considerations, Parker (1985) has independently derived a similar generaliza-
tion, which he calls learning-logic. Le Cun (1985) has also studied a roughly similar learning

scheme. In the remainder of this chapter we first derive the generalized delta rule, then we

illustrate its use by providing some results of our simulations, and finally we indicate some
further generalizations of the basic idea.

THE GENERALIZED DELTA RULE

The learning pro cedure we propose involves the presentation of a set of pairs of input and
output patterns. The system first uses the input vector to produce its own output vector and

then compares this with the desired output, or target vector. If there is no difference, no learn-
ing takes place. Otherwise the weights are changed to reduce the difference. In this case, with

no hidden units, this generates the standard delta rule as described in Chapters 2 and 11. The
rule for changing weights following presentation of input/output pair p is given by

AP-J, = *I(tpj - Op,) ip, = napjipt (1)

*- where tj is the target input for jth component of the output pattern for pattern p, o, is the
jth element of the actual output pattern produced by the presentation of input pattern p, ipi
is the value of the ith element of the input pattern 8,j = tj - opj, and Awj, is the change to

be made to the weight from the i th to the j th unit following presentation of pattern p.

The delta rule and gradient descent. There are many ways of deriving this rule. For

present purposes, it is useful to see that for linear units it minimizes the squares of the
differences between the actual and the desired output values summed over the output units
and all pairs of input/output vectors. One way to show this is to show that the derivative of
the error measure with respect to each weight is proportional to the weight change dictated by

the delta rule, with negative constant of proportionality. This corresponds to performing

steepest descent on a surface in weight space whose height at any point in weight space is equal
to the error measure. (Note that some of the following sections are written in italics. These
sections constitute informal derivations of the claims made in the surrounding text and can be
omitted by the reader who finds such derivations tedious.)

To be more specific, then, let

E 1 , t-opj ) (2)

be our measure of the error on input/output pa. err p and let E = bEp be our overall measure of the

error. We wish to show that the delta rule implements a gradient descent in E when the units are linear. We

will proceed by simply showing that

a• .. . 8pjipi,

* which is proportional to A. w,, as prescribed by the delta rule. When there are no hidden units it is straight-

forward to compute the relevant derivative. For this purpose we use the chain rule to write the derivative as

the product of two parts. the derivative of the error with respect to the output of the unit times the derivative

:(k L 1
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of the outpit with respect to the weight.

BEp = 2E, Bop (3)

1Rwj CIopj awj,

The first part tells how the error changes with the output of the jth unit and the second part tells how much

changing wj1 changes that outWt. Now, the derivatives are easy to compute. First,from Equation 2

. (t - o,)- 8 (4)
aopj

Not surprisingly, the contribution of unit uj to the error is simply proportional to &. Moreover. sinLe we

have linear units.

from which we conclude that

Thus, substituting back into Equation 3. we see that

* BEp (6)

Bw

as desired. Now, combining this with the observation that

' BE BE,

should lead us to conclude that the net change in wj, after one complete cycle of pattern presentations is pro-

portional to this derivative and hence that the delta rule implements a gradient descent in E. In fact, this is
strictly true only if the values of the weights are not changed during this cycle. By changing the weights after
each pattern is presented we depart to some extent from a true gradient descent in E. Nevertheless, pro-
vided the learning rate (i.e.. the constant of proportionality) is safficiently small, this departure will be negli-
gible and the delta rule will implement a very close approximation to gradient descent in sum-squared error.

In particular, with small enough learning rate. the delta ride will find a set of weights minimizing this error
function.

The delta rule for semilinear activation functions in feedforward networks. We have

shown how the standard delta rule essentially implements gradient descent in sum-squared

error for linear activation functions. In this case, without hidden units, the error surface is

shaped like a bowl with only one minimum, so gradient descent is guaranteed to find the best

set of weights. With hidden units, however, it is not so obvious how to compute the deriva-

tives, and the error surface is not concave upwards, so there is the danger of getting stuck in

local minima. The main theoretical contribution of this chapter is to show that there is an

efficient way of computing the derivatives. The main empirical contribution is to show that

the apparently fatal problem of local minima is irrelevant in a wide variety of learning tasks.

At the end of the chapter we show how the generalized delta rule can be applied to arbitrary

networks, but, to begin with, we confine ourselves to layered feedforward networks. In these

networks, the input units are the bottom layer and the output units are the top layer. There

can be many layers of hidden units in between, but every unit must send its output to higher

layers than its own and must receive its input from lower layers than its own. Given an input

vector, the output vector is computed by a forward pass which computes the activity levels of

each layer in turn using the already computed activity levels in the earlier layers.

Since we are primarily interested in extending this result to the case with hidden units and

since, for reasons outlined in Chapter 2, hidden units with linear activation functions provide
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no advantage, we begin by generalizing our analysis to the set of nonlinear activation functions

which wz call semilinear (see Chapter 2). A semilinear activation function is one in which the
output of a unit is a differentiable function of the net total input,

,etpj = wjto,,, (7)

where oj = it if unit i is an input unit. Thus, a semilinear activation function is one in which

o, j = f j (net,,) (8)

and f is differentiable. The generalized delta rule works if the network consists of units hav-

ing semilinear activation functions. Notice that linear threshold units do not satisfy the
,' requirement because their derivative is infinite at the threshold and zero elsewhere.

To get the correct generalization of the delta rule, we must set

A, wo,, - "-_
aw1,

where E is the same sum-squared error function defined earlier. As in the standard delta rule it is again

useful to see this derivative as resulting from the product of two parts: one part reflecting the change in

error as a function of the change in the net input to the unit and one part representing the effect of changing

* a particular weight on the net input. Thus we can write

aOE' 8 E, 8 netp (9)

a 8Wj 8 netj 8w,

By Equation 7 we see that the second factor is

anet~j 1 (10)
= - = Op,.

Now let us define

aEP

bpi anetp,

(By comparing this to Equation 4. note that this is consistent with the definition of 8p used in the original

delta rule for linear units since Oj = netj when unit Uj is linear.) Equation 9 thus has the equivalent form
8E P p iO P

This says that to implement gradient descent in E we should make our weight changes according to

just as in the standard delta rule. The trick is to figure out what 8P, should be for each unit ua in the net-

work. The interesting result, which we now derive, is that there is a simple recursive computation of these 8's

which can be implemented bZ propagating error signals backward through the network.

To compute 8, , we apply the chain rule to write this partial derivative as the product of two2";a netvj

factors, one factor reflecting the change in error as a function of the output of the unit and one reflecting the

* N
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change in the output as a function of changes in the input. Thus, we have

8Ep = 8Ep Bop (12)

Bne,, )op0 anefpj

Let us compute the second factor. By Equation 8 we see that

a 
_One~p =f "1(netpl )"

which is simply the derivative of the squashing function f j for the j th unit, evaluated at the net input netp to
that unit. To compute the first factor, we consider two cases. First, assume that unit uj is an output unit of

the network. In this case, it follows from the definition of Ep that

±_P (t -

which is the same result as we obtained with the standard delta rule. Substituting for the two factors in Equa-

tion 12. we get

5,, = (t,, - opj )f 'j (ne t, (3

for any output unit Uj. If Uj is not an output unit we use the chain rule to write

* P An, ._ BE, I- I 111Wkj ~8,,&WIk1
c.ntp f'ap kc1netk 80,1 k C1ne PA k

In this case, substituting for the two factors in Equation 12 yields

whenever u1 is not an output unit. Equations 13 and 14 give a recursive procedure for computing the 8's for

all units in the network, which are then used to compute the weight changes in the network according to Equa-

tion 11. This procedure constitutes the generalized delta rule for a feedforward network of semilinear units.

These results can be summarized in three equations. First, the generalized delta rule has

exactly the same form as the standard delta rule of Equation 1. The weight on each line

should be changed by an amount proportional to the product of an error signal, 8, available to
the unit receiving input along that line and the output of the unit sending activation along

that line. In symbols,

Ap wj = 1OpjOpt.

The other two equations specify the error signal. Essentially, the determination of the error

signal is a recursive process which starts with the output units. If a unit is an output unit, its

error signal is very similar to the standard delta rule. It is given by

'.'."" 8p, = (toj - op/)f " (net,,)

where f "j(netij) is the derivative of the semilinear activation function which maps the total

* input to the unit to an output value. Finally, the error signal for hidden units for which there

is no specified target is determined recursively in terms of the error signals of the units to

i%A, . "'s% .-, .' .- ' ... " . , . ,' . , ' . : . , ' , , .. ."", , % ", , ., , ..' ' , . -, . ' ',, , " ,. , ,, - , , , #" ,,
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which it directly connects and the weights of those connections. That is,
bj, =f "j (nej),) w Wkj

k

whenever the unit is not an output unit.
The application of the generalized delta rule, thus, involves two phases: During the first

phase the input is presented and propagated forward through the network to compute the out-
put value oj for each unit. This output is then compared with the targets, resulting in an
error signal 6,j for each output unit. The second phase involves a backward pass through the
network (analogous to the initial forward pass) during which the error signal is passed to each
unit in the network and the appropriate weight changes are made. This second, backward pass
allows the recursive computation of 8 as indicated above. The first step is to compute 8 for
each of the output units. This is simply the difference between the actual and desired output
values times the derivative of the squashing function. We can then compute weight changes
for all connections that feed into the final layer. After this is done, then compute a's for all
units in the penultimate layer. This propagates the errors back one layer, and the same process
can be repeated for every layer. The backward pass has the same computational complexity as
the forward pass, and so it is not unduly expensive.

We have now generated a gradient descent method for finding weights in any feedforward
network with semilinear units. Before reporting our results with these networks, it is useful to
note some further observations. It is interesting that not all weights need be variable. Any
number of weights in the network can be fixed. In this case, error is still propagated as before;
the fixed weights are simply not modified. It should also be noted that there is no reason why
some output units might not receive inputs from other output units in earlier layers. In this
case, those units receive two different kinds of error: that from the direct comparison with the
target and that passed through the other output units whose activation it affects. In this case,
the correct procedure is to simply add the weight changes dictated by the direct comparison to
that propagated back from the other output units.

SIMULATION RESULTS

We now have a learning procedure which could, in principle, evolve a set of weights to pro-
duce an arbitrary mapping from input to output. However, the procedure we have produced is
a gradient descent procedure and, as such, is bound by all of the problems of any hill climbing
procedure--namcly, the problem of local maxima or (in our case) minima. Moreover, there is a
question of how long it might take a system to learn. Even if we could guarantee that it
would eventually find a solution, there is the question of whether our procedure could learn in
a reasonable period of time. It is interesting to ask what hidden units the system actually
develops in the solution of particular problems. This is the question of what kinds of internal
representations the system actually creates. We do not yet have definitive answers to these
questions. However, we have carried out many simulations which lead us to be optimistic
about the local minima and time questions and to be surprised by the kinds of representations
our learning mechanism discovers. Before proceeding with our results, we must describe our

- simulation system in more detail. In particular, we must specify an activation function and
show how the system can compute the derivative of this function.

A useful activation function. In our above derivations the derivative of the activation func-
tion of unit u, f "J(netj), always played a role. This implies that we need an activation func-
tion for which a derivative exists. It is interesting to note that the linear threshold function,

on which the perceptron is based, is discontinuous and hence will not suffice for the general-
ized delta rule. Similarly, since a linear system achieves no advantage from hidden units, a

ono



LIEARMW;~ i0flhINAL REMISLFGA11ONS '

linear activation function will not suffice either. Thus, we need a continuous, nonlinear activa-

tion function. In most of our experiments we have used the logistic activation function in

which

1 (15)
o = - ( °,

1+e

where Oj is a bias similar in function to a threshold. I In order to apply our learning rule, we

need to know the derivative of this function with respect to its total input, Mtj, where

netpj = Ywjjoj + Oj. It is easy to show that this derivative is given by

¢= o,,(I - opj).

Thus, for the logistic activation function, the error signal, 8,j, for an output unit is given by

_aj = (tpj - os)o,,(I - opj).

and the error for an arbitrary hidden Nj is given by

-= opj)( - Wkj

It should be noted that the derivative, opj(1 - oj), reaches its maximum for opj = 0.5 and,

since 0,, o,, 1, approaches its minimum as opj approaches zero or one. Since the amount of

change in a given weight is proportional to this derivative, weights will be changed most for

those units that are near their midrange and, in some sense, not yet committed to being either

on or off. This feature, we believe, contributes to the stability of the learning of the system.

One other feature of this activation function should be noted. The system can not actually

reach its extreme values of 1 or 0 without infinitely large weights. Therefore, in a practical

learning situation in which the desired outputs are binary {0,1), the system can never actually
achieve these values. Therefore, we typically use the values of 0.1 and 0.9 as the targets, even
though we will talk as if values of (0,1) are sought.

The learndng rate. Our learning procedure requires only that the change in weight be pro-

portional to E,/aw. True gradient descent requires that infinitesimal steps be taken. The

constant of proportionality is the learning rate in our procedure. The larger this constant, the

larger the changes in the weights. For practical purposes we choose a learning rate that is as
large as possible without leading to oscillation. This offers the most rapid learning. One way

to increase the learning rate without leading to oscillation is to modify the generalized delta

rule to include a momentum term. This can be accomplished by the following rule:

Aw1,(n+1) = qb(pjo,,) + aAwjj(n) (16)

where the subscript n indexes the presentation number, q) is the learning rate, and a is a con-

stant which determines the effect of past weight changes on the current direction of movement

in weight space. This provides a kind of momentum in weight space that effectively filters out

high-frequency variations of the error-surface in the weight space. This is useful in spaces con-

taining long ravines that are characterized by sharp curvature across the ravine and a gently

sloping floor. The sharp curvature tends to cause divergent oscillations across the ravine. To

prevent these it is necessary to take very small steps, but this causes very slow progress along

the ravine. The momentum filters out the high curvature and thus allows the effective weight

Note that the values of the bias. 0,, ca be learned just like any other weights. We simply imagine that 9, is the

weight from a unit that is always on
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steps to be bigger. In most of our simulations a was about 0.9. Our experience has been that
we get the same solutions by setting a = 0 and reducing the size of -q, but the system learns

much faster overall with larger values of a and -q.

Symmetry breaking. Our learning procedure has one more problem that can be readily
overcome and this is the problem of symmetry breaking. If all weights start out with equal
values and if the solution requires that unequal weights be developed, the system can never

learn. This is because error is propagated back through the weights in proportion to the values
of the weights. This means that all hidden units connected directly to the output inputs will
get identical error signals, and, since the weight changes depend on the error signals, the

weights from those units to the output units must always be the same. The system is starting
out at a kind of local maximum, which keeps the weights equal, but it is a maximum of the
error function, so once it escapes it will never return. We counteract this problem by starting

the system with small random weights. Under these conditions symmetry problems of this kind

do not arise.

The XOR Problem

It is useful to begin with the exclusive-or problem since it is the classic problem requiring
hidden units and since many other difficult problems involve an XOR as a subproblem. We

* have run the XOR problem many times and with a couple of exceptions discussed below, the
system has always solved the problem. Figure 3 shows one of the solutions to the problem.

6.3 Output Unit

-4.2 / V42

/ -9.41
/ A Hidden Unit

/\
. .2

-6.4 -6.4

Input Units

FIGURE 3. Observed XOR network. The connection weights are written on the arrows and the biases are written
in the circles. Note a postive bias means that the unit is on unless turned off.
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Iis solution was reached after 558 sweeps through the four stimulus patterns with a learning

rate of Yj = 0.5. In this case, both the hidden unit and the output unit have positive biases so

they are on unless turned off. The hidden unit turns on if neither input unit is on. When it is

on, it turns off the output unit. The connections from input to output units arranged them-

selves so that they turn off the output unit whenever both inputs are on. In this case, the net-

work has settled to a solution which is a sort of mirror image of the one illustrated in Figure 2.

We have taught the system to solve the XOR problem hundreds of times. Sometimes we

have used a single hidden unit and direct connections to the output unit as illustrated here,

and other times we have allowed two hidden units and set the connections from the input

units to the outputs to be zero, as shown in Figure 4. In only two cases has the system

encountered a local minimum and thus been unable to solve the problem. Both cases involved

the two hidden units version of the problem and both ended up in the same local minimum.

Figure 5 shows the weights for the local minimum. In this case, the system correctly responds

to two of the patterns-namely, the patterns 00 and 10. In the cases of the other two patterns

11 and 01, the output unit gets a net input of zero. This leads to an output value of 0.5 for

both of these patterns. This state was reached after 6,587 presentations of each pattern with
q=0.25.2 Although many problems require more presentations for learning to occur, further tri-
als on this problem merely increase the magnitude of the weights but do not lead to any

improvement in performance. We do not know the frequency of such local minima, but our

experience with this and other problems is that they are quite rare. We have found only one
other situation in which a local minimum has occurred in many hundreds of problems of vari-

ous sorts. We will discuss this case below.

The XOR problem has proved a useful test case for a number of other studies. Using the
architecture illustrated in Figure 4, a student in our laboratory, Yves Chauvin, has studied the

effect of varying the number of hidden units and varying the learning rate on time to solve the

problem. Using as a learning criterion an error of 0.01 per pattern, Yves found that the average

FIGURE 4. A simple architecture for solving XOR with two hidden units and no direct connections from input to

output.

2 if we set vi 0.5 or above, the system escapes this minimum. In general, however, the best way to avoid local

minima is probably to use very small values of I1.

&XI.
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4

---. 8

-4.5 5.3

/

2.0 -.1

-2.0 8

1 4.3 9.2

FIGURE 5. A network at a local minimum for the exclusive-or problem. The dated lines indicate negative weights.
Note that whenever the right-most input unit is on it turns on both bidden units. The weights connecting the bidden

units to the output are arranged so that when both hidden units are on. the output unit gets a net input of zero.

This leads to an output value of 0.5. In the other cases the network provides the correct answer.

number of presentations to solve the problem with -q = 0.25 varied from about 245 for the case
with two hidden units to about 12D presentations for 32 hidden units. The results can be sum-
marized by P = 280 - 331og 2H, where P is the required number of presentations and H is the
number of hidden units employed. Thus, the time to solve XOR is reduced linearly with the
logarithm of the number of hidden units. This result holds for values of H up to about 40 in
the case of XOR. The general result that the time to solution is reduced by increasing the
number of bidden units has been observed in virtually all of our simulations. Yves also studied
the time to solution as a function of learning rate for the case of eight hidden units. He found
an average of about 450 presentations with il = 0.1 to about 68 presentations with 71 = 0.75.
He also found that learning rates larger than this led to unstable behavior. However, within
this range larger learning rates speeded the learning substantially. In most of our problems we
have employed learning rates of -q = 0.25 or smaller and have had no difficulty.

Parity

One of the problems given a good deal of discussion by Minsky and Papert (1969) is the par-
ity problem, in which the output required is 1 if the input pattern contains an odd number of
Is and 0 otherwise. This is a very difficult problem because the most similar patterns (those
which differ by a single bit) require different answers. The XOR problem is a parity problem
with input patterns of size two. We have tried a number of parity problems with patterns

ranging from size two to eight. Generally we have employed layered networks in which direct
*. connections from the input to the output units are not allowed, but must be mediated

through a set of hidden units. In this architecture, it requires at least N hidden units to solve
parity with patterns of length N. Figure 6 illustrates the basic paradigm for the solutions

%P
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-.5 . .5 -. 5 .-

FIGURE 6. A paradigm for the solutions to the parity problem discovered by the tearming system. See tent for cz-
planation.

discovered by the system. The solid lines in the figure indicate weights of +1 and the dotted
lines indicate weights of -1. Ile numbers in the circles represent the biases of the units. Basi-

~cally, the hidden units arranged themselves so that they count the number of inputs. In the

diagram, the one at the far left comes on if one or more input units are on, the next comes on
if two or more are on, etc. All of the hidden units come on if all of the input lines arc on.
Ile first m hidden units come on whenever nt bits are on in the input pattern. Ile hidden
units then connect with alternately positive an~d negative weights. In this way the net input
from the hidden units is zero for even numbers and +1 for odd numbers. Table 3 shows the
actual solution attained for one of our simulations with four input lines and four hidden
units. This solution was reached after 2,825 preentations of each of the sixteen patterns with
q= 0.5. Note that the solution is roughly a mirror image of that shown in Figure 6 in that
the number of hidden units turned on is equal to the number of zero input values rather than
the number of ones. Beyond that the principle is that shown above. It should be noted that
the internal representation created by the learning rule is to arrange that the number of hidden
units that come on is equal to the number of zeros in the input and that the particular hidden

~units that come on depend only on the number, not on which input units are on. This is

exactly the sort of recoding required by parity. It is not the kind of representation readily
discovered by unsupervised tearming schemes such as competitive learning.

TABLE 3

Input Units Patterns Value

0 0

1 1011 1

2 -. 1010 0
3 OD010 1

4 .. 0000 -. 0
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log 2 Hidden Units

) • a •N Input Units

FIGURE 7. A network for solving the encoder problem. In this problem there axe N orthogonal input patterns each

paired with one of N orthogonal output patterns. There are only IogN"2 hidden units. Thus. if the hidden units take

on binary values, the hidden units must form a binary number to encode each of the input patterns. This is exactly

what the system learns to do.

The Encoding Problem

Ackley, Hinton, and Sejnowski (1985) have posed a problem in which a set of orthogonal
input patterns are mapped to a set of orthogonal output patterns through a small set of hidden
units. In such cases the internal representations of the patterns on the hidden units must be
rather efficient. Suppose that we attempt to map N input patterns onto N output patterns.
Suppose further that log2N hidden units are provided. In this case, we expect that the system

will learn to use the hidden units to form a binary code with a distinct binary pattern for each

of the N input patterns. Figure 7 illustrates the basic architecture for the encoder problem.
Essentially, the problem is to learn an encoding of an N bit pattern into a log9N bit pattern
and then learn to decode this representation into the output pattern. We have presented the
system with a number of these problems. Here we present a problem with eight input pat-
terns, eight output patterns, and three hidden units. In this case the required mapping is the
identity mapping illustrated in Table 4. The problem is simply to turn on the same bit in the
output as in the input. Table 5 shows the mapping generated by our learning system on this
example. It is of some interest that the system employed its ability to use intermediate values
in solving this problem. It could, of course, have found a solution in which the hidden units

TABLE 4

Input Patterns Output Patterns

Q-"m

01O000O0 - 020000

00100000 O0100000

o00000 - 00010000

00001000 - 0000100
0000D100 - O00010

O0O010 - 00000010

000001 - 00000001
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TABLE S

Input Hidden Unit Output
Patterns Patterns Patterns

1O0000"0 - .5 0 0 10000000
01000W0 - 0 1 0 - 01000000
0010000 - I 1 0 - 001000

00010000 - I I 1 00010000
0ooloo0 0 1 1 - ooo10oo

00000100 - .5 0 1 - 00000100

O00000 - 1 0 .S -. 00000010

00000001 - 0 0 .5 00000001

took on only the values of zero and one. Often it does just that, but in this instance, and
many others, there are solutions that use the intermediate values, and the learning system finds
them even though it has a bias toward extreme values. It is possible to set up problems that
require the system to make use of intermediate values in order to solve a problem. We now
turn to such a case.

Table 6 shows a very simple problem in which we have to convert from a distributed represen-
tation over two units into a local representation over four units. The similarity structure of the
distributed input patterns is simply not preserved in the local output representation.

We presented this problem to our learning system with a number of constraints which made
it especially difficult. The two input units were only allowed to connect to a single hidden
unit which, in turn, was allowed to connect to four more hidden units. Only these four hidden
units were allowed to connect to the four output units. To solve this problem, then, the sys-
tem must first convert the distributed representation of the input patterns into various inter-
mediate values of the singleton hidden unit in which different activation values correspond to
the different input patterns. These continuous values must then be converted back through
the next layer of hidden units-first to another distributed representation and then, finally, to
a local representation. This problem was presented to the system and it reached a solution
after 5,226 presentations with -n = 0.05. 3 Table 7 shows the sequence of representations the

TABLE 6

Input Patterns Output Patterns

00 1000
01 - 0100

10 OD010

11 0001

TABLE 7

Input Singietoo Remaining Output
Patterns Hidden Unit Hidden Units Patterns

10 0 1 1 1 0 - 0010

11 - .2 - 1 00 0001
00 .6 - .5 0 0 .3- 1000
01 1 0 0 0 1-. 0100

3 Relatively small learning rates make units employing intermediate values easier to obtain.
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system actually developed in order to transform the patterns and solve the problem. Note each
of the four input patterns was mapped onto a particular activation value of the singleton hid-

den unit. These values were then mapped onto distributed patterns at the next layer of hidden
units which were finally mapped into the required local representation at the output level. In
principle, this trick of mapping patterns into activation values and then converting those

activation values back into patterns could be done for any number of patterns, but it becomes

increasingly difficult for the system to make the necessary distinctions as ever smaller
differences among activation values must be distinguished. Figure 8 shows the network the sys-

tem developed to do this job. The connection weights from the hidden units to the output
units have been suppressed for clarity. (The sign of the connection, however, is indicated by

the form of the connection-e.g., dashed lines mean inhibitory connections). The four

different activation values were generated by having relatively large weights of opposite sign.

One input line turns the hidden unit full on, one turns it full off. The two differ by a rela-
tively small amount so that when both turn on, the unit attains a value intermediate between 0
and 0.5. When neither turns on, the near zero bias causes the unit to attain a value slightly

over 0.5. The connections to the second layer of hidden units is likewise interesting. When
the hidden unit is full on, the right-most of these hidden units is turned on and all others

turned off. When the hidden unit is turned off, the other three of these hidden units are on
and the left-most unit off. The other connections from the singleton hidden unit to the other

hidden units are graded so that a distinct pattern is turned on for its other two values. Here
we have an example of the flexibility of the learning system.

Our experience is that there is a propensity for the hidden units to take on extreme values,

but, whenever the learning problem calls for it, they can learn to take on graded values. It is

likely that the propensity to take on extreme values follows from the fact that the logistic is a
sigmoid so that increasing magnitudes of its inputs push it toward zero or one. This means
that in a problem in which intermediate values are required, the incoming weights must remain

of moderate size. It is interesting that the derivation of the generalized delta rule does not
depend on all of the units having identical activation functions. Thus, it would be possible for

some units, those required to encode information in a graded fashion, to be linear while others
might be logistic. The linear unit would have a much wider dynamic range and could encode

more different values. This would be a useful role for a linear unit in a network with hidden

units.

Output
+3 4Units

Ile , \

+2 +2 + . Hidden
Units

~ ~ 6 +9

-/ +4

Ax Input

Units

FIGURE 3. 11c network illustrating the use of intermediate values in solving a problem. See text for explanation.
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Symmetry

Another interesting problem we studied is that of classifying input strings as to whether or
not they are symmetric about their center. We used patterns of various lengths with various
numbers of hidden units. To our surprise, we discovered that the problem can always be
solved with only two hidden units. To understand the derived representation, consider one of
the solutions generated by our system for strings of length six. This solution was arrived at
after 1,208 presentations of each six-bit pattern with -q = 0.1. The final network is shown in
Figure 9. For simplicity we have shown the six input units in the center of the diagram with
one hidden unit above and one below. The output unit, which signals whether or not the
string is symmetric about its center, is shown at the far right. The key point to see about this
solution is that for a given hidden unit, weights that are symmetric about the middle are equal
in magnitude and opposite in sign. That means that if a symmetric pattern is on, both hidden
units will receive a net input of zero from the input units, and, since the hidden units have a
negative bias, both will be off. In this case, the output unit, having a positive bias, will be on.
The next most important thing to note about the solution is that the weights on each side of
the midpoint of the string are in the ratio of 1:2.4. This insures that each of the eight patterns
that can occur on each side of the midpoint sends a unique activation sum to the hidden unit.
This assures that there is no pattern on the left that will exactly balance a non-mirror-image
pattern on the right. Finally, the two hidden units have identical patterns of weights from the
input units except for sign. This insures that for every nonsymmetric pattern, at least one of
the two hidden units will come on and turn on the output unit. To summarize, the network is
arranged so that both hidden units will receive exactly zero activation from the input units
when the pattern is symmetric, and at least one of them will receive positive input for every
nonsymmetric pattern.

' Hidden Unit

-3.18 + 6a2 -1236/ +12.56 \.623 +3.17 N-

Output

6 3\ l, I / /

10 -9.4

. Hidden Unit

FIGURE 9. Network for solving the symmetry problem. The six open circles represent the input units. There are
two hidden units, one shown above and one below the input units. The output unit is shown to the far left. See
text for explanation.
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This problem was interesting to us because the learning system developed a much more
elegant solution to the problem than we had previously considered. This problem was not the
only one in which this happened. The parity solution discovered by the learning procedure

was also one that we had not "'scovered prior to testing the problem with our learning pro-

cedure. Indeed, we frequently discover these more elegant solutions by giving the system more

hidden units than it needs and observing that it does not make use of some of those provided.
Some analysis of the actual solutions discovered often leads us to the discovery of a better

solution involving fewer hidden units.

Addition

Another interesting problem on which we have tested our learning algorithm is the simple

binary addition problem. This problem is intcresting because there is a very elegant solution to
it, because it is the one problem we have found where we can reliably find local minima and

because the way of avoiding these local minima gives us some insight into the conditions under
which local minima may be found and avoided. Figure 10 illustrates the basic problem and a

minimal solution to it. There are four input units, three output units, and two hidden units.

The output patterns can be viewed as the binary representation of the sum of two two-bit

binary numbers represented by the input patterns. The second and fourth input units in the
* Odiagram correspond to the low-order bits of the two binary numbers and the first and third

units correspond to the two higher order bits. The hidden units correspond to the carry bits

Output Units

. "\\-2 Hidden

Units

Input Units

FIGURE 10. Minimal network for adding two two-bit binary numbers. There are four input units, three output

units, and two hidden units. The output patterns can be viewed as the binary representation of the sum of two two-

bit binary numbers represented by the input patterns. The second and fourth input units in the diagram correspond

to the low-order bits of the two binary numbers, and the firm and third units correspond to the two higher order

bits. The hidden units correspond to the carry bits in the summation. The hidden unit on the far right comes on

when both of the lower order bits in the input pattern are turned on. and the one on the left comes on when both

higher order bits are turned on or when one of the higher order bits and the other hidden unit is turned on. The

weights on all lines are assumed to be +1 except where noted. Negative connections are indicated by dashed lhoes.
As usual, the biases are indicated by the numbers in the circles.
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in the summation. Thus the hidden unit on the far right comes on when both of the lower

order bits in the input pattern are turned on, and the one on the left comes on when both

higher order bits are turned on or when one of the higher order bits and the other hidden unit

is turned on. In the diagram, the weights on all lines are assumed to be +1 except where

noted. Inhibitory connections are indicated by dashed lines. As usual, the biases are indicated
by the numbers in the circles. To understand how this network works, it is useful to note that
the lowest order output bit is determined by an exclusive-or among the two low-order input
bits. One way to solve this XOR problem is to have a hidden unit come on when both low-
order input bits are on and then have it inhibit the output unit. Otherwise either of the low-

order input units can turn on the low-order output bit. The middle bit is somewhat more

difficult. Note that the middle bit should come on whenever an odd number of the set con-
taining the two higher order input bits and the lower order carry bit is turned on. Observation
will confirm that the network shown performs that task. The left-most hidden unit receives

inputs from the two higher order bits and from the carry bit. Its bias is such that it will come

on whenever two or more of its inputs are turned on. The middle output unit receives positive

inputs from the same three units and a negative input of -2 from the second hidden unit.

This insures that whenever just one of the three are turned on, the second hidden unit will

remain off and the output bit will come on. Whenever exactly two of the three are on, the

hidden unit will turn on and counteract the two units exciting the output bit, so it will stay

off. Finally, when all three are turned on, the output bit will receive -2 from its carry bit and
+3 from its other three inputs. The tiet is positive, so the middle unit will be on. Finally, the

* -third output bit should turn on whenever the second hidden unit is on-that is, whenever
there is a carry from the second bit. Here then we have a minimal network to carry out the

job at hand. Moreover, it should be noted that the concept behind this network is generaliz-

able to an arbitrary number of input and output bits. In general, for adding two m bit binary
numbers we will require 2m input units, m hidden units, and m +1 output units.

Unfortunately, this is the one problem we have found that reliably leads the system into
local minima. At the start in our learning trials on this problem we allow any input unit to
connect to any output unit and to any hidden unit. We allow any hidden unit to connect to

any output unit, and we allow one of the hidden units to connect to the other hidden unit,

but, since we cart have no loops, the connection in the opposite direction is disallowed. Some-
times the system will discover essentially the same network shown in the figure. Often, how-

ever, the system ends up in a local minimum. The problem arises when the XOR problem on

the low-order bits is not solved in the way shown in the diagram. One way it can fail is when

the "higher" of the two hidden units is "selected" to solve the XOR problem. This is a problem

because then the other hidden unit cannot "see" the carry bit and therefore cannot finally solve
the problem. This problem seems to stem from the fact that the learning of the second output

bit is always dependent on learning the first (because information about the carry is necessary
to learn the second bit) and therefore lags behind the learning of the first bit and has no

influence on the selection of a hidden unit to solve the first XOR problem. Thus, about half
of the time (in this problem) the wrong unit is chosen and the problem cannot be solved. In

this case, the system finds a solution for all of the sums except the 11+11 - 110 (3+3 = 6) case

in which it misses the carry into the middle bit and gets 11+11 - 100 instead. This problem

differs from others we have solved in as much as the hidden units arc not "equipotential" here.

In most of our other problems the hidden units have been equipotential, and this problem has

not arisen.

It should be noted, however, that there is a relatively simple way out of the problem-
namely, add some extra hidden units. In this case we can afford to make a mistake on one or
more selections and the system can still solve the problems. For the problem of adding two-bit

4 The network is the same except for the highet order bit. The highest order bit is always on whenever three or

more of the input units are on. This is always learned first and always learned with direct connections to the input

units.

- -t/
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numbers we have found that the system always solves the problem with one extra hidden unit.
With larger numbers it may require two or three more. For purposes of illustration, we show
the results of one of our runs with three rather than the minimum two hidden units. Figure 11
shows the state reached by the network after 3,020 presentations of each input pattern and
with a learning rate of 71 = 0.5. For convenience, we show the network in four parts. In Fig-
ure 11A we show the connections to and among the hidden units. This figure shows the inter-
nal representation generated for this problem. The "lowest' hidden unit turns off whenever

-, either of the low-order bits are on. In other words it detects the case in which no low-order
bit is turn on. The 'highest' hidden unit is arranged so that it comes on whenever the sum is
less than two. The conditions under which the middle hidden unit comes on are more com-
plex. Table 8 shows the patterns of hidden units which occur to each of the sixteen input pat-
terns. Figure 1IB shows the connections to the lowest order output unit. Noting that the
relevant hidden unit comes on when neither low-order input unit is on, it is clear how the sys-
tem computes XOR. When both low-order inputs are off, the output unit is turned off by the

A B
Output Units Output Units

00000o.o,., , 009
"EHidden 

Hidden' 0 - I--.Units Hidden'
x ,( . , ,0 U n i t s

y 4..x \5 //

Input Units 
Input Units

Output Units Output Units.7

Hidden + \ 4 Hidden

,14 Units 0nUnits

Unit

+S+ 6-2 2 +2\

ddbb
%Input Units Input Units

, "FIGURE 11. Network found for the mmmation problem. A: The connections from the input units to the three
hidde units and the connections among the hidden units. f: The connections from the input and hidden units to
the lowest order output unit. C: The connections from the input and hidden units to the middle output unit. D:

The connections from the input and hidden units to the highest order output unit.
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TABLE 8

Input Ifidden Unit Output

Patterns Patterns Patterns

00 + O0 . II - 000

00+01 - 110 - 001

00+ 10 011 010
00+ 11 010 - 011
01 +00 + 110 - 001

01 +01 010 - 010

01 +10 - 010 - 011
01 + 11 000 - 100

" "1 0 + ODIi 010 01
10+01 011 01Oi

10+ 10 - 001 - 100

10+ 11 - 000 - 101

11 + O0 - 010 - 011

11 +01 000 - 100

'- 11 +10 000 101

11 + 1I 000 - 110

hidden unit. When both low-order input units are on, the output is turned off directly by the

* @two input units. If just one is on, the positive bias on the output unit keeps it on. Figure

lIC gives the connections to the middle output unit, and in Figure IID we show those connec-

tions to the left-most, highest order output unit. It is somewhat difficult to see how these

connections always lead to the correct output answer, but, as can be verified from the figures,

the network is balanced so that this works.

It should be pointed out that most of the problems described thus far have involved hidden

units with quite simple interpretations. It is much more often the case, especially when the

number of hiddcn units exceeds the minimum number required for the task, that the hidden

units are not readily interpreted. This follows from the fact that there is very little tendency

for localist representations to develop. Typically the internal representations are distributed

and it is the pattern of activity over the hidden units, not the meaning of any particular hidden

unit tha is important.

The Negation Problem

Consider a situation in -which the input to a system consists of patterns of n +1 binary values

and an output of n values. Suppose further that the general rule is that n of the input units

should be mapped directly to the output patterns. One of the input bits, however, is special.

It is a negation bit. When that bit is off, the rest of the pattern is supposed to map straight

through, but when it is on, the complement of the pattern is to be mapped to the output.

Table 9 shows the appropriate mapping. In this case the left element of the input pattern is

the negation bit, but the system has no way of knowing this and must learn which bit is the
negation bit. In this case, weights were allowed from any input unit to any hidden or output

unit and from any hidden unit to any output unit. The system learned to set all of the weights
to zero except those shown in Figure 12. The basic structure of the problem and of the solu-

... tion is evident in the figure. Clearly the problem was reduced to a set of three XORs between

the negation bit and each input. In the case of the two right-most input units, the XOR prob-

lems were solved by recruiting a hidden unit to detect the case in which neither the negation

unit nor the corresponding input unit was on. In the third case, the hidden unit detects the

case in which both the negation unit and relevant input were on. In this case the problem was

solved in less than 5.000 passes through the stimulus set with = 0.25.

,1% .,.. .. , ,-e ", , <, ,. .2 c.r . " , ".,.
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TABLE 9

Input Patterns Output Patterns

000 - 001

0010 - 010

0011 - Oil

0100 - 100

0101 - 101

0110 110

0111 - 111

1000 - 111

1001 -. 110

1010 - 101

1011 - 100

1100 i 011

1101 - 010

1110 001

1111 000

0 The T-C Problem

Most of the problems discussed so far (except the symmetry problem) are rather abstract

mathematical problems. We now turn to a more geometric problem-that of discriminating
between a T and a C-independent of translation and rotation. Figure 13 shows the stimulus

patterns used in these experiments. Note, these patterns are each made of five squares and

differ from one another by a single square. Moreover, as Minsky and Papert (1969) point out,
when considering the set of patterns over all possible translations and rotations (of 90", 180",

and 270*), the patterns do not differ in the set of distances among their pairs of squares. To

see a difference between the sets of patterns one must look, at least, at configurations of tri-

.1 .4 +

+4 
.

./ I t'- .41

+4 I

+

/ - 6.I. Io

FIGURE 12. The solution discovered for the negation problan. le rigbt-most unit is the negation unit. The prob-

lem has been reduced and solved as three exclusive-on between the negation unit and each of the other three units.
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FIGURE 13. The stimulus set for the T-C problem. The set consists of a block T and a block C in each of four
orientations. One of the eight patterns is presented on each trial.

plets of squares. Thus Minsky and Pattern call this a problem of order three. 5 In order to

facilitate the learning, a rather different architecture was employed for this problem. Figure 14
shows the basic structure of the network we employed. Input patterns were now conceptual-
ized as two-dimensional patterns superimposed on a rectangular grid. Rather than allowing

each input unit to connect to each hidden unit, the hidden units themselves were organized
into a two-dimensional grid with each unit receiving input from a square 3x3 region of the
input space. In this sense, the overlapping square regions constitute the predefined receptive
field of the hidden units. Each of the hidden units, over the entire field, feeds into a single

output unit which is to take on the value 1 if the input is a T (at any location or orientation)
and 0 if the input is a C. Further, in order that the learning that occurred be independent of
where on the field the pattern appeared, we constrained all of the units to earn exactly the

same pattern of weights. In this way each unit was constrained to compute exactly the same
function over its receptive field-the receptive fields were constrained to all have the same

shape. This guarantees translation independence and avoids any possible 'edge effects' in the
learning. The learning can readily be extended to arbitrarily large fields of input units. This
constraint was accomplished by simply adding together the weight changes dictated by the delta
rule for each unit and then changing all weights exactly the same amount. In this way, the
whole field of hiddcn units consists simply of replications of a single feature detector centered

on different regions of the input space, and the learning that occurs in one part of the field is
automatically generalized to the rcst of the field. 6

We have run this problem in this way a number of times. As a result, we have found a
)number of solutions. Perhaps the simplest way to understand the system is by looking at the

form of the receptive field for the hidden units. Figure 15 shows several of the receptive fields

we have seen. 7 Figure 15A shows the most local representation developed. This on-center-off-

'Terry Sejoowski pointed out to us that the T-C problem was difficult for models of this sort to learn and there-
fore worthy of study.

S6 A similar procedure hu been employed by Fukushima (1980) in his naoogitrom and by Kienker. Sejnowski. lio-

ton. and Schumacher (1965).

7 The ratios of the weights are about right. The actual values can be larger or smaller than the values given in the

figure.
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FIGURE 14. The network for solving Che T-C problem. Sac tet for explanation.

surround detector turns out to be an excellent T detector. Since, as illustrated, a T can extend

into the on-center and achieve a net input of +1, this detector will be turned on for a T at any
orientation. On the other hand, any C extending into the center must cover at least two inhibi-
tory cells. With this detector the bias can be set so that only one of the whole field of inhibi-
tory units will come on whenever a T is presented and none of the hidden units will be turned

on by any C. This is a kind of protrusion detector which differentiates between a T and C by
detecting the protrusion of the T.

The receptive field shown in Figure 15B is again a kind of T detector. Every T activates one

of the hidden units by an amount +2 and none of the hidden units receives more than +1 from

any of the C's. As shown in the figure, T's at 90* and 27(r send a total of +2 to the hidden
units on which the crossbar lines up. The T's at the other two orientations receive +2 from

the way it detects the vertical protrusions of those two characters. Figure 15C shows a more

distributed representation. As illustrated in the figure, each T activates five different hidden

units whereas each C excites only three hidden units. In this case the system again is
differentiating between the characters on the basis of the protruding end of the T which is not

shared by the C.

Finally, the receptive field shown in Figure 15D is even more interesting. In this case every
hidden unit has a positive bias so that it is on unless turned off. The strength of the inhibi-

tory weights are such that if a character overlaps the receptive field of a hidden unit, that unit
turns off. The system works because a C is more compact than a T and therefore the T turns
off more units that the C. The T turns off 21 hidden units, and the C turns off only 20. This
is a truly distributed representation. In each case, the solution was reached in from about
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A B
........ ............. ......

....... .......

1 2-1 -1 1-1

1 -1 1

C ....... .......

1 -+2+-1

D -2 -2 -2

~-2-2 -2

-2 -2 -2

FIGURE 15. Receptive fields found in different runs of the T-C problem. A: An on-center-off-surround receptive
field for detecting T's. 8: A vertical bar detector which responds to T's more strongly than C's. C: A diagonal bar~detector. A T activates five such detectors whereas a C activates only three such detectors. 1): A compactness

detector. This inhibitory receptive field turns off whenever an input coven any region of its receptive field. Since
the C is more compact than the T it turns off 20 such detectors whereas the T turns off 21 of them.

5,000 to 10,000 presentations of tfie set of eight patterns.'

It is interesting that the inhibitory type of receptive field shown in Figure 15D was the most
common and that there is a predominance of inhibitory connections in this and indeed all of

our simulations. This can be understood by considering the trajectory through which the learn-

ing typically moves. At first, when the system is presented with a difficult problem, the initial

random connections are as likely to mislead as to give the correct answer. In this case, it is

best for the output units to take on a value of 0.5 than to take on a more extreme value. This

follows from the form of the error function given in Equation 2. The output unit can achieve

a constant output of 0.5 by turning off those units feeding into it. Thus, the first thing that

happens in virtually every difficult problem is that the hidden units are turned off. One way

I Since translation independence was built into the learning procedure, it makes no difference where the input oc-
curs; the same thing will be learned whcever the pattern is presented. Thus, there are only eight distinct patterns to

be presented to the system.

-!- . . - - -- - - '' . A7
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to achieve this is to have the input units inhibit the hidden units. As the system begins to sort

things out and to learn the appropriate function some of the connections will typically go posi-

tive, but the majority of the connections will remain negative. This bias for solutions involving

inhibitory inputs can often lead to nonintuitive results in which hidden units are often on

unless turned off by the input.

More Simulation Results

We have offered a sample of our results in this section. In addition to having studied our

learning system on the problems discussed here, we have employed back propagation for learn-

ing to multiply binary digits, to play tic-tac-toe, to distinguish between vertical and horizontal

lines, to perform sequences of actions, to recognize characters, to associate random vectors,

and a host of other applications. In all of these applications we have found that the general-

izcd delta rule was capable of generating the kinds of internal representations required for the

problems in question. We have found local minima to be very rare and that the system learns

in a reasonable period of time. Still more studies of this type will be required to understand

precisely the conditions under which the system will be plagued by local minima. Suffice it to

say that the problem has not been serious to date. We now turn to a pointer to some future
0 developments.

SOME FURTHER GENERALIZATIONS

We have intensively studied the learning characteristics of the generalized delta rule on feed-

forward networks and semilinear activations functions. Interestingly these are not the most

general cases to which the learning procedure is applicable. As yet we have only studied a few
examples of the more fully generalized system, but it is relatively easy to apply the same learn-
ing rule to sigma-pi units and to recurrent networks. We will simply sketch the basic ideas
here.

The Generalized Delta Rule and Sigma-Pi Units

It will be rccallcd from Chapter 2 that in the case of sigma-pi units we have

0i ~f J(wit Ioi) (17)

where i varies over the set of conjuncts feeding into unit j and k varies over the elements of
the conjuncts. For simplicity of exposition, we restrict ourselves to the case in which no con-

juncts involve more than two elements. In this case we can notate the weight from the con-
junction of units i and j to unit k by wiJk. The weight on the direct connection from unit i

to unit j would, thus, be wj1 , and since the relation is multiplicative, wk, = wkji. We can now

S.,
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rewrite Equation 17 as

We now set

Taking the derivative and simplifying, we get a rule for sigma-pi units strictly analogous to the

rule for semilinear activation functions:

AP wii = , 01 o.

We can see the correct form of the error signal, 8, for this case by inspecting Figure 16. Con-
sider the appropriate value of 81 for unit sh in the figure. As before, the correct value of 81 is
given by the sum of the B's for all of the units into which u, feeds, weighted by the amount of
effect due to the activation of u, times the derivative of the activation function. In the case of
semilinear functions, the measure of a unit's effect on another unit is given simply by the
weight w connecting the first unit to the second. In this case, the %'s effect on uk depends

not only on wtij, but also on the value of uj. Thus, we have

8, f ',(net, )Y, 8 ,,0

Uk U

'". wk .. -W'h

U k

Wi Wj5.g

II

UU IUh

FIGURE 16. The generalized delta rule for sigma-pi units. The products of activation values of individual units c-
tivate output units. See text for explanation of how the & values am computed in this can.



28 RUMELHART, Hm1TON, and WILLIAMS

if a, is not an output unit and, as before,

8, = f I (ne,)(1 -o,)

if it is an output unit.

Recurrent Nets

We have thus far restricted ourselves to feedforward nets. This may seem like a substantial
restriction, but as Minsky and Papert point out, there is, for every recurrent network, a feed-
forward network with identical behavior (over a finite period of time). We will now indicate
how this construction can proceed and thereby show the correct form of the learning rule for
the recurrent network. Consider the simple recurrent network shown in Figure 17A. The
same network in a feedforward architecture is shown in Figure 17B. The behavior of a

B 
Time

U I'M U 2

W 2 W2

A

Ut U2
I

IN 12 W2 2 .

222

12

FIGURE 17. A comparison of a recurrent network and a feedforward network with identical behavior. A: A com-

pletely connected recurrent network with two units. 8: A feedforward network which behaves the ame as the re-
current network. In this case. we have a separate unit for each timee step and we require that the weights connecting
each layer of units to the net be the same for all layers. Moreover, they must be the same as the analogous weights

ia the recurrent case.
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recurrent network can be achieved in a feedforward network at the cost of duplicating the
hardware many times over for the feedforward version of the network. 9 We have distinct units

and distinct weights for each point in time. For naming convenience, we subscript each unit
with its unit number in the corresponding recurrent network and the time it represents. As
long as we constrain the weights at each level of the feedforward network to be the same, we
have a feedforward network which performs identically with the recurrent network of Figure
17A. The appropriate method for maintaining the constraint that all weights be equal is simply
to keep track of the changes dictated for each weight at each level and then change each of the
weights according to the son of these individually prescribed changes. Now, the general rule
for determining the change prescribed for a weight in the system for a particular time is simply
to take the product of an appropriate error measure 5 and the input along the relevant line
both for the appropriate times. Thus, the problem of specifying the correct learning rule for
recurrent networks is simply one of determining the appropriate value of 8 for each time. In a
feedforward network we determine 8 by multiplying the derivative of the activation function
by the sum of the 8's for those units it feeds into weighted by the connection strengths. The

same process works for the recurrent network-except in this case, the value of 8 associated
with a particular unit changes in time as a unit passes error back, sometimes to itself. After
each iteration, as error is being passed back through the network, the change in weight for that
iteration must be added to the weight changes specified by the preceding iterations and the
sum stored. This process of passing error through the network should continue for a number
of iterations equal to the number of iterations through which the activation was originally

passed. At this point, the appropriate changes to all of the weights can be made.
In general, the procedure for a recurrent network is that an input (generally a sequence) is

presented to the system while it runs for some number of iterations. At certain specified times
during the operation of the system, the output of certain units are compared to the target for

* that unit at that time and error signals are generated. Each such error signal is then passed
back through the network for a number of iterations equal to the number of iterations used in
the forward pass. Weight changes are computed at each iteration and a sum of all the weight
changes dictated for a particular weight is saved. Finally, after all such error signals have been
propagated through the system, the weights are changed. The major problem with this pro-
cedure is the memory required. Not only does the system have to hold its summed weight
changes while the error is being propagated, but each unit must somehow record the sequence
of activation values through which it was driven during the original processing. This follows
from the fact that during each iteration while the error is passed back through the system, the
current 8 is relevant to a point earlier in time and the required weight changes depend on the
activation levels of the units at that time. It is not entirely clear how such a mechanism could
be implemented in the brain. Nevertheless, it is tantalizing to realize that such a procedure is
potentially very powerful, since the problem it is attempting to solve amounts to that of
finding a sequential program (like that for a digital computer) that produces specified input-
sequence/output-sequence pairs. Furthermore, the interaction of the teacher with the system
can be quite flexible, so that, for example, should the system get stuck in a local minimum, the
teacher could introduce "hints" in the form of desired output values for intermediate stages of
processing. Our experience with recurrent networks is limited, but we have carried out some
experiments. We turn first to a very simple problem in which the system is induced to invent a
shift register to solve the problem.

.. Learning to be a shift register. Perhaps the simplest class of recurrcnt problems we have
studied is one in which the input and output units are one and the same and there are no hid-
den units. We simply present a pattern and let the system process it for a period of time. The

state of the system is then compared to some target state. If it hasn't reached the target state

9 Note that in this discussion, and indeed in out entire development here, we have masumed a discrete time system

with synchronous update and with each connection involving a unit delay.
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at the designated time, error is injected into the system and it modifies its weights. Then it is
shown a new input pattern and restarted. In these cases, there is no constraint on the connec-
tions in the system. Any unit can connect to any other unit. The simplest such problem we

have studied is what we call the shift register problem. In this problem, the units are concep-
tualized as a circular shift register. An arbitrary bit pattern is first established on the units.

They are then allowed to process for two time-steps. The target state, after those two time-
steps, is the original pattern shifted two spaces to the left. The interesting question here con-

cerns the state of the units between the presentation of the start state and the time at which

the target state is presented. One solution to the problem is for the system to become a shift
register and shift the pattern exactly one unit to the left during each time period. If the system

did this then it would surely be shifted two places to the left after two time units. We have
tried this problem with groups of three or five units and, if we constrain the biases on all of

the units to be negative (so the units are off unless turned on), the system always learns to be a
shift register of this sort.1° Thus, even though in principle any unit can connect to any other

unit, the system actually learns to set all weights to zero except the ones connecting a unit to
its left neighbor. Since the target states were determined on the assumption of a circular regis-

tcr, the left-most unit developed a strong connection to the right-most unit. The system learns
this relatively quickly. With 71 = 0.25 it learns perfectly in fewer than 200 sweeps through the

set of possible patterns with either three- or five-unit systems.
The tasks we have described so far are exceptionally simple, but they do illustrate how the

*- algorithm works with unrestricted networks. We have attempted a few more difficult prob-

lems with recurrent networks. One of the more interesting involves learning to complete
sequences of patterns. Our final example comes from this domain.

Learning to complete sequences. Table 10 shows a set of 25 sequences which were chosen so
that the first two items of a sequence uniquely determine the remaining four. We used this set
of sequences to test out the learning abilities of a recurrent network. The network consisted
of five input units (A, B, C, D, E), 30 hidden units, and three output units (1, 2, 3). At Time
1, the input unit corresponding to the first item of the sequence is turned on and the other

input units are turned off. At Time 2, the input unit for the second item in the sequence is
turned on and the others are all turned off. Then all the input units are turned off and kept

off for the remaining four steps of the forward iteration. The network must learn to make the
output units adopt states that represent the rest of the sequence. Unlike simple feedforward

networks (or their iterative equivalents), the errors are not only assessed at the final layer or
time. The output units must adopt the appropriate states during the forward iteration, and so

during the back-propagation phase, errors are injected at each time-step by comparing the

remembered actual states of the output units with their desired states.

TABLE 10

25 SEQUENCES TO BE LEARNED

AA1212 AB1223 AC1231 AD1221 AE1213

BA2312 BB2323 SC2331 BD2321 BE2313

CA3112 CB3123 CC3131 CD3121 CE3113

DA2112 DB2123 DC2131 DD2121 DE2113

EA1312 EB1323 EC3331 ED1321 EE1313

t0 if the constraint that bims be negative is not imposed, othe solutions are possible. These solutions can involve

the units paining through the complements of the shifted pattern or even through more complicated intermediate

sidae. These trajectories are interesting in that they match a simple shift register on all even numbers of shifts, but

do not match following an odd number of shifts.



LEARNI, 0"1'13NA; mpSkLimm-ATiONs 31

The learning procedure for recurrent nets places no constraints on the allowable connectivity

structure' For the sequence completion problem, we used one-way connections from the input

units to the hidden units and from the hidden units to the output units. Every hidden unit

had a one-way connection to every other hidden unit and to itself, and every output unit was

also connected to every other output unit and to itself. All the connections started with small

random weights uniformly distributed between -0.3 and +0.3. All the hidden and output

units started with an activity level of 0.2 at the beginning of each sequence.

We used a version of the learning procedure in which the gradient of the error with respect

to each weight is computed for a whole st of examples before the weights are changed. This

means that each connection must accumulate the sum of the gradients for all the examples and

for all the time steps involved in each example. During training, we used a particular set of 20

examples, and after these were learned almost perfectly we tested the network on the remaining

examples to see if it had picked up on the obvious regularity that relates the first two items of

a sequence to the subsequent four. The results are shown in Table 11. For four out of the five

test sequences, the output units all have the correct values at all times (assuming we treat

values above 0.5 as 1 and values below 0.5 as 0). The network has clearly captured the rule that

the first item of a sequence determines the third and fourth, and the second determines the

fifth and sixth. We repeated the simulation with a different set of random initial weights, and

it got all five test sequences correct.

The learning required 260 sweeps through all 20 training sequences. The errors in the output

units were computed as follows: For a unit that should be on, there was no error if its activity

level was above 0.8, otherwise the derivative of the error was the amount below 0.8. Similarly,

for output units that should be off, the derivative of the error was the amount above 0.2.

After each sweep, each weight was decremented by .02 times the total gradient accumulated on

that sweep plus 0.9 times the previous weight change.

We have shown that the learning procedure can be used to create a network with interesting

sequential behavior, but the particular problem we used can be solved by simply using the hid-

den units to create "delay lines" which hold information for a fixed length of time before allow-

ing it to influence the output. A harder problem that cannot be solved with delay lines of

fixed duration is shown in Table 12. The output is the same as before, but the two input items

can arrive at variable times so that the item arriving at time 2, for example, could be either the
first or the second item and could therefore determine the states of the output units at either
the fifth and sixth or the seventh and eighth times. The new task is equivalent to requiring a

buffer that receives two input "words" at variable times and outputs their "phonemic realiza-
tions" one after the other. This problem was solved successfully by a network similar to the
one above except that it had 60 hidden units and half of their possible interconnections were

omitted at random. The learning was much slower, requiring thousands of sweeps through all
136 training examples. There were also a few more errors on the 14 test examples, but the gen-

eralization was still good with most of the test sequences being completed perfectly.

CONCLUSION

Minsky and Papert (1969) in their pessimistic discussion of pcrceptrons finally, near the end

of their book, discuss multilayer machines. They state:

The pcrceptron has shown itself worthy of study despite (and even because of!) its

severe limitations. It has many features that attract attention: its linearity; its

tt The constraint in feedforward networks is that it must be possible to arrange the units into layers such that units

do not influence units in the same or lower layers. In recurrent nctworks this amounts to the constraint that during
the forward iteration, future states must not affect past ones.

, % % %
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TABLE 11

PERFORMANCE OF TILE NETWORK ON FIVE NOVEL TEST SEQUENCES

Input Sequence A D - - -

Desired Outputs - - 1 2 2 1

Actual States of:

Output Unit 1 0.2 0.12 0.90 0.22 0.11 0.83

Output Unit 2 0.2 0.16 0.13 0.82 0.88 0.03

Output Unit 3 0.2 0.07 0.08 0.03 0.01 0.22

Input Sequence B E - - - -

Desired Outputs - - 2 3 1 3

Actual States of:

Output Unit 1 0.2 0.12 0.20 0.25 0.48 0.26

Output Unit 2 0.2 0.16 0.80 0.05 0.04 0.09

Output Unit 3 0.2 0.07 0.02 0.79 0.48 0.53

Input Sequence C A - - - -

Desired Outputs - - 3 1 1 2

Actual States of:

Output Unit 1 0.2 0.12 0.19 0.80 0.87 0.11

Output Unit 2 0.2 0.16 0.19 0.00 0.13 0.70

Output Unit 3 0.2 0.07 0.80 0.13 0.01 0.25

Input Sequence D B - - - -

Desired Outputs - - 2 1 2 3

Actual States of:

Output Unit 1 0.2 0.12 0.16 0.79 0.07 0.11

Output Unit 2 0.2 0.16 0.80 0.15 0.87 0.05

Output Unit 3 0.2 0.07 0.20 0.01 0.13 0.96

Input Sequence E C - - - -

Desired Outputs - - 1 3 3 1

Actual States of:

% a Output Unit 1 0.2 0.12 0.80 0.09 0.27 0.78

Output Unit 2 0.2 0.16 0.20 0.13 0.01 0.02

Output Unit 3 0.2 0.07 0.07 0.94 0.76 0.13

TABLE 12

SIX VARIATIONS OF TIlE SEQUENCE EA1312 PRODUCED BY

PRESENTING THE FIRST TWO ITEMS AT VARIABLE TIMES

EA--1312 E-A-1312 E--A1312

-EA-1312 -E-A1312 -- EA1312

Note: With thes temporal variations, the 25 sequences shown in

Table 10 can be used to generate 150 different sequences.

intriguing learning theorem; its clear paradigmatic simplicity as a kind of parallel com-

putation. There is no reason to suppose that any of these virtues caery over to the

4, , many-layered version. Nevertheless. we consider it to be an important research problem

to elucidate (or reject) our intuitive judgement that the extension is sterile. Perhaps

.N'
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some powerful convergence theorem will be discovered, or some profound reason for

the failure to produce an interesting *learning theorem for the multilayered machine

will be found. (pp. 231-232)

Although our learning results do not guaantee that we can find a solution for all solvable

problems, our analyses and results have shown that as a practical matter, the error propagation

scheme leads to solutions in virtually every case. In short, we believe that we have answered

Minsky and Papert's challenge and have found a learning result sufficiently powerful to demon-

strate that their pessimism about learning in multilayer machines was misplaced.

One way to view the procedure we have been describing is as a parallel computer that, having

been shown the appropriate input/output exemplars specifying some function, programs itself

to compute that function in general. Parallel computers are notoriously difficult to program.

Here we have a mechanism whereby we do not actually have to know how to write the pro-

gram in order to get the system to do it. Parker (1985) has emphasized this point.

On many occasions we have been surprised to learn of new methods of computing interest-

ing functions by observing the behavior of our learning algorithm. This also raised the ques-

tion of generalization. In most of the cases presented above, we have presented the system

with the entire set of exemplars. It is interesting to ask what would happen if we presented

only a subset of the exemplars at training time and then watched the system generalize to

remaining exemplars. In small problems such as those presented here, the system sometimes

finds solutions to the problems which do not properly generalize. However, preliminary results

on larger problems are very encouraging in this regard. This research is still in progress and

cannot be reported here. This is currently a very active interest of ours.

Finally, we should say that this work is not yet in a finished form. We have only begun our

study of recurrent networks and sigma-pi units. We have not yet applied our learning pro-

cedure to many very complex problems. However, the results to date are encouraging and we

are continuing our work.
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