
BioMed Central

Page 1 of 14

(page number not for citation purposes)

BMC Bioinformatics

Open AccessProceedings

Learning Interpretable SVMs for Biological Sequence Classification
Gunnar Rätsch*1, Sören Sonnenburg2 and Christin Schäfer2

Address: 1Friedrich Miescher Laboratory, Max Planck Society, Spemannstr. 39, Tübingen, Germany and 2Fraunhofer Institute FIRST, Kekuléstr. 7,
12489 Berlin, Germany

Email: Gunnar Rätsch* - gunnar.raetsch@tuebingen.mpg.de; Sören Sonnenburg - soeren.sonnenburg@first.fraunhofer.de;
Christin Schäfer - christin.schaefer@first.fraunhofer.de

* Corresponding author

Abstract

Background: Support Vector Machines (SVMs) – using a variety of string kernels – have been

successfully applied to biological sequence classification problems. While SVMs achieve high

classification accuracy they lack interpretability. In many applications, it does not suffice that an

algorithm just detects a biological signal in the sequence, but it should also provide means to

interpret its solution in order to gain biological insight.

Results: We propose novel and efficient algorithms for solving the so-called Support Vector

Multiple Kernel Learning problem. The developed techniques can be used to understand the

obtained support vector decision function in order to extract biologically relevant knowledge

about the sequence analysis problem at hand. We apply the proposed methods to the task of

acceptor splice site prediction and to the problem of recognizing alternatively spliced exons. Our

algorithms compute sparse weightings of substring locations, highlighting which parts of the

sequence are important for discrimination.

Conclusion: The proposed method is able to deal with thousands of examples while combining

hundreds of kernels within reasonable time, and reliably identifies a few statistically significant

positions.

1 Background
Kernel based methods such as Support Vector Machines
(SVMs) have proven to be powerful for sequence analysis
problems frequently appearing in computational biology
(e.g. [1-4]). They employ a so-called kernel function
k(si, sj) which intuitively computes the similarity between
two sequences si and sj. The result of SVM learning is a α-
weighted linear combination of kernel elements and the
bias b (see Section 4.1 for more details):

where the si's are N labeled training sequences
(yi∈ {± 1}). One of the problems with kernel methods
compared to probabilistic methods (such as position
weight matrices or interpolated Markov models [5]) is
that the resulting decision function (1) is hard to interpret
and, hence, difficult to use in order to extract relevant bio-
logical knowledge from it (see also [3,6]). We approach
this problem by considering convex combinations of M
kernels, i.e.

from NIPS workshop on New Problems and Methods in Computational Biology

Whistler, Canada. 18 December 2004

Published: 20 March 2006

BMC Bioinformatics 2006, 7(Suppl 1):S9 doi:10.1186/1471-2105-7-S1-S9
<supplement> <title> <p>NIPS workshop on New Problems and Methods in Computational Biology</p> </title> <editor>Gal Chechik, Christina Leslie, Gunnar Rätsch, Koji Tsuda</editor> <note>Proceedings 1471-2105-7-S1-info.doc</note> <url>http://www.biomedcentral.com/content/pdf/1471-2105-7-S1-info.pdf</url> </supplement>

f s s s() = () +

 ()

=
∑sign kαi i i
i

N

y b,
1

1 k ks s s si j k k i j
k

M

, ,() = () ()
=
∑ β

1

2

http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:S9

Page 2 of 14

(page number not for citation purposes)

with βk ≥ 0 and ∑kβk = 1, where each kernel kk uses only a
distinct set of features of the sequence. For appropriately
designed sub-kernels kk, the optimized combination coef-
ficients can then be used to understand which features of
the sequence are of importance for discrimination. This is
an important property missing in current kernel based
algorithms.

In this work we consider the problem of finding the opti-
mal convex combination of kernels (i.e. determining the
optimal β's in (2)). This problem is known as the Multiple
Kernel Learning (MKL) problem [4,7,8] (see also [9,10,38]
for related approaches). Sequence analysis problems usu-
ally come with large numbers of examples and one may
wish to combine many kernels representing many possi-
bly important features. Unfortunately, algorithms pro-
posed for Multiple Kernel Learning so far are not capable
of solving the optimization problem for realistic problem
sizes (e.g. ≥ 10,000 examples) within reasonable time.
Even recently proposed decomposition algorithms for
this problem, such as the one proposed in [7], are not effi-
cient enough since they suffer for instance from the inabil-
ity to keep all kernel matrices (Kj ∈ �N×N, j = 1, ..., M) in
memory. (Note that kernel caching can become ineffec-
tive if the number of combined kernels is large.) We con-
sider the reformulation of the MKL problem into a semi-
infinite linear problem (SILP), which can be iteratively
approximated quite efficiently. In each iteration one only
needs to solve the classical SVM problem (with one of the
efficient and publicly available SVM implementations; cf.
references in [11] and also [12,39] to gain a further spee-
dup in case of string kernels) and then performs an update
of the kernel convex combination weights β. Separating
the SVM optimization from the optimization of the kernel
coefficients can thus lead to significant improvements for
large scale problems with general kernels (cf. Section 4 for
details).

We illustrate the usefulness of the proposed algorithm in
combination with a recently proposed string kernel on
DNA sequences – the so-called weighted degree (WD) ker-
nel [13]. Its main idea is to count the (exact) co-occur-
rence of k-mers at position l of two compared DNA
sequences of equal length L (e.g. a window around some
signal on the DNA). The kernel can be written as a linear
combination of d parts with coefficients βk (k = 1, ..., d):

where L is the length of the sequences s, d is the maximal
oligomer length considered and uk,l(s) is the oligomer of
length k at position l of sequence s. Moreover, I(true) := 1
and 0 otherwise.

One question is how the weights βk for the various k-mers
in (3) should be chosen. So far, only heuristic settings in
combination with expensive model-selection methods
have been used (e.g. [13]). The MKL approach offers a
clean and efficient way to find the optimal weights β: We
define d kernels

and then optimize the convex combination of these ker-
nels (with coefficients β) using the MKL algorithm (cf.
(3)). The optimal weights β indicate which oligomer
lengths are important for the classification problem at
hand (see results in Section 2.2).

Additionally, it is interesting to introduce an importance
weighting over the positions in the subsequence. Hence,
we define a separate kernel for each position and each oli-
gomer length, i.e.

kk,l(si, sj) = I(uk,l(si) = uk,l(sj)),

and optimize the weightings of the combined kernel,
which may be written as

The simpler case would be to only consider one kernel per

position in the sequence: k(si, sj) = with

where γ is the default weighting as used in [13].

Obviously, if one would be able to obtain an accurate
classification by a sparse weighting βk,l, then one can quite
easily interpret the resulting decision function. For
instance for signal detection problems (such as splice site
detection), one would expect a few important positions
with long oligomers near the site and some additional
positions within the exon capturing the nucleotide com-
position (short oligomers; cf. Sections 2.4 and 2.5).

While the proposed MKL algorithms are applicable to
arbitrary kernels, we particularly consider the case of
string kernels and show how their properties can be

k(,) (() ()),, ,s s I s si j k
k

d

k l i k l j
l

L k

= = ()
= =

−

∑ ∑β
1 1

3u u

kk i j k l i k l j
l

L k

(,) (() ()), (), ,s s I s s= =
=

−

∑ u u

1

4

k(,)

(() ())

(,

,

, ,

s s

I s s

s

i j

k l i j
l

L k

k

d

k l k l ik

=

=

=
=

−

=
∑∑ β

β

u uk,l k,l
11

ss j
k l

). ()
,

∑ 5

βl l i jl

L
k (,)s s=∑ 1

kl i j k i j
k

d

(,) (() ()), ()s s I s s= =
=
∑ γ u uk,l k,l

1

6

BMC Bioinformatics 2006, 7:S9

Page 3 of 14

(page number not for citation purposes)

exploited in order to significantly speedup the computa-
tions. We extend previous work by [8,14,15] and employ
tries [16] during training and testing. In Section 4 we
develop a method that can avoid kernel caching and we
therefore obtain very memory efficient and fast algo-
rithms (which also speedup standard SVM training).

By bootstrapping and applying a combinatorial argu-
ment, we derive a statistical test that discovers the most
important kernel weights. Using this test, we elucidate on
simulated pseudo-DNA sequences with two hidden 7-
mers which k-mers in the sequence were used for the SVM
decision. Additionally we apply our method to the prob-
lem of splice site classification (C. elegans acceptor sites)
and to the problem recognizing alternatively spliced
exons [17].

2 Results and Discussion
The main goal of this work is to provide an explanation of
the SVM decision rule, for instance by identifying
sequence positions that are important for discrimination.
As a first test we apply our method to a toy problem where
everything is known and we can directly validate the find-
ings of our algorithm with the underlying truth. As a next
step, we show that our MKL algorithm performs as well or
slightly better than the standard SVM and leads to SVM
classification functions that are computationally more

efficient. In the remaining part we show how the weights
can be used to obtain a deeper understanding of how the
SVM classifies sequences and match it with knowledge
about the underlying biological process.

2.1 MKL Learning Detects Motifs in Toy Data set

As a proof of concept, we test our method on a toy data set

with two hidden 7-mers (at positions 10 & 30) at four dif-

ferent noise levels (we used different numbers of random

positions in the 7-mers that were replaced with random

nucleotides; for a detailed description of the data see

Appendix A. 1). We use the kernel as defined in (5) with

one sub-kernel per position and oligomer length. We con-

sider sequences of length L = 50 and oligomers up to

length d = 7, leading to M = 350 sub-kernels. For every

noise level, we train on 100 bootstrap replicates and learn

the 350 WD kernel parameters in each run. On the result-

ing 100 weightings we performed the reliability test (cf.

Section 4.3). The results are shown in Figure 1 (columns

correspond to different noise levels – increasing from left

to right). Each figure shows a kernel weighting β, where

columns correspond to weights used at a certain sequence

position and rows to the k-mer length used at that posi-

tion. The plots in the first row show the weights that are

detected to be important at a significance level of α = 0.05

In this "figure matrix", columns correspond to the noise level, i.e. different numbers of nucleotides randomly substituted in the motif of the toy data set (cf. Appendix A.1)Figure 1

In this "figure matrix", columns correspond to the noise level, i.e. different numbers of nucleotides randomly substituted in the

motif of the toy data set (cf. Appendix A.1). Each sub-figure shows a matrix with each element corresponding to one kernel

weight: columns correspond to weights used at a certain sequence position (1–50) and rows to the oligomer length used at

that position (1–7). The first row of the figure matrix shows the kernel weights that are significant, while the second row

depicts the likelihood of every weight to be rejected under .

BMC Bioinformatics 2006, 7:S9

Page 4 of 14

(page number not for citation purposes)

in bright (yellow) color. The likelihood for every weight to

be detected by the test and thus to reject the null hypo-

thesis is illustrated in the plots in the second row (cf.

Section 4.3 for details). Bright colors mean that it is more

likely to reject .

As long as the noise level does not exceed 2/7, longer
matches of length 3 and 4 seem sufficient to distinguish
sequences containing motifs from the rest. However, only
the 3-mer is detected with the test procedure. When more
nucleotides in the motifs are replaced with noise, more
weights are determined to be of importance. This becomes
especially obvious in column 3 were 4 out of 7 nucleo-
tides within each motif were randomly replaced, but still
an average ROC score of 99.6% is achieved. In the last col-
umn the ROC score drops down to 83% (not shown), but
only weights in the correct range 10 ... 16 and 30 ... 36 are
found to be significant.

2.2 Optimization of WD Kernel Weights Speeds up

Computations and Improves Accuracy

We compare the standard SVM with WD kernel (default
weighting as in [13]) and kernel caching (SVM-light
implementation [18]) and our MKL-SVM algorithm with
WD kernel (optimized weighting) and using tries (cf. Sec-
tion 4). We applied both algorithms on the C. elegans
acceptor splice data set using 100,000 sequences in train-
ing, 100,000 examples for validation and 60,000 exam-
ples to test the classifiers performance (cf. Appendix A.2).
In this data set each sequence is a window centered
around a AG dimer containing 141 nucleotides (nt),
together with the corresponding label +1 for true acceptor
splice sites and -1 for decoys (cf. [13] and Appendix A.2
for more details). Using this setup we perform 5-fold
cross-validation over the maximal oligomer length d ∈
{10,12,15,17,20} (cf. (3)) and the SVM regularization
constant C ∈ {0.5, 2, 5, 10}. A detailed comparison of the
WD kernel approach with other state-of-the-art methods
is provided in [13] and goes beyond the scope of this
work.

On the validation set we find that for the SVM using the
standard WD kernel (using the default weighting), d = 20
and C = 0.5 gives best classification performance (ROC
score 99.66% on validation set), while the MKL-SVM
using the WD kernel (optimized weighting) gives best
results for d = 12 and C = 1 (ROC score also 99.66% on
validation set). Figure 2 shows the WD kernel weights
computed by the MKL-SVM approach. It suggests that 12-
mers and 6-mers seem to be of high importance and 1-4-
mers are also important. On the test data set the resulting
SVM classifier with standard WD kernel performs as good
as on the validation data set (ROC score 99.66% again),
while the classifier obtained by MKL-SVMs with opti-

mized WD kernel weights achieves a 99.67% ROC score.
Astonishingly training the MKL-SVM (i.e. with weight
optimization and tries) was 1.5 times faster than training
the original SVM (with kernel caching). Also, the resulting
classifier provided by the new algorithm is considerably
faster than the one obtained by the classical SVM since
many β-weights are zero (see also [19]).

It should be noted that the obtained weighting in this
experiment is only partially useful for interpretation. In
the case of splice site detection, it is unlikely that k-mers
of length 12 play the most important role. More likely to
be important are oligos of length up to six. We believe that
the large weight for the longest oligo is an artifact which
comes from the fact that we are combining kernels with
quite different properties. (The 12th kernel leads to a ker-
nel matrix that is most diagonally dominant, which we
believe is the reason for having a large weight. This prob-
lem can be partially alleviated by including the identity
matrix in the convex combination. However as �2-norm
soft margin SVMs can be implemented by adding a con-
stant to the diagonal of the kernel [20,21], this leads effec-
tively to an additional �2-norm penalization.) In the
following example we consider one weight per position.
In this case the combined kernels are more similar to
each-other and we expect more interpretable results.

Optimized WD Kernel WeightsFigure 2
Optimized WD Kernel Weights.

BMC Bioinformatics 2006, 7:S9

Page 5 of 14

(page number not for citation purposes)

2.3 Optimal Positional Importance Weighting is Related to

Positional Weight Matrices

An interesting relation of the learned weightings to the rel-

ative entropy between Positional Weight Matrices

(PWMs) can be shown with the following experiment: We

train an SVM with a WD kernel that consists of 60 first-

order sub-kernels (i.e. only single nucleotide matches are

considered) on acceptor splice sites from C. elegans

(100,000 sequences for training, 160,000 sequences for

validation). The characteristic acceptor splice site AG

dimer is at positions 31 & 32. We extracted the sequences

from a window (-30, +28) around the dimer. The learned

weights βk are shown in Figure 3 (left). For comparison we

computed the PWMs (Markov chains of zero-th order) for

the positive and the negative class separately (denoted by

 and). Additionally, we computed the relative

entropy Δi between the two probability estimates and

 at each position j by ,

leading to Figure 3 (right). The shape of both plots is quite

similar, i.e. both methods consider upstream informa-

tion, as well as a position directly after the splice site to be

highly important. As a major difference the WD-weights

in the exons remain on a high level. Note that both meth-

ods use only zero-th order information. Nevertheless the

classification accuracy is already quite high. On the sepa-

rate validation set the SVM already achieves a ROC score

of 99.07% and the Positional Weight Matrices a ROC

score of 98.83%.

2.4 Positional WD Kernel Weights Helps Understanding

Splice Site Classification

Note that Markov chains become intractable and less
accurate for high orders, which seem on the other hand
necessary for achieving high accuracies in many sequence
analysis tasks. SVMs, however, are efficient and accurate
even for great oligomer lengths. We therefore expect that
MKL-SVMs may also in this case provide useful insights at
which positions the discriminative information is hidden.

In order to illustrate this idea we perform another experi-
ment: We considered the larger region from -50 nt to +60
nt around the splice site and used the WD kernel with d =
15. We defined a kernel for every position that only
accounts for substrings that start at the corresponding
position (up to length 15). To get a smoother weight-
ing and to reduce the computing time we only used
[111/2] = 56 weights (combining every two positions to
one weight). Figure 4 shows the average computed
weighting on ten bootstrap runs trained on about 65,000

pi j,
+ pi j,

−

pi j,
+

pi j,
− ∆ = + + −

=∑j i j i j i ji
p p p, , ,log(/)

1

4

(left) Value of the learned weightings of an SVM with a WD kernel of 60 first-order sub-kernels, (right) relative entropy obtained between the Positional Weight Matrices for the positive and the negative class, both trained for acceptor splice site detectionFigure 3
(left) Value of the learned weightings of an SVM with a WD kernel of 60 first-order sub-kernels, (right) relative entropy
obtained between the Positional Weight Matrices for the positive and the negative class, both trained for acceptor splice site
detection.

BMC Bioinformatics 2006, 7:S9

Page 6 of 14

(page number not for citation purposes)

examples. Several regions of interest can be identified: a)
The region -50 nt to -40 nt, which corresponds to the
donor splice site of the previous exon (many introns in C.
elegans are very short, often only 50 nt), b) the region -25
nt to -15 nt that coincides with the location of the branch
point, c) the intronic region closest to the splice site with
greatest weight (-8 nt to -1 nt; the weights for the AG
dimer are zero, since it appears in splice sites and decoys)
and d) the exonic region (0 nt to +50 nt). Slightly surpris-
ing are the high weights in the exonic region, which we
suspect only model triplet frequencies. The decay of the
weights seen from +15 nt to +45 nt might be explained by
the fact that not all exons are actually long enough. Fur-
thermore, since the sequence ends in our case at +60 nt,
the decay after +45 nt is an edge effect as longer substrings
cannot be matched.

2.5 Finding Motifs for Splice Site Detection

We again consider the classification of acceptor splice sites
against non-acceptor splice sites (with centered AG dimer)
from the C. elegans (cf. Appendix A.2 for details on the
generation of the data sets). We trained our Multiple Ker-
nel Learning algorithm (C = 2) on 5,000 randomly chosen
sequences of length 111 nt with a maximal oligomer
length of d = 10. This leads to M = 1110 kernels in the con-
vex combination. Figure 5 shows the results obtained for
this experiment (similarly organized as Figure 1). We can
observe (cf. Figure 5b&c) that the optimized kernel coeffi-
cients are biologically plausible: longer significant oli-
gomers were found close to the splice site position,
oligomers of length 3 and 4 are mainly used in the exonic
region (modeling triplet usage) and short oligomers near

the branch site. Note, however, that one should use more
of the available examples for training in order to extract
more meaningful results (adapting 1110 kernel weights
may have lead to overfitting). In some preliminary tests
using more training data we observed that longer oligom-
ers and also more positions in the exonic and intronic
regions become important for discrimination.

Note that the weight matrix would be the outer product of
the position weight vector (cf. Figure 5a) and the oli-
gomer-length weight vector (cf. Figure 5d), if position and
oligomer length would be independent. This is clearly not
the case: it seems very important (according to the weight
for oligomer-length 5) to consider longer oligomers for
discrimination (see also Figure 2) in the central region,
while it is only necessary and useful to consider mono-
mers and dimers in other parts of the sequence.

2.6 Understanding the Recognition of Alternatively Spliced

Exons

In this section we consider the problem of recognizing
one major form of alternative splicing, namely the exclu-
sion of exons from the transcript. It has been shown that
alternatively spliced exons have certain properties that dis-
tinguish them from constitutively spliced exons (cf. [17]
and references therein). In [17] we developed a method
that only uses information that is available to the splicing
machinery, i.e. the DNA sequence itself, and accurately
distinguishes between alternatively and constitutively
spliced exons (50% true positive rate at a 1% false positive
rate; see http://www.fml.tuebingen.mpg.de/raetsch/
projects/RASE for more details). Using our MKL method
we have identified regions near the 5' and 3' end of the
considered exons that carry most of the discriminative
information. We show that these regions contain many
hexamers that are significantly more often present than
average in constitutively spliced exons.

In order to recognize alternatively spliced exons we con-
sider the 5' and 3' end of the exons separately and use an
extended version of the WD kernel (exhibiting an
improved positional invariance, cf. [17]) on a 201 nt win-
dow centered around the exon start and end together with
additional kernels capturing information about the length
of the exon and the flanking introns [17].

To interpret the SVM classifiers result we employ Multiple

Kernel Learning to determine the weights and for

the two WD kernels around the acceptor (5') and donor

(3') site. In Figure 6 the learned weighting is shown

(weights for other subkernels not shown). A higher weight

at a certain position in the sequence corresponds to an

increased importance of substrings starting at this loca-

tion. Given this weighting, we can identify five regions

ββ ′5 ββ ′3

Optimized WD kernel weights considering subsequences starting at different positions (one weight per two positions)Figure 4
Optimized WD kernel weights considering subsequences
starting at different positions (one weight per two positions).

http://www.fml.tuebingen.mpg.de/raetsch/projects/RASE
http://www.fml.tuebingen.mpg.de/raetsch/projects/RASE

BMC Bioinformatics 2006, 7:S9

Page 7 of 14

(page number not for citation purposes)

which seem particularly important for discrimination: a-

b) within the upstream intron the region -70 nt to -40 nt

and -30 nt to 0 nt (relative to the end of the intron), c) the

exon positions +30 nt to +70 nt (relative to the beginning

of the exon) and d) -90 nt to -30 nt (relative to the end of

the exon). And finally e) the downstream intron positions

0 – 70 nt (relative to the beginning of the intron).

To illustrate that these regions represent distinct discrimi-
native features for the problem at hand, we counted the
occurrence of all hexamers in the positive and negative
examples. Using the frequency p- of occurrence of a hex-
amer in the negative examples as background model, we
computed how likely it is to observe the frequency p+ in
the positive sequences (E-value; using the binomial distri-
bution). In Table 1 we display for each of the five regions

Figure a) shows the average weight (over 10 runs) of the weights per position (one weight for two positions) and d) the aver-aged weights per oligomer length (uniform position weighting)Figure 5

Figure a) shows the average weight (over 10 runs) of the weights per position (one weight for two positions) and d) the aver-

aged weights per oligomer length (uniform position weighting). Figures b) displays the position and oligomer length combina-

tions that were found to be significantly used (40 bootstrap runs). Figure c) shows the likelihood for rejecting . In all runs

we used 5, 000 training examples.

BMC Bioinformatics 2006, 7:S9

Page 8 of 14

(page number not for citation purposes)

the six hexamers with highest E-value. In region a) the
motif CTAACC frequently appears in various variations,
while region b) is rich with C's and T's. Particularly inter-
esting seem the motifs AGTGAG and CAGCAG which
only appear significantly in the region near the exon start
and exon end, respectively. The downstream intron con-
tains many G's and T's. (Members of the CELF gene family
bind for instance to GT-rich regions; A. Zahler, personal
communication).) A more complete list of the over-repre-
sented hexamers are found on the supplementary web-site
http://www.fml.tuebingen.mpg.de/raetsch/projects/
RASE.

3 Conclusion
In this work we have developed a novel Multiple Kernel
Learning algorithm applicable to large-scale sequence
analysis problems that additionally assists in understand-
ing how decisions are made. Using a novel reformulation
of the MKL problem, we were able to reuse available SVM
implementations that, in combination with using tries,
have lead us to a very efficient MKL algorithm suitable for
the analysis of large scale sequence analysis problems. In
experiments on toy, splice-site detection and alternative
exon recognition problems we have illustrated the useful-
ness of the Multiple Kernel Learning approach. The opti-

mized kernel convex combination gives valuable hints at
which positions discriminative oligomers of which length
are located in the sequences. This solves to a certain extent
one of the major problems with Support Vector Machines:
now the decisions become interpretable. On the toy data
set we re-discovered hidden sequence motifs even in pres-
ence of a large amount of noise. In the first experiments
on the acceptor splice site detection problem we discov-
ered patterns in the optimized weightings which are bio-
logically plausible. For the recognition of alternatively
spliced exons we have identified several regions near the
5' and 3' end of the exons that display distinguished pat-
terns. It is future work to extend our computational eval-
uation and to consider other signal detection problems.

4 Methods
4.1 Support Vector Machines

We use Support Vector Machines [22] which are exten-
sively studied in the literature (e.g. [11,20,21]). Their clas-
sification function can be written as in (1). The αi's are the
Lagrange multipliers and b is the usual bias which are the
results of SVM training. The kernel k is the key ingredient
for learning with SVMs. It implicitly defines the feature
space and the mapping Φ via

In case of the afore mentioned WD kernel, Φ maps into a

feature space of all possible k-mers of length up to d for

each sequence position (D ≈ 4d+1L). For a given sequence

s, a dimension of Φ (s) is 1, if it contains a certain sub-

string at a certain position. The dot-product between two

mapped examples then counts the co-occurrences of sub-

strings at all positions.

For a given set of training examples (si, yi) (i = 1, ..., N), the
SVM solution is obtained by solving the following

optimization problem that maximizes the soft margin
between both classes [23]:

where the parameter C determines the trade-off between
the size of the margin and the margin errors ξi. The dual
optimization problem is as follows:

k s s s s, , .′() = () ′()Φ Φ

D

min

, ,

,

1

2

1

2

1

w

w

w

+

∈ ∈ ∈

() +() ≥ −

=

+

∑C

b

y b

i
i

N

D N

i i i

ξ

ξ

w.r.t.

s.t.

ξξ

Φ s ,, ,..., ,i N=

()
1

7

We use Multiple Kernel Learning to determine weights for the WD kernelFigure 6
We use Multiple Kernel Learning to determine weights for
the WD kernel. Shown is learned weighting for the WD ker-
nel at the acceptor and at the donor site. From areas of
higher weight (upstream intron: regions -70 nt to -40 nt and -
30 nt to 0 nt, Exon: +30 nt to +70 nt and -30 nt to -90 nt,
downstream intron 0 nt to +70 nt) overrepresented hexam-
ers have been extracted and are shown in Table 1.

http://www.fml.tuebingen.mpg.de/raetsch/projects/RASE
http://www.fml.tuebingen.mpg.de/raetsch/projects/RASE

BMC Bioinformatics 2006, 7:S9

Page 9 of 14

(page number not for citation purposes)

Note that there exist a large variety of different software
packages that can efficiently solve the above optimization
problem even for more than one hundred thousand of
examples (cf. references in [11] and also [12] to gain fur-
ther speedups when string kernels are used).

4.2 The Multiple Kernel Learning Optimization Problem

4.2.1 Idea

In the Multiple Kernel Learning (MKL) problem one is

given N data points (, yi) (yi ∈ {± 1}), where is sub-

divided into M components = (si,1, ..., si,M) with

 and kj is the dimensionality of the j-th com-

ponent. Then one solves the following convex optimiza-

tion problem [7], which is equivalent to the linear SVM

for M = 1:

where dj is a prior weighting of the kernels (in [7],

 has been chosen such that the com-

bined kernel has trace one). For simplicity, we assume

that dj = 1 for the rest of the paper and that the normaliza-

tion is done within the mapping φ (if necessary). Note

that the �1-norm of β is constrained to one, while one is

penalizing the �2-norm of wj in each block j separately.

The idea is that �1-norm constrained or penalized varia-

bles tend to have sparse optimal solutions, while �2-norm

penalized variables do not [24]. Thus the above optimiza-

tion problem offers the possibility to find sparse solutions

on the block level with non-sparse solutions within the

blocks.

4.2.2 Reformulation as a Semi-Infinite Linear Program

The above optimization problem can also be formulated
in terms of support vector kernels [7]. Then each block j

max k

with and

α α αi
i

N

i j i j
i j

N

−

∈

= =
∑ ∑1

21 1

y y

CN

i j (),,
,

s s

w.r.t. αα αα+ ≤ ααi y
N

i
i

=
=
∑ 0

8

1

.

()

si si

si

s i j
k j,() ∈

min

(,...,),

1

2
9

2
1

2

1

1

d Cj
j

M

i
i

N

M

β ξj jw

w w w

= =
∑ ∑

+ ()

=w.r.t. ww

w s

j
k

i j j i j
j

M

i

j

y b

∈ ∈ ∈ ∈

+

≥ −
=
∑

, , ,

, ,

ξξ ββ+ +
N M b

s.t. β ξ
1

1 ,, ,...,

,

∀ =

=
=
∑

i

j
j

M

N1

1
1

β

d s sj i j i ji
= ∑1 , ,,

Table 1: Shown are the top six ranked hexamers (by E-value) extracted for the upstream intron the in between exon and the following

downstream exon. The first column in the upper part shows the most important hexamers in the intron for the region -70 nt to -40 nt

relative to the end of the intron. The lower part states 6-mers contained -30 nt until the end of the upstream intron. Similarly the

second column displays hexamers in the exon from +30 nt to +70 nt (upper half, relative to exon start) and -30 nt to - 90 nt (lower part,

relative to exon end) and the last column 6-mers in the downstream intron from 0 nt to +70 nt.

Upstr. Intron Exon Downstr. Intron

6-mer E-val. 6-mer E-val. 6-mer E-val.

CTAACC 1.2e-17 AGTGAG 4.2e-11 TGTGTG 5.9e-31

CCCCCC 3.8e-11 TTTTTT 2.7e-09 TTGTGT 1.7e-24

TAACCC 9.8e-10 ATATAT 1.3e-08 GTGTGT 3.6e-16

CACTTT 6.2e-09 TATATA 3.6e-07 GTTGTG 4.4e-15

ATCCCC 1.6e-07 ATAGGT 4.8e-07 TGTTGT 3.3e-14

CTTTCC 2.4e-07 TAGGTT 5.0e-07 TGCATG 1.3e-13

CATTCT 1.3e-09 TTTAAA 1.8e-12

CTCTCT 1.9e-09 AATTTT 2.2e-10

GCATGT 4.4e-09 ATTTTA 2.9e-09

GTTGTC 4.4e-09 CAGCAG 1.2e-08

TCTCTA 2.2e-08 TAATTT 8.3e-08

CTCTAT 1.1e-07 TTCCCC 2.1e-07

BMC Bioinformatics 2006, 7:S9

Page 10 of 14

(page number not for citation purposes)

corresponds to a separate kernel (Kj)r,s = kj(sr,j, ss,j) com-
puting the dot-product in feature space of the j-th compo-
nent. In [7] it has been shown that the following
optimization problem is equivalent to (9):

In order to solve (10), one may solve the following saddle
point problem (Lagrangian):

minimized w.r.t. α ∈ , γ ∈ � (subject to α ≤ C and

∑i αiyi = 0) and maximized w.r.t. β ∈ . Setting the

derivative w.r.t. to γ to zero, one obtains the constraint

 and (11) simplifies to:

Assume α* would be the optimal solution, then θ* :=
S(α*) – ∑i αi is minimal and, hence, S(α) – ∑i αi ≥ θ* for
all α (subject to the above constraints). Hence, finding a
saddle-point of (12) is equivalent to solving the following
semi-infinite linear program:

4.2.3 A Column Generation Method

Note that there are infinitely many constraints (one for

every vector α). Typically algorithms for solving semi-infi-

nite problems work by iteratively finding violated con-

straints, i.e. α vectors, for intermediate solutions (β, θ).

Then one adds the new constraint (corresponding to the

new α) and resolves for β and θ [25]. The pseudo-code is

outlined in Algorithm 1. Note, however, that there are no

known convergence rates for such algorithms [25], but it

often converges to the optimal solution in a small number

of iterations [26,27]. (It has been shown that solving

semi-infinite problems like (13), using a method related

to boosting (e.g. [28]) one needs at most

 iterations, where is the unnormal-

ized constraint violation and the constants may depend

on the kernels and the number of examples N [24,29]. At

least for not too small values of this technique produces

reasonably fast good approximate solutions. See [8] for

more details.)

Fortunately, finding the constraint that is most violated
corresponds to solving the SVM optimization problem for
a fixed weighting of the kernels:

where K = ∑jβjKj. Due to the number of efficient SVM opti-
mizers, the problem of finding the most violated con-
straint can be solved efficiently, too.

Finally, one needs some convergence criterion. Note that
the problem is solved when all constraints are satisfied
while the β's and θ are optimal. Hence, it is a natural
choice to use the normalized maximal constraint viola-
tion as a convergence criterion. In our case this would be:

where (βt,θt) is the optimal solution at iteration t - 1 and
αt corresponds to the newly found maximally violating
constraint of the next iteration (i.e. the SVM solution for
weighting βt; cf. Algorithm 1 for details). We usually only
try to approximate the optimal solution and stop the opti-
mization as soon as εt ≤ ε, were ε was set to 10-4 or 10-3 in
our experiments.

4.2.4 A chunking algorithm for simultaneous optimization of α and β
Usually it is infeasible to use standard optimization tools
(e.g. MINOS, CPLEX, LOQO) for solving the SVM training
problems on data sets containing more than a few thou-
sand examples. So-called decomposition techniques over-
come this limitation by exploiting the special structure of

min

,

. . ,

() ,

1

2

w.r.t.

s t

γ α

γ
α

α α

Ν

2

0 0

−

∈ ∈
≤ ≤ =

∑

∑

i
i

i i
i

r s r s j r

C y

y y

αα
αα

K ss
r s

Sj

≤

()

∑
=

γ 2

10

,

: ()αα

L Si j j
j

M

i

: (())= − + − ()
=
∑∑1

2
112 2

1

γ α β γαα

+
N

+
M

β jj
=∑ 1

2

L Sj j i
ij

M

S

: ()

: ()

= − ()∑∑
=

=

1

2
12

1

β ααα

αα

max

,

. . ()

θ

θ β β

β α

w.r.t.

s t

∈ ∈ =

−

+

=

∑

∑

M
j

j

j j i
ij

S

with 1

1

21

αα
MM

i i
i

C y

∑

∑

≥

≤ ≤ =

()
θ

αfor all with andαα αα0 0

13

T = ()() log M /ε 2 ε̂

ε̂

β α α α αj
j

M

j i
i

r s r s r s i
ir s

S y y K
=
∑ ∑ ∑∑−

 = −

1

1

2
() ,

,

αα ,

ε
β

θ
t

j
t

j
t

i
t

ij

M

t

S

:

()

,= −
−

∑∑ =

1

1

21
αα α

BMC Bioinformatics 2006, 7:S9

Page 11 of 14

(page number not for citation purposes)

the SVM problem. The key idea of decomposition is to
freeze all but a small number of optimization variables
(working set) and to solve a sequence of constant-size
problems (subproblems of (8)).

The general idea of Chunking and Sequential Minimal
Optimization (SMO) algorithm has been proposed by
[30,31] and is implemented in many SVM software pack-
ages. Here we would like to propose an extension of the
Chunking algorithm to optimize the kernel weights β and
the example weights α at the same time. The algorithm is
motivated from an insufficiency of the column-genera-
tion algorithm described in the previous section: If the β's
are not optimal yet, then the optimization of the α's until
optimality is not necessary and therefore inefficient. It
would be considerably faster if for any newly obtained α
in the Chunking iterations, we could efficiently recom-
pute the optimal β and then continue optimizing the α's
using the new kernel weighting.

Intermediate Recomputation of β Recomputing β
involves solving a linear program and the problem grows

with each additional α-induced constraint. Hence, after

many iterations solving the LP may become infeasible.

Fortunately, there are two facts making it still possible: (1)

only a small number of the added constraints are active

and one may for each newly added constraint remove an

old inactive one – this prevents the LP from growing arbi-

trarily and (2) for Simplex-based LP optimizers such as

CPLEX there exists the so-called hot-start feature which

allows one to efficiently recompute the new solution, if

one, for instance, only adds a few additional constraints.

The SVM-light optimizer which we are going to modify,

internally needs the output = ∑iαiyi k(si, sj) for all train-

ing examples in order to select the next variables for opti-

mization [18]. However, if one changes the kernel

weights, then the stored values become invalid and

need to be recomputed. In order to avoid the full re-com-

putation one has to additionally store a M × N matrix fk,j

= ∑iα iyikk(si, sj), i.e. the outputs for each kernel separately.

If the β's change, then can be quite efficiently recom-

puted by = ∑kβkfk,j).

Faster α Optimization using Tries Finally, in each itera-

tion the Chunking optimizer may change a subset of the

α's. In order to update and fj,k one needs to compute

full rows j of each kernel for every changed αj. Usually one

uses kernel-caching to reduce the computational effort of

this operation, which is, however, in our case not efficient

enough since the effect of the kernel caches degrades dras-

tically in the case of having many kernels. Fortunately, for

the WD kernel there is a way to avoid this problem by

using so-called tries (cf. [16]; similarly proposed by [14]

and others). While we cannot improve a single kernel

evaluation (which is already (L)), it turns out to be pos-

sible to drastically speedup the computation of a linear

combination of kernels, i.e.

where I is the index set. The idea is to create a trie for each

position l = 1, ..., L of the sequence. We propose to attach

weights to internal nodes and the leaves of the trie, allow-

ing an efficient storage of weights for k-mers (1 ≤ k ≤ d).

Now we may add all k-mers (k = 1, ..., d) of si (i ∈ I) start-

ing at position l to the trie associated with position l

(using weight αiβk; operations per position: (d|I|)).

Once created, the l-th trie can be traversed down in order

to lookup which k-mers in a test sequence (starting at

position l) have a non-zero contribution to g(s):

Following the path defined by the k-mer u one adds all

weights along the way and stops when no children exists

(see Figure 7). Note that we now can compute g in (Ld)

operations (compared to (|I|Ld) in the original formu-

lation). Empirically we noticed that the proposed Chunk-

ing algorithm is often 3–5 times faster than the column-

generation algorithm proposed in the last section, while

achieving the same accuracy. In the experiments in Sec-

tion 2 we only used the Chunking algorithm with a chunk

size of Q = 41.

The pseudo-code of the algorithm which takes the discus-
sion of this section into account is displayed in Algorithm
2.

4.3 Estimating the Reliability of a Weighting

Finally we want to assess the reliability of the learned
weights β. For this purpose we generate T bootstrap sam-
ples and rerun the whole procedure resulting in T weight-
ings βt.

To test the importance of a weight βk,i (and therefore the

corresponding kernels for position and oligomer length)

f̂ j

f̂ j

f̂ j

f̂ j

f̂ j

g i i
i I

() (,),s s s=
∈
∑α k

BMC Bioinformatics 2006, 7:S9

Page 12 of 14

(page number not for citation purposes)

we apply the following method: We define a Bernoulli

variable ∈ {0,1}, k = 1, ..., d, i = 1, ..., L, t = 1, ..., T by

The sum has binomial distribution Bin

(T, p0), p0 unknown. We estimate p0 with

, i.e. the empirical probability to

observe P(= 1), ∀k, i, t. We test whether Zk,i is as large

as could be expected under Bin(T,) or larger, i.e. the

null-hypothesis is : p ≤ c* (vs : p > c*). Here c* is

defined as + 2Stdk,i,t and can be interpreted as an

upper bound of the confidence interval for p0. This choice

is taken to be adaptive to the noise level of the data and

hence the (non)-sparsity of the weightings βt. The hypoth-

eses are tested with a Maximum-Likelihood test on an α-

level of α = 0.05; that is c** is the minimal value for that

the following inequality hold:

For further details on the test see [32] or [33]. This test is

carried out for every . (We assume independence

between the weights in one single β, and hence assume

that the test problem is the same for every βk,i). If can

be rejected, the kernel learned at position i on the k-mer is

important for the detection and thus (should) contain

biologically interesting knowledge about the problem at

hand.

Authors' contributions
GR proposed and implemented the SILP formulation of
the MKL problem, prepared data sets, drafted the manu-
script and helped in carrying out experiments. SS invented
the Weighted Degree Kernel, analyzed several weighting
schemes and reformulated it as a MKL problem, helped
implementing the MKL algorithms and carried out most
of the experiments. CS developed the statistical signifi-
cance test and critically revised the article.

A Data Generation
A.1 Toy Data

We generated 11,000 sequences of length 50, where the
symbols of the alphabet {A, C, G, T} follow a uniform dis-
tribution. We chose 1,000 of these sequences to be posi-
tive examples and hid two motifs of length seven: at
position 10 and 30 the motifs GATTACA and AGTAGTG,
respectively. The remaining 10,000 examples were used as
negatives. Thus the ratio between examples of class +1 and
class -1 is ≈ 9%. In the positive examples, we then ran-
domly replaced s ∈ {0, 2, 4, 5} symbols in each motif.
Leading to four different data sets which where randomly
permuted and split such that the first 1,000 examples
became training and the remaining 10,000 validation
examples.

A.2 Splice Site Sequences

We collected all known C. elegans ESTs from Wormbase
[34] (release WS118; 236,868 sequences), dbEST [35] (as
of February 22, 2004; 231,096 sequences) and UniGene
[36] (as of October 15, 2003; 91,480 sequences). Using
blat [37] we aligned them against the genomic DNA
(release WS118). We refined the alignment by correcting
typical sequencing errors, for instance by removing minor
insertions and deletions. If an intron did not exhibit the
GT/AG or GC/AG dimers at the 5' and 3' ends, respec-
tively, then we tried to achieve this by shifting the bound-
aries up to 2 nucleotides. For each sequence we
determined the longest open reading frame (ORF) and
only used the part of each sequence within the ORF. In a
next step we merged agreeing alignments, leading to
135,239 unique EST-based sequences. We repeated the
above with all known cDNAs from Wormbase (release
WS118; 4,848 sequences) and UniGene (as of October 15,

Xk i
t
,

X
X

k i
t k i

t
k i t k i

t

,
, , , ,, :

,
.= > =

1

0

β τ E

else

Z Xk i k i
t

t

T
, ,= =∑ 1

ˆ #()/,p TMk i
t

0 = >β τ

Xk i
t
,

p̂0

p̂0 Xk i
t
,

0.05=
0 0

0α ≥ () = () =

 −()

=

P P Z ck,i reject
T

j
p p

j c

> ∗∗

∗∗

ˆ ˆ
0 01

TT

∑ .

βk i
t
,

Three sequences AAA, AGA, GAA beeing added to the trieFigure 7
Three sequences AAA, AGA, GAA beeing added to the trie.
The plot displays the resulting weights at the nodes.

BMC Bioinformatics 2006, 7:S9

Page 13 of 14

(page number not for citation purposes)

2003; 1,231 sequences), which lead to 4,979 unique
sequences. We removed all EST matches fully contained in
the cDNA matches, leaving 109,693 EST-based sequences.

We clustered the sequences in order to obtain independ-
ent training, validation and test sets. In the beginning each
of the above EST and cDNA sequences were in a separate
cluster. We iteratively joined clusters, if any two sequences
from distinct clusters a) match to the genome at most l00
nt apart (this includes many forms of alternative splicing)
or b) have more than 20% sequence overlap (at 90% iden-
tity, determined by using blat). We obtained 17,763 clus-
ters with a total of 114,672 sequences. There are 3,857
clusters that contain at least one cDNA. Finally, we
removed all clusters that showed alternative splicing.

Since the resulting data set is still too large, we only used
sequences from randomly chosen 20% of clusters with
cDNA and 30% of clusters without cDNA to generate true
acceptor splice site sequences (15,507 of them). Each
sequence is 398 nt long and has the AG dimer at position
200. Negative examples were generated from any occur-
ring AG within the ORF of the sequence (246,914 of them
were found). We used a random subset of 60,000 exam-
ples for testing, 100,000 examples for parameter tuning
and up to 100,000 examples for training (unless stated
otherwise).

Algorithms
Algorithm 1 The column generation algorithm employs a
linear programming solver to iteratively solve the semi-
infinite linear optimization problem (13). The accuracy
parameter ε is a parameter of the algorithm.

D0 = 1, θ1 = 0, for k = 1, ..., M

for t = 1,2, ... do

 obtain SVM's αt with kernel kt (si, sj) :=

 for k = 1, ..., M do

 end for

 if then break

(βt+1,θt+1) = argmax θ

 w.r.t β ∈ , θ ∈ � with

end for

Algorithm 2 Outline of the Chunking algorithm (exten-
sion to SVM-light) that optimizes α and the kernel weight-
ing β simultaneously. The accuracy parameter ε and the
subproblem size Q are assumed to be given to the algo-
rithm. For simplicity we omit the removal of inactive con-
straints. Also note that from one iteration to the next the
LP only differs by one additional constraint. This can usu-
ally be exploited to save computing time for solving the
LP.

fk,i = 0, , αi = 0, for k = 1, ..., M and i = 1,

..., N

for t = 1, 2, ... do

 Check optimality conditions and stop if optimal

 select Q suboptimal variables i1, ... iQ based on and α

 αold = α

 solve (8) with respect to the selected variables and
update α

 create trie-structures to prepare efficient computation of

 fk,i = fk,i + gk (si) for all k = 1, ..., M and i = 1, ..., N

 for k = 1, ..., M do

 end for

 if

(βt+1,θt+1) = argmax θ

 w.r.t β ∈ , θ ∈ � with ∑kβk = 1

 for r = 1, ..., t

βk
t =

1

M

βk
t

k i j
k

M

k (,)s s
=
∑

1

D y yk
t

r
t

s
t

r s k r s
r s

r
t

r

= −∑ ∑1

2
α α αk (,)

,

s s

D Dt
k
t

k
t

k

M

=
=
∑ β

1

1 − ≤
Dt

tθ
ε

+
M βk

k

=∑ 1

s.t. β θk k
r

k

M

D r t≥ =
=
∑ for 1

1

, ,...

f̂i = 0 βk
t =

1

M

f̂

g yk i i
old

q

Q
i k iq q q

() () ()s s s= −=∑ α α
1

k ,
q

D f yk
t

k r r r rrr
= − ∑∑1

2 , α α

D Dt
k
t

k
t

k

M= =∑ β
1

1 − ≥
Dt

tθ
ε

+
M

s t. . β θk k
r

k

M
D ≥=∑ 1

BMC Bioinformatics 2006, 7:S9

Page 14 of 14

(page number not for citation purposes)

 else

 θt+1 = θt

 end if

 for all i = 1, ... N

 end for

Acknowledgements
The authors gratefully acknowledge partial support from the PASCAL Net-

work of Excellence (EU #506778), DFG grants JA 379 /13-2 and MU 987/

2-1. We thank Alexander Zien, K.-R. Müller, B. Schölkopf, D. Weigel and

M.K. Warmuth for great discussions and C.-S. Ong for proof reading the

manuscript. G.R. would like to acknowledge a visiting appointment with

National ICT Australia during the preparation of this work.

N.B. The appendix contains details regarding the data generation. Addi-

tional information about this work can be found at http://www.fml.tuebin

gen.mpg.de/raetsch/projects/mkl_splice.

References
1. Zien A, Rätsch G, Mika S, Schölkopf B, Lengauer T, Müller KR: Engi-

neering Support Vector Machine Kernels That Recognize
Translation Initiation Sites. Biolnformatics 2000, 16(9):799-807.

2. Jaakkola T, Diekhans M, Haussler D: discriminative framework
for detecting remote protein homologies. J Comput Biol 2000,
7(1–2):95-114.

3. Zhang X, Heller K, Hefter I, Leslie C, Chasin L: Sequence informa-
tion for the splicing of human pre-mRNA identified by sup-
port vector machine classification. Genome Res 2003,
13(12):637-50.

4. Lanckriet G, Bie TD, Cristianini N, Jordan M, Noble W: A statistical
framework for genomic data fusion. Bioinformatics 2004,
20:2626-2635.

5. Delcher A, Harmon D, Kasif S, White O, Salzberg S: Improved
microbial gene identification with GLIMMER. Nucleic Acids
Research 1999, 27(23):4636-4641.

6. Kuang R, Ie E, Wang K, Wang K, Siddiqi M, Freund Y, Leslie C: Pro-
file-based string kernels for remote homology detection and
motif extraction. Computational Systems Bioinformatics Conference
2004 2004:146-154.

7. Bach FR, Lanckriet GRG, Jordan MI: Multiple kernel learning,
conic duality, and the SMO algorithm. Twenty-first international
conference on Machine learning 2004, 69:. ACM Press

8. Sonnenburg S, Rätsch G, Schäfer C: Learning Interpretable.
RECOMB LNBI 3500, Springer-Verlag Berlin Heidelberg 2005, for Bio-
logical Sequence Classification.:389-407.

9. Chapelle O, Vapnik V, Bousquet O, Mukherjee S: Choosing Multi-
ple Parameters for Support Vector Machines. Machine Learn-
ing 2002, 46(1–3):131-159.

10. Ong C, Smola A, Williamson R: Learning the Kernel with Hyper-
kernels. Journal of Machine Learning Research 2005, 6:1043-1071.

11. Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B: An Introduction
to Kernel-Based Learning Algorithms. IEEE Transactions on Neu-
ral Networks 2001, 12(2):181-201.

12. Sonnenburg S, Rätsch G, Schölkopf B: Large Scale Genomic
Sequence SVM Classifiers. Proceedings of the International Confer-
ence on Machine Learning, ICML 2005.

13. Rätsch G, Sonnenburg S: Accurate Splice Site Prediction for Caenorhabdi-
tis Elegans, MIT Press. MIT Press series on Computational Molecular Biol-
ogy 2003:277-298.

14. Leslie C, Eskin E, Noble W: The Spectrum Kernel: A String Ker-
nel for SVM protein Classification. Proceedings of the Pacific Sym-
posium on Biocomputing, Kaua'i, Hawaii 2002:564-575.

15. Vishwanathan S, Smola A: Fast Kernels for String and Tree
Matching. Kernel Methods in Computational Biology, MIT Press series on
Computational Molecular Biology, MIT Press 2003:113-130.

16. Fredkin E: Trie Memory. Comm ACM 1960, 3(9):490-499.

17. Rätsch G, Sonnenburg S, Schölkopf B: RASE: Recognition of
Alternatively Spliced Exons in C. elegans. Bioinformatics 2005,
21:i369-i377.

18. Joachims T: Making Large-Scale SVM Learning Practical. In
Advances in Kernel Methods – Support Vector Learning Edited by:
Schölkopf B, Burges C, Smola A. Cambridge, MA: MIT Press;
1999:169-184.

19. Engel Y, Mannor S, Meir R: Sparse Online Greedy Support Vec-
tor Regression. ECML 2002:84-96.

20. Cristianini N, Shawe-Taylor J: An Introduction to Support Vector
Machines Cambridge, UK: Cambridge University Press; 2000.

21. Schölkopf B, Smola AJ: Learning with Kernels Cambridge, MA: MIT Press;
2002.

22. Cortes C, Vapnik V: Support Vector Networks. Machine Learning
1995, 20:273-297.

23. Vapnik V: The nature of statistical learning theory New York: Springer Ver-
lag; 1995.

24. Rätsch G: Robust Boosting via Convex Optimization. In PhD
thesis University of Potsdam, Computer Science Dept., August-Bebel-Str. 89,
14482 Potsdam, Germany; 2001.

25. Hettich R, Kortanek K: Semi-Infinite Programming: Theory,
Methods and Applications. SIAM Review 1993, 3:380-429.

26. Bennett K, Demiriz A, Shawe-Taylor J: A Column Generation
Algorithm for Boosting. In Proceedings, 17th ICML Edited by: Lan-
gley P. San Francisco: Morgan Kaufmann; 2000:65-72.

27. Rätsch G, Demiriz A, Bennett K: Sparse Regression Ensembles in
Infinite and Finite Hypothesis Spaces. Machine Learning 2002,
48(1–3):193-221. Special Issue on New Methods for Model Selection
and Model Combination. Also NeuroCOLT2 Technical Report NC-
TR-2000-085.

28. Meir R, Rätsch G: An Introduction to Boosting and Leveraging.
In Proc. of the first Machine Learning Summer School in Canberra, LNCS
Edited by: Mendelson S, Smola A. Springer; 2003 in press.

29. Rätsch G, Warmuth MK: Efficient Margin Maximization with
Boosting. Journal of Machine Learning Research 2005,
6(Dec):2131-2152.

30. Vapnik V: Estimation of Dependences Based on Empirical Data Berlin:
Springer-Verlag; 1982.

31. Platt J: Fast Training of Support Vector Machines using
Sequential Minimal Optimization. In Advances in Kernel Methods
– Support Vector Learning Edited by: Schölkopf B, Burges C, Smola A. Cam-
bridge, MA: MIT Press; 1999:185-208.

32. Mood A, Graybill F, Boes D: Introduction to the Theory of Statistics third
edition. McGraw-Hill; 1974.

33. Lehmann E: Testing Statistical Hypotheses. Springer, New York, second edi-
tion edition 1997.

34. Harris TW, et al.: WormBase: a multi-species resource for
nematode biology and genomics. Nucl Acids Res 2004, 32:. Data-
base issue:D411-7

35. Boguski M, Tolstoshev TLC: dbEST-Database for "Expressed
Sequence Tags". Nat Genet 1993, 4(4):332-3.

36. Wheeler DL, et al.: Database Resources of the National Center
for Biotechnology. Nucl Acids Res 2003, 31:38-33.

37. Kent W: BLAT-the BLAST-like alignment tool. Genome Res
2002, 12(4):656-64.

38. Bennett KP, Momma M, Embrechts MJ: MARK: a boosting algo-
rithm for heterogeneous kernel models. KDD 2002:24-31.

39. Sonnenburg S, Rätsch G, Schäfer S, Schölkopf B: Large Scale Multi-
ple Kernel Learning. Journal of Machine Learning Research 2006.
Accepted

ˆ
,f fi k

t
k ik

= +∑ β 1

http://www.fml.tuebingen.mpg.de/raetsch/projects/mkl_splice
http://www.fml.tuebingen.mpg.de/raetsch/projects/mkl_splice
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10890390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10890390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10556321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10556321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8401577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8401577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11932250

	Abstract
	Background
	Results
	Conclusion

	1 Background
	2 Results and Discussion
	2.1 MKL Learning Detects Motifs in Toy Data set
	2.2 Optimization of WD Kernel Weights Speeds up Computations and Improves Accuracy
	2.3 Optimal Positional Importance Weighting is Related to Positional Weight Matrices
	2.4 Positional WD Kernel Weights Helps Understanding Splice Site Classification
	2.5 Finding Motifs for Splice Site Detection
	2.6 Understanding the Recognition of Alternatively Spliced Exons

	3 Conclusion
	4 Methods
	4.1 Support Vector Machines
	4.2 The Multiple Kernel Learning Optimization Problem
	4.2.1 Idea
	4.2.2 Reformulation as a Semi-Infinite Linear Program
	4.2.3 A Column Generation Method
	4.2.4 A chunking algorithm for simultaneous optimization of α and β

	4.3 Estimating the Reliability of a Weighting

	Authors' contributions
	A Data Generation
	A.1 Toy Data
	A.2 Splice Site Sequences

	Algorithms
	Acknowledgements
	References

