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Abstract. We present a novel approach for automatically learning mod-
els of temporal trajectories extracted from video data. Instead of using
a representation of linearly time-normalised vectors of fixed-length, our
approach makes use of Dynamic Time Warp distance as a similarity
measure to capture the underlying ordered structure of variable-length
temporal data while removing the non-linear warping of the time scale.
We reformulate the structure learning problem as an optimal graph-
partitioning of the dataset to solely exploit Dynamic Time Warp simi-
larity weights without the need for intermediate cluster centroid repre-
sentations. We extend the graph partitioning method and in particular,
the Normalised Cut model originally introduced for static image seg-
mentation to unsupervised clustering of temporal trajectories with fully
automated model order selection. By computing hierarchical average Dy-
namic Time Warp for each cluster, we learn warp-free trajectory models
and recover the time warp profiles and structural variance in the data.
We demonstrate the approach on modelling trajectories of continuous
hand-gestures and moving objects in an indoor environment.

Keywords. Automatic Model Order Selection, Dynamic Time Warping,
Graph-Partitioning, Modelling Video Content, Normalised Cut, Leven-
shtein Distance, Trajectory Modelling,Unsupervised Clustering

1 Introduction

Recognition of temporal trajectories in video plays an important role in a host of
interpretational tasks in computer vision, in particular human-computer inter-
faces and surveillance of moving objects. Learning effective and computationally
viable models from complex sets of trajectories however highlights one of the
fundamental problems of visual learning: unsupervised clustering of temporal
structures with arbitrary model order. Johnson and Hogg [6] learned trajectory
vertices in an unconnected state space and used a temporal pattern formation
to reconstruct the ordered correlation using a mechanism similar to the leaky
neuron memory. The model order was user-defined. Jebara and Pentland [5] auto-
matically learned the correlation of action-reaction pairs of trajectories through
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sliding windows. Entropy [2] and Minimum Description Length [16] based cri-
teria have also been proposed for the automatic holistic discovery of intrinsic
classes in the learning set. Both algorithms treat continuous temporal trajec-
tories as fixed-length data vectors and do not address the effects of localised
non-linear warping of the time scale, a key characteristic of the time-based gen-
erative processes which underpin temporal trajectories.

In extracting a trajectory of an object in motion, it is often the case that
local variations, in the speed of evolution of the continuous observation values,
arise while the underlying spatio-temporal structure of the trajectory remains
the same. A similar problem exists in speech recognition; the two main sources
of variations across time-based voice data are from non-linear warping of the
time scale and the variance of the pronunciation itself after the time scale has
been optimally restored [4].

However, measuring DTW distance between trajectories alone cannot be
adopted directly for clustering using traditional methods such as the k-means or
EM algorithms which require clusters represented by their centroids. To over-
come this problem, we exploit recent developments in Spectral Graph Theory
which have been originally proposed for image segmentation and perceptual
grouping. Weiss [17] provides a review of approaches exploiting the information
found in the eigenvectors of the affinity matrix. The matrix consists of similarity
weights which link pairs of training elements. Sarkar and Boyer [T1] determine the
number of clusters and cluster membership from the positive same-sign eigen-
vectors of the affinity matrix. Our experiments have shown that the method
does not yield any meaningful results when inter-cluster similarity is not in-
significant. Robles-Kelly and Hancock [10] use Sarkar and Boyer’s method as an
initial estimation of the clustering process and refine the clustering with an EM-
like re-estimation of cluster memberships. As such, the technique suffers from
the same problem of high inter-cluster affinity. Scott and Longuet-Higgins [12]
relocalise the first k eigenvectors to preserve the dominant cluster-membership
information but inter-cluster similarity information is lost. Shi and Malik [14]
show that the second generalised eigenvector yields the solution to a “normalised
cut” which minimises the disassociation resulting from splitting a weight-linked
dataset into two. However, the value of this threshold, a regularisation parame-
ter, which controls the quality of the clustering (the goodness of the model) and
the number of clusters obtained (the model order), were determined ad hoc.

The main focus of this paper is therefore to develop an unsupervised clus-
tering technique which can capture and model intrinsic structures of arbitrary
order from a dataset of temporal trajectories with nonlinear temporal varia-
tions. This is achieved by first removing non-linear time warping effects from
the data. In Section [2, we describe the use of Levenshtein distance, a Dynamic
Time Warp (DTW) distance [7], which determines the optimal time warp be-
tween two trajectories through dynamic programming and provides a measure
of the dissimilarity between the trajectories after the warping effects have been
removed. However, the DTW distance does not obey the metric axioms and
thus cannot be directly used in traditional clustering methods which rely on the
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computation of cluster centroids. In Section [3, we exploit the inverse DTW dis-
tance as a warp-free metric for a similarity graph representation and extend Shi
and Malik’s [14] approach by formulating the normalised cut with an automatic
threshold parameter using a self-validation principle based on the discriminant
analysis. This is to allow for a fully automatic graph partitioning to perform
unsupervised clustering of trajectories of any order. We show in Section ] how
DTW mean trajectories, local time warping profiles and DTW trajectory vertex
covariances can be learned for a better cluster representation. Experimental re-
sults are provided in Section Elto illustrate the structures learned from clustering
hand-gesture trajectories and moving objects in an indoor environment. We also
compare our approach with Robles-Kelly’s and Hancock’s EM-like clustering via
eigendecomposition of the affinity matrix [10].

2 Trajectory Representation and Distance Metrics

Any learning process would inherit the problem of non-linear time warping from
directly sampling continuous temporal trajectories into discrete vectors of ver-
tices, often hiding the underlying structure and mutual relationships among
visual trajectories [4]. Hidden Markov Models aim to automatically perform dy-
namic time warping during the recognition phase through the use of the forward-
backward or Viterbi algorithm. However, during the learning of the hidden states,
using either Vector Quantisation or other forms of clustering, the input trajec-
tory vectors are required to be of fixed-length. A linear time-normalisation of
the trajectories results in models that suffer from extra “dimensional” variance.
Structure-discovery methods such as Entropic minimisation and Minimum De-
scription Length would attempt to learn models of both non-linear warping and
the underlying structure of the trajectories when used on such a representation.
In this section, we exploit a representation that captures the underlying struc-
tural similarity relationships between trajectories while factoring out the effects
of non-linear local time-warping.

2.1 Dynamic Time Warp Distance

Computing the dissimilarity between two temporal trajectories can be formu-
lated as a dynamic programming problem that finds the best time warping from
one trajectory A = {ay,...,a,;,} to another B = {by,...,b,}, consisting of ver-
tices a; € RN and b; € RV. A simple DTW distance, as mostly used in computer
vision [9/T5H], would attempt to find the correspondence between the discrete
vertices of the two trajectories. However, sampling drifts and inaccuracies can
cause captured trajectories to be out of phase. In situations where the distance
between sampled vertices across trajectories are small compared to the distance
between consecutive vertices on the same trajectory, skewed sampling can cause
the DTW distances to be excessively large while the two trajectories are con-
ceptually, i.e. structurally, very similar. Alternatively, let us introduce Kruskal
and Liberman’s [7] version of DTW distance, adopted based on the Levenshtein
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distance used in string-edit comparisons [8]. To compensate the problem associ-
ated with other DTW distances, the interpolated Levenshtein distance matches
trajectories according to which vertices are linked with interpolated points on
the opposite trajectories, as shown in Fig. [[l The linkage cost w(a;, (bj,))] is
defined as the Euclidean distance from a; to an interpolated point with ratio r,
0 <r <1, between b; and bj;; and respectively for w[(a;,r), b;],

wla, (by, )] = [|a; — [bj + 7 (bj11 —by)][| (1)
wl(a;,7),b;] = || [a; + - (ai+1 — a;)] — b | (2)

Fig. 1. The Levenshtein distance: the accumulated cost of mapping a vertex from a
trajectory to an interpolated point from another trajectory.

The space of all possible links between vertices of the two trajectories can
be represented as a two-dimensional grid where each axis represents a trajectory
and each cell a vertex-interpolation point link. The cost of each link is inserted
into the corresponding cell in the grid and the task of finding the optimal time
warp is formulated as the dynamic programming problem of finding the path
with the minimum cost from one end of the grid mapping the first vertices
of the trajectories to the other end where the last vertices are mapped. More
precisely, the Levenshtein distance for computing the cost of the optimal time
warp between two trajectories A and B is defined as in [7],

. . minpg<r<1 w[arm (bn—1, 7")]
D(Aa B) - Dm—l,n—l + min { minogrgl 'w[(a,m,l7 7")7 bn] (3)

where

- Di—1j +ming<,<1 wlay, (by,7)]
D, j = min { D; j—1 + ming<,<1 w[(a;, ), b;] 4)

2.2 Reformulating the Interpolation Constraint for DTW

Kruskal and Liberman [7] formulated the cost of linking a vertex on one tra-
jectory to an interpolated point between two vertices on another trajectory as
the shortest Euclidean distance between the former vertex and the line segment
formed by the latter two vertices. The distance is therefore constrained by the
geometric configuration of the three vertices. An interpolation ratio r used in
the recurrent time warp cost equations to control this distance was defined.
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The dimensionality of the vertices and the smoothness of the trajectories con-
tribute to regularise the time warp correspondence matching process. Depending
on the underlying structure of the two trajectories, more than one vertex on one
trajectory may be linked to the same interpolated line segment on the other. In
worst case scenarios, the line segment may be sufficiently long so that a signifi-
cant portion of the other trajectory is arbitrarily matched against the degenerate
line segment. Computing a mini time-warp for the line segment would introduce
a local nested minimisation search in the dynamic programming task.

To overcome this problem, we introduce a shifting constraint r to prevent sub-
sequent matching to the same segment from violating the order of the linkage.
In Fig2 a;, a;+1 and a;4» all map to interpolation points on the same seg-
ment between b; and b;;. While the linkage from a; involves the minimisation
ming<,1<1 wla;, (bj,r1)], further minimisations along the same segment have a
lower limit of the same value as the previous r, i.e. min,j<,2<1 wla; 11, (b, r2)],
minrzgrgél w[ai_,_g, (bj, 7’3)]

In practical terms, the shifting constraint r is implemented into the dynamic
programming task by creating another grid R; ; to store the constraints used
for past cells. Another trace grid T; ; is also required to store tokens describing
which vertices have been linked to which segments during the computation of
past cells, e.g. Tokeng ; and Token; ¢. For a new cell, the dynamic programming
algorithm checks whether a vertex has been already linked to the current line
segment and automatically sets the lower bound on the interpolation constraint
to Tmin as follows,

1, ifF> 1,
r= (ai — bj) : (bj+1 — bj) r= Tmin 1f ; < Tmin (5)
(bjt1 —=bj) - (bjs1 = by) 7,  otherwise

where the added constraints are

o — Ri,j—la if Ti,j—l :T‘Oken()J7
mn 0, otherwise

i

=1

O_OQH
R

Fig. 2. Constraining the range of the interpolation point through subsequent linkage
to the same segment.
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2.3 A Representation: Warp-Free DTW Affinity Matrix

However, this DTW distance is computed by finding the cost of the optimal
time-warp through dynamic programming. As such, it does not obey the metric
axioms, in particular d(z, z) < d(z,y) + d(y, ) is not guaranteed. It is therefore
not a suitable representation for traditional clustering techniques, such as k-
means or Expectation Maximisation, where centroids are required to represent
clusters. In order to utilise DTW distance as a representation for unsupervised
clustering, we introduce a pairwise DTW dissimilarity measure to compute an
affinity matrix of link-weight similarities between any two trajectories in the
training set of N trajectories,

(7)

where o is the standard deviation of the DTW distance for the whole dataset,
1<s<Nand1<t<N.

Once this pairwise affinity matrix for a training set of warp-free trajectories
is established, applying graph partitioning methods to the matrix is analogous
to clustering the data-elements based purely on the structural similarity between
trajectories irrespective of any models used.

D(A,, A
Wi, = exp <_(t>)

20

3 Clustering by Automated Graph Partitioning

Recently, a number of authors have adopted approaches related to Spectral
Graph Theory for image segmentation and perceptual grouping [17]. An affinity
matrix consists of similarity link-weights of pairs of training elements. For static
image segmentation, Shi and Malik [T4] attempted to find the minimal (best)
“normalised cut” which partitions a graph into two sub-graphs and minimises
their inter-cluster affinities. They used a recursive binary-partitioning algorithm
together with a normalised cut threshold to stop the partitioning process. The
value of this threshold, a regularisation parameter, controls the quality of the
clustering and the number of clusters obtained. However, this is rather ad hoc
and cannot be set in a principled manner. In the following, we extend Shi and
Malik’s approach to the problem of clustering temporal trajectories with fully
automated model-order selection. We formulate the normalised cut threshold
parameter using self-validation based on the discriminant analysis principle.

3.1 Normalised Cut of Temporal Trajectories

We consider the trajectory learning problem as that of partitioning the graph
whose nodes consist of the trajectories themselves and the link-weights (edges)
corresponding to entries in the affinity matrix. Following Shi and Malik, the
normalised cut of partitioning a graph V' = {A;,..., Ay} into two sub-graphs
C and D is defined as,

cut(C, D) cut(C, D)
assoc(C,V) ~ assoc(D,V)

NCut(C, D) = (8)
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where, for simplicity, WAS A, = Wi.t,

cut(C,D) = Z WA A, assoc(C,V) = Z WaA. A, 9
A,ccAeD A,ecAev

The second generalised eigenvector of the affinity matrix, (D = W)z =
ADy, yields a real-valued solution to the normalised cut. The best (minimal)
normalised cut can be obtained by finding the threshold o which partitions the
eigenvector into two separate sub-graphs and minimises the Normalised Cut
(NCut) value. This process is recursively applied to an initial graph until the
minimal NCut value at each recursion exceeds a preset NCut threshold n. The
results were disjoint partitions {Cy,...,Cx} of V.

3.2 Unsupervised Normalised Cut

The components of the second generalised eigenvector of the affinity matrix can
either lie around two easily separable discrete values or they can be continuous
[I4]. The NCut method can only find a solution in the former case. As the
partitions are reduced to the intrinsic classes embedded in the data, the latter
case becomes the norm as the partitions become harder to split accurately. Shi
and Malik proposed a stability criteria based on ratios of histogram bins to
detect when the values become continuous so that the splitting process can be
stopped. However, ratios of histogram bins do not perform well when the values
of the second generalised eigenvector lie between the discrete and continuous
state. The method is therefore not guaranteed against over-segmentation of the
dataset, especially when the NCut threshold n is set high.

Moreover, the NCut method attempts to minimise the disassociation caused
by splitting graphs and implicitly maximise the association within sub-graphs. In
our case, this association is defined in terms of the affinity or similarity of trajec-
tories. An analogous method is Linear Discriminant Analysis where inter-cluster
variance is maximised while intra-cluster variance is minimised [3] . However,
a rather arbitrary parameter n, the NCut threshold, controls the depth of the
splitting process and the quality of the clustering. To overcome this problem, let
us formally define a cost function to find the optimal threshold nptimaer Which
maximises intra-cluster affinity and minimises inter-cluster affinity,

f(n) = =In(I(n)) + In(B(n)) (10)

where standard deviation functions for the intra-cluster I(n) and between cluster
affinities B(n) are computed from the partitioning resulting from parameter n,

I(n) = Z DD (Wen? (11)

Zz 0 77 2=0s€C, teC,
B(n) = Z > > (W) (12)
NZ — Z Z 2=0s€C, teC,,

n(C) = number of elements in set C' (13)
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We show in Section ] how an increasing n threshold causes increasing intra-
cluster I(n) and between cluster affinities B(n) on real data. The cost function
f(n), expressed in terms of the inverse log likelihood of the former and the log
likelihood of the latter, becomes a convex function which can be minimised.

4 Learning Warp-Free Models of Trajectories

Given an unsupervised clustering of warp-free temporal trajectories with auto-
matic model order selection, we want to learn representative models for different
classes of trajectories. DT'W has been used in speech recognition [4] and in
computer vision [I5] to learn models of classes by warping each instance of the
class to a reference voice pattern or trajectory and computing the average. The
reference trajectory is often manually selected using domain-specific heuristics
to control the characteristics of the model. Furthermore, the time warping is
asymmetric and biased towards the reference trajectory.

4.1 Hierarchical DTW Mean of Trajectories

To overcome the above problem, we adopt the weighted DTW average [7] in a
hierarchical merging algorithm to learn a warp-free trajectory representation of
the underlying structure of each cluster of trajectories. The warp-free trajectory
can subsequently be used as the “reference” to recover the time warping profile
and remaining structural covariance of each trajectory vertex for recognition.
Given a cluster of trajectories, the average Levenshtein trajectory can be
hierarchically computed in any order. However, to minimise interpolation errors,
we only average the two closest trajectories at each instant. More specifically,

1. Given a cluster of {x1,...,%,} trajectories, assign each with weight 1.

2. Temporarily make a set {x],...,x/,} of weight-normalised trajectories.

3. Find the two normalised trajectories with the smallest Levenshtein distance
and remove their non-normalised counterparts from the original cluster.

4. Compute the Levenshtein mean trajectory of the two trajectories according
to their weights and compute the weight of the mean trajectory from the
sum of the weights of the previous trajectories.

5. Insert the new mean trajectory into the original cluster.

6. Repeat from step 2 until only one trajectory remains.

4.2 DTW Covariance and Time Warp Profiles of Clusters

We compare the warp-free model trajectory of a cluster to its trajectories to
learn typical time warping profiles and the remaining structural covariance for
each vertex of the model trajectory. The final Levenshtein mean trajectory
{c1, -+, cp} of a cluster does not retain the time warp links with the elements
of the individual trajectories because of the hierarchical weight-warping process.
We recompute the linkage of each vertex in the mean trajectory to vertices of
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the cluster trajectories by finding the optimum time warp. A trajectory of co-
variances { X7, -+, X} for each vertex of the mean trajectory is then compiled.
We also compute a trajectory of local average time warping by finding the differ-
ence in time-stamps of the linked vertices to the mean vertex, e.g. t(a;) — t(ck).
This local time warping information and covariance are used to better guide the
scaling dynamics of the correlation particles used in CONDENSATION-based
trajectory recognition systems [I] . To this end, we summarise the algorithm as:

1. Find the Levenshtein time warps from the mean sequence {cy,---,cp} to all
the trajectories in the cluster S = {Aq,---,A,}.

2. For each vertex cj in the mean trajectory, find the set of time warp links from
the vertex to interpolated points on the other trajectories I, = {(cg, (a;,7)) :
a;, € AJA e S}

3. For each vertex cg, find the covariance

Sim Y @) -9 (@) e} (14)

I
(L) (Ck,(Ai,r))El)

and local time warp factor

1
twy, = () Z [t(ai) — k| (15)
Y e @imen
n(C) = number of elements in set C (16)

(a) (b)

Fig. 3. From left to right: (a) a hand-gesture dataset of 500 trajectories and (b) the
pairwise 500 x 500 affinity matrix of the elements of the dataset where black is the
most dissimilar and white is the most similar.

5 Experiments

The warp-free trajectory-learning algorithm was tested on a dataset of 500 hand
gestures from [I6], illustrated in Fig. Bl They were performed in random order
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from a repertory of 7 descriptive gestures and captured by a head and hand
tracking system developed by Sherrah and Gong [13]. The trajectories were
sampled 15 times per second and segmented by a multi-scale pause detection
algorithm developed by Walter [16], which was reported to yield 19 inherent
atomic gesture classes from visual inspection. We show the clustering solutions
obtained from different values of the NCut threshold in Fig.[5. We also plot the
average intra-cluster and inter-cluster affinity values as well as the number of
clusters found for each NCut threshold in Fig. [l The value of n for the optimal
partitioning can be seen to lie somewhere between 0 and 1.0. Of particular
interest is that the threshold n controls to what extent sub-graphs or clusters
are further split and thus defines the quality of the clustering as illustrated in
the reordered affinity matrices in Fig. Bl As n increases, the average intra-cluster
affinity increases while the average inter-cluster affinities also increases but by
a smaller factor. The number of clusters also increase as n is increased. The
relationship between the three values is shown in Fig. [7
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Fig. 4. Results from Kelly and Hancock’s method: The component values of the first
eigenvector of the affinity matrix of the gesture dataset. The top row (around 0.1)
indicates the membership of the trajectories to the first cluster while the other values
do not clearly separate the membership of the remaining trajectories to the other
clusters.

For comparison, we first implemented and tested Robles-Kelly and Hancock’s
[I0] grouping method which use Sarkar and Boyer’s [I1] method as an initial
estimate for the clustering. In both methods, the model order was obtained
from the number of same-sign eigenvectors of the affinity matrix with positive
eigenvalues. The non-zero same-sign values of the eigenvector were interpreted
as cluster membership indicators. Robles-Kelly and Hancock observed that the
method only works on datasets where the inter-cluster affinities are close to zero.
On our gesture data, we obtained a model order of 1. The values of the only
positive same-sign largest eigenvector are plotted in Fig. [ and it can be seen
that the non-zero values encode the membership of the first cluster while the
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near-to-zero values encode the combined membership of the other clusters. Our
dataset is therefore too complex for such a clustering algorithm with holistically
determined (directly from the eigenvectors) model order.

We compare the results of our unsupervised NCut to Shi and Malik’s thresh-
old value n of 0.04. This value is too small to break the strong between-class
similarities of the gesture dataset into significant structures as shown in Fig.
By minimising the cost function in Eqn. (IT), our unsupervised NCut searches
for the best compromise between finding partitions of high intra-class similarities
and splitting clusters with similar trajectories into partitions of high between-
class similarities. For the gesture dataset, the value of noptimaq: obtained is 0.5037
and the number of clusters found is 18. The unsupervised NCut has found the
intrinsic structure of the trajectory classes in Fig. B From a cursory look on
the trajectory classes obtained, our algorithm has identified three single-element
classes Fig. [§(p-r) as outliers. A few outliers have been included in some of the
clusters (g, h and j), while the segmentation of the remaining clusters match
the conceptual atomic gestures quite closely. Fig. Bl has been ordered to present
trajectories of similar shape but different directions next to each other, e.g. a
and e, i and j, k and 1, etc.

We have also tried the warp-free trajectory-learning algorithm on the Queen
Mary “can shop” experiment, as illustrated in Fig.[d Customers are tracked as
they enter the shop from the left, browse the array of cans in the centre of the
image, then move on to pay the shop-keeper at the right-end and exit from the
left again. There are 22 trajectories in the dataset with high semantical content
and the customers move according to their state of mind, i.e. entering, browsing,
more browsing, paying and leaving, sometimes not in any sensible order. Owing
to lack of space, only the reordered affinity matrices with 4 detected clusters
from our unsupervised NCut are shown in Fig. [0

Fig. 5. From left to right: The affinity matrix of the gesture dataset with elements of
the same cluster reordered to be adjacent to each other for NCut threshold n: 0.025,
0.075, 0.150, 0.275, 0.325.

6 Conclusion

We presented a comprehensive, fully automatic unsupervised technique for the
clustering of temporal trajectories of arbitrary model order. Levenshtein-distance
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(a) (b)

Fig. 6. From left to right: The reordered affinity matrix for (a) our unsupervised NCut
method (noptimar estimated to be 0.5037) and (b) Shi and Malik’s NCut with original
n threshold manually set to 0.04.

500

T T T T
—— Average intra—cluster affinity = = Number of clusters

— - Average between cluster affinity '

Affinity
Clusters

Fig. 7. A plot of the average intra-cluster affinity, inter-cluster affinity and no. of
clusters found for varying values of the NCut threshold n for the gesture dataset.

based Dynamic Time Warping was used to remove non-linear warping of the time
scale in temporal trajectories, which is a key characteristic of most stochasti-
cally generated temporal data. Owing to the fact that DTW distance is not a
Euclidean metric distance, traditional centroid clustering techniques such as k-
means or EM cannot be used. An affinity matrix was built from the inverse of
the pairwise DTW distance between trajectories. The clustering problem was
then treated as the optimal partitioning of the graph where the nodes consist
of the trajectories and the link weights consist of the affinities. We extended
the Normalised Cut graph partitioning method for unsupervised discovery of
intrinsic structures in the affinity matrix and the dataset by selecting the free
NCut threshold parameter n to maximise the intra-cluster affinity and minimise
the inter-cluster affinity of the final partitioning solution. Comparative experi-
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(a) (b) (c) (d)
(e) () (8) (h)

E——
e
=

(i) () (k) (1
\ (:*\

(m) (n) (o) )
(a) (x)

Fig. 8. From left to right, top to bottom: The clusters obtained from the unsupervised
NCut (Noptimar estimated to be 0.5037) on the gesture dataset. Of note is that most of
the gestures are performed in both directions and are separated into two clusters.

ments with existing techniques including Kelly and Hancock [10] and Shi and
Malik [14] indicate that the partitions yielded a much more accurate clustering
of the trajectory dataset when other Graph Theoretical methods have failed to
construct any meaningful clustering. Our results corresponded well to the con-
ceptual classes of observed trajectories. We also showed how warp-free DTW
mean trajectories, time-warp profiles and trajectory vertex covariances can be
learned from the data.
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Fig.9. From left to right, top to bottom: (a) The QMUL “can shop”. To illustrate
customer behaviour, we show selected frames for 5 typical events: (b) enter from left,
(b) browse cans in the middle, (d) take a can (optional), (e) pay shopkeeper on the
right (optional), and (f) leave shop through the exit on the left.

(a) (b)

Fig. 10. From left to right: (a) The affinity matrix of the object centroid trajectories
of the QMUL “can shop” (b) the reordered affinity matrix for noptimar = 0.2361 and 4
clusters obtained from unsupervised NCut.
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