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Abstract

We address the technical challenges involved in combining key features from several theories of the vi-

sual cortex in a single coherent model. The resulting model is a hierarchical Bayesian network factored

into modular component networks embedding variable-order Markov models. Each component network

has an associated receptive field corresponding to components residing in the level directly below it in

the hierarchy. The variable-order Markov models account for features that are invariant to naturally oc-

curring transformations in their inputs. These invariant features give rise to increasingly stable, persistent

representations as we ascend the hierarchy. The receptive fields of proximate components on the same

level overlap to restore selectivity that might otherwise be lost to invariance.

Keywords: graphical models, machine learning, Bayesian networks, neural modeling

1 Introduction

Supervised learning with a sufficient number of correctly labeled training examples is reasonably well under-

stood, and computationally tractable for a restricted class of models. In particular, learning simple concepts,

e.g., conjunctions, from labeled data is computationally tractable [62]. For applications in machine vision,

however, labeled data is often scarce and the concepts we hope to learn are anything but simple. Moreover,

adult humans have little trouble acquiring new concepts with far fewer examples than computational learning

theory might suggest. It would seem that we rely on a large set of subconcepts acquired over a lifetime of

training to quickly acquire new concepts [45, 33].

Our visual memory apparently consists of many simple features arranged in layers so that they build upon

one another to produce a hierarchy of representations [22, 55]. We posit that learning such a hierarchical

representation from examples (input and and output pairs) is at least as hard as learning polynomial-size

circuits in which the subconcepts are represented as bounded-input boolean functions. Kearns and Valiant

showed that the problem of learning polynomial-size circuits (in Valiant’s probably approximately correct

learning model) is infeasible given certain plausible cryptographic limitations [37].

However, if we are provided access to the inputs and outputs of the circuit’s internal subconcepts, then

the problem becomes tractable [56]. This implies that if we had the “circuit diagram” for the visual cortex

and could obtain labeled data, inputs and outputs, for each component feature, robust machine vision might

become feasible.

There are many researchers who believe that detailed knowledge of neural circuitry is not needed to solve

the vision problem. Numerous proposals suggest plausible architectures for sufficiently powerful hierarchical

∗A slightly amended version of this technical report will appear in the Annals of Mathematics and Artificial Intelligence.
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models [28, 44]. Assuming we adopt one such proposal, we are still left with the problem of acquiring

training data to learn the component features.

The most common type of cell in the visual cortex, called a complex cell by Hubel and Wiesel [32, 31], is

capable of learning features that are invariant with respect to transformations of its set of inputs or receptive

field. Consider, for example, a cell that responds to a horizontal bar no matter where the bar appears vertically

in its receptive field. Földiák [19], Wiskott and Sejnowski [65], Hawkins [24] and others suggest that we

can learn a hierarchy of such features by exploiting the property that the features we wish to learn change

gradually while the transformed inputs change quickly. To understand the implications of this viewpoint

for learning, it is as though we are told that consecutive inputs in a time series, e.g., the frames in a video

sequence, are likely to have the same label. We are not explicitly provided a label, but knowing that frames

with the same label tend to occur consecutively is a powerful clue to learning naturally occurring variation

within a concept class.

In this paper, we develop a probabilistic model of the visual cortex capable of learning a hierarchy

of invariant features. The resulting computational model takes the form of a Bayesian network [53, 35,

34] which is constructed from many smaller networks each capable of learning an invariant feature. The

primary contribution of this paper is the parameterization and structure of the component networks along

with associated algorithms for learning and inference. Since our model builds upon ideas from several

theories of the visual cortex, we begin with a discussion of those ideas and how they apply to our work.

2 Computational Models of the Visual Cortex

In this paper, we make use of the following key ideas in developing a computational model of the visual

cortex. Subsequent sections explore in detail how each of these ideas is applied in our model.

• Lee and Mumford [42] propose a model of the visual cortex as a hierarchical Bayesian network in

which recurrent feedforward and feedback loops serve to integrate top-down contextual priors and

bottom-up observations.

• Fukushima [22] and Földiák [19] suggest that units within each level of the hierarchy form composite

features from the conjunction of simpler features at lower levels to achieve shift- and scale-invariant

pattern recognition.1

• Ullman and Soloviev [61] describe a model in which overlapping receptive fields are used to deal

with the problem of false conjunctions which arises when invariant features are combined without

consideration of their relationships.

• Földiák [19], Wiskott and Sejnowski [65] and Hawkins and George [25] propose learning invariances

from temporal input sequences by exploiting the observation that sensory input tends to vary quickly

while the environment we wish to model changes gradually.

Borrowing from Lee and Mumford, we start with a hierarchical Bayesian network to represent the de-

pendencies among different cortical areas and employ particle filtering and belief propagation to model the

interactions between adjacent levels in the hierarchy. This approach presents algorithmic challenges in terms

of performing inference in networks on a cortical scale. To address these challenges, we decompose large

networks into many smaller component networks and introduce a protocol for propagating probabilistic con-

straints that has proved effective in simulation. Following Fukushima and Földiák, each component network

1In order to reliably identify objects invariant with respect to a class of transformations, Földiák assumes that the network is

trained on temporal sequences of object images undergoing these transformations.
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implements a feature that abstracts the output of a set of simpler components at the next lower level in the

hierarchy.

Generalization and invariance according to Ullman and Soloviev arise “not from mastering abstract rules

or applying internal transformations, but from using the collective power of multiple specific examples that

overlap with the novel stimuli.” Ullman and Soloviev essentially memorize fragments of images and their

compositional abstractions and then recombine them to deal with novel images. Their approach to modeling

invariants contrasts with approaches that rely on normalizing the input image [51]. The emphasis in the

Ullman and Soloviev model is on spatial grouping and neglects the role of time [38].

The observation that the stream of sensory input characterizing our visual experience consists of rela-

tively homogeneous segments provides the key to organizing the large set of examples we are exposed to.

Berkes and Wiskott [5] exploit this property to learn features whose output is invariant to transformations

in the input by minimizing the first-order derivative of the output. George and Hawkins offer an alternative

by memorizing frequently occurring prototypical input sequences which they characterize as having been

produced by a common cause, and then classifying novel sequences using Hamming distance to find the

closest prototype.

In our framework, each component network models the dynamics of the features in the level below, while

producing its own sequence of outputs which, combined with the output of proximate features on the same

level, produce a new set of dynamic behaviors. The dynamics exhibited by any collection of features need

not be Markov of any fixed order, and so we implement our component networks as embedded variable-order

Markov models [57] whose variable-duration states serve the same role as George and Hawkins’ prototypical

sequences. The network as a whole can be characterized as a spatially-extended hierarchical hidden Markov

model [18].

3 Hierarchical Graphical Models

Lee and Mumford model the regions of the visual cortex as a hierarchical Bayesian network. Let x1, x2, x3

and x4 represent the first four cortical areas (V1, V2, V4, IT) in the visual pathway and x0 the observed data

(input). Using the chain rule and the simplifying assumption that in the sequence 〈x0, x1, x2, x3, x4〉 each

variable is independent of the other variables given its immediate neighbors in the sequence, we write the

equation relating the four regions as

P (x0, x1, x2, x3, x4) = P (x0|x1)P (x1|x2)P (x2|x3)P (x3|x4)P (x4)

resulting in a graphical model or Bayesian network based on the chain of variables:

x0 ← x1 ← x2 ← x3 ← x4

In the Lee and Mumford model, activity in the ith region is influenced by bottom-up feed-forward data xi−1

and top-down probabilistic priors representing feedback from region i + 1:

❄ ❄

✻

✲

✻ ✻

❄

P (x0|x1)P (x1|x2)/Z1 P (x1|x2)P (x2|x3)/Z2 P (x2|x3)P (x3|x4)/Z3

x0 x1 x3x2

φ(x1, x2) φ(x2, x3) φ(x3, x4)

where Zi is the partition function associated with the ith region and φ(xi, xi+1) is a potential function

representing the priors obtained from region i + 1,
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(a) (b)

Figure 1: The simple three-level hierarchical Bayesian network (a) employed as a running example in the text

is shown along with an iconic rendering of a larger three-dimensional network (b) — two spatial dimensions

plus abstraction — using pyramids to depict the component subnetworks.

To provide more representational detail in modeling cortical areas, we begin with a graphical model

consisting of nodes arranged in K levels. Each directed inter-level edge connects a node in level k to a node

in level k − 1. There are also intra-level edges, but, as we will see, these edges are learned and, hence,

not present in the graph initially. In general, each level can have more or fewer nodes than the level below

it in the hierarchy. However, to illustrate the concepts in our model, we refer to the simple, three-level,

hierarchical graphical model shown in Figure 1.a.

The term subnet refers to a set of nodes considered together for purposes of decentralized inference. The

nodes associated with a particular subnet consist of one node in level k, plus one or more of this node’s

children in level k−1. For reasons that will become apparent in the next section, the node in level k is called

the subnet’s hidden node, and the subnet is said to belong to level k. The set of the hidden node’s children

in level k − 1 is called the subnet’s receptive field. All of the nodes in the network except those in the input

level (k = 1) are discrete, nominal-valued latent variables.

The receptive fields for different subnets can overlap, but each node (with the exception of nodes in the

input level) is the hidden node for exactly one subnet. The node labeled x1 in Figure 1.a is the hidden node for

the subnet with receptive field {y1, y2, y3}. Since we are interested in modeling the visual cortex, receptive

fields extend in two spatial dimensions, and so we depict each subnet as a three-dimensional pyramid (two

spatial dimensions plus abstraction in the hierarchy of features), and the entire model as a hierarchy of

pyramids as illustrated in Figure 1.b.

Assuming that each node recursively spans the spatial extent of the nodes in its receptive field, subnets

tend to capture increasingly abstract, spatially diffuse features as we ascend the hierarchy. All nodes have

roughly the same degree, but the length of edges increases with the level, assuming the obvious three-

dimensional embedding (see Figure 1.b) and in keeping with the anatomical observations of Braitenberg

and Schuz [7]. This property (illustrated in Figure 2) implies that the diameter (the number of edges in the

longest shortest path linking any two nodes in a graph) of the subgraph spanning any two adjacent levels in

the hierarchy decreases as we ascend the hierarchy.

The basic responsibility of a subnet is to implement a discrete-valued feature that accounts for the vari-

ance observed in the nodes comprising its receptive field. If we assume variables z1, ..., z5 are for input only,

then there are four subnets shown in Figure 1.a. Now suppose we expand the model in Figure 1 to form a

subnet graph as depicted in Figure 3. There is an edge between two subnets in the subnet graph if they share

one or more variables.

The nodes that comprise a subnet constitute a local graphical model implementing the feature associated

with the subnet. The edges in this local graphical model include those connecting the hidden node to the

nodes in its receptive field plus additional edges (some of which are learned) as described in the next section.
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Figure 2: As we ascend the hierarchy, the in- and out-degree of nodes remain constant while the average

length of the intra-level edges in the Cartesian embedding of the graph increases, and the diameter of sub-

graphs spanning adjacent levels decreases.

Figure 3: The hierarchical network from Figure 1.a is expanded to form a graph of subnets.

The internal state of each subnet is summarized by a local belief function [53] that assigns a marginal

distribution P (x|ξ) to each variable x where ξ signifies evidence in the form of assignments to variables in

the input level. The output of a feature is a distribution over the associated subnet’s hidden node assigned

by the belief function. The input of a feature corresponds to the vector of outputs of the features associated

with its receptive-field variables. In the simplest implementation of our model, every subnet updates its local

belief function during each primitive compute cycle.

Inference is carried out on the subnet graph in two passes using a variant of generalized belief propa-

gation in which the subnet graph doubles as a region graph [66]. In each complete input cycle, evidence is

assigned to the nodes in the input level, and potentials are propagated up the hierarchy starting from the input

level and back down starting from the top. Each complete input cycle requires twice the number of primitive

compute cycles as there are levels in the hierarchy.

If there is no overlap among receptive fields and no intra-level edges, this two-pass algorithm is exact,

and a single pass is sufficient for exact inference. If these two conditions are not met, the algorithm is
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Figure 4: On the left (a) is a depiction of the first two levels in a hierarchy of spatiotemporal abstractions.

Spatial variables are projected onto horizontal rows and time extends in the direction of the vanishing point.

The nine variables in the first level enclosed in a rectangle identify the spatiotemporal receptive field of

one variable in the second level. The graphic on the right (b) illustrates the three stages of spatiotemporal

pooling: (1) spatial abstraction, (2) temporal modeling and (3) spatiotemporal aggregation.

approximate, but it produces reasonably good approximations when tested against an exact algorithm on

small networks (see Murphy et al [47] and Elidan et al [14] for related studies). We limit the propagation

of potentials between subnets on the same level; subnets whose receptive fields do overlap participate in a

limited exchange of potentials described in Section 7. If two variables on the same level are dependent and

the receptive fields for their respective subnets do not overlap, their dependence must be realized primarily

though paths ascending and descending the hierarchy.

4 Embedded Hidden Markov Models

Temporal contiguity is at least as important as spatial contiguity in making sense of the world around us.

Gestalt psychologists refer to the notion of grouping by common fate, in which elements are first grouped

by spatial proximity, and then they are separated from the background when they move in a similar direc-

tion [64]. Research on shape from motion attempts to reconstruct the three-dimensional shape of objects

from sequences of images by exploiting the short baseline between the consecutive frames of the image se-

quence [60]. While there are areas of the cortex (the lateral occipital complex) that appear to be specialized

for processing shape — relating primarily to spatial contiguity — and areas (the medial temporal and ad-

jacent motion-selective cortex) that appear to be specialized for processing motion — relating primarily to

temporal contiguity, the exact way in which the two are brought together is unclear [49].

We assume that spatial and temporal information is both integrated and generated at all levels of the

cortex simultaneously, resulting in a hierarchy of spatiotemporal abstractions (Figure 4.a). In our model,

integration within a level takes place in three stages as illustrated in Figure 4.b. In the first stage, collections

of variables corresponding to the outputs at one level in the hierarchy are pooled to construct a vocabulary of

spatiotemporal patterns. The second stage analyzes sequences of such patterns to produce a temporal model

accounting for the way in which these patterns evolve over time. In the third and final stage we use the

temporal model to infer a new abstract output variable that reproduces persistent, stable patterns in the input.

To understand how we model time, it is useful to think of the hierarchical model described in the previous

6



Figure 5: An illustration of a hidden Markov model embedded in a subnet

section as a slice in time, and its nodes as state variables in a factorial Markov model. However, rather than

reproduce the entire graphical model n times to create one large Markov model with n time slices, we embed

a smaller hidden Markov model inside of each subnet as illustrated in Figure 5. To model the passage of time,

we replicate the local graphical model in each slice of the embedded model to represent a Markov process

in which the hidden variable represents the hidden state of the process and the variables in the hidden node’s

receptive field represent the multivariate observations of the process.

This embedding has a number of features in common with our earlier work in developing the dynamic

Bayesian network (DBN) model [13], and the application of such graphical models in robotics [3]. Unlike a

conventional static Bayes network, the subnet graph with its embedded Markov models retains state.2 At any

given instant, the slices within a given subnet are populated by evidence in the form of variable instantiations

in the case of the input level and propagated potentials in all other cases. On each complete input cycle,

evidence is shifted so that each slice is assigned the evidence previously assigned to the slice “on its right”,

new evidence is used to fill the rightmost slice, and the oldest evidence is eliminated in the process. Only the

potentials in the rightmost slice are updated, and the Markov model serves as a smoothing filter, and, as we

will see, the mechanism whereby we implement invariant features.

While the above illustration provides the right conceptual picture, the number of time slices shown is

a bit misleading. The model we propose is both simpler — in that we can get by with only two slices by

exploiting the Markov property, and more complex — in that it requires additional latent variables to mediate

between the hidden state of the process and the sequences of multivariate observations. By embedding the

Markov models within subnets, we can account for the possibility that the inter-slice duration varies among

subnets and thereby represent change at many temporal scales and over long spans of time. For example,

in a hierarchy of subnets in which one slice of a subnet always corresponds to two slices of its children in

the subnet graph, the inter-slice duration in the highest level will be exponentially longer (in the number

of levels in the hierarchy) than the inter-slice duration of the subnets in the input level. The result is a

spatially-extended version of a hierarchical hidden Markov model (HHMM) [18].

Figure 6.a shows the state-transition diagram for a three-level hidden Markov model. Each state in the

HHMM either emits an output symbol or calls a subroutine (sub automaton) at the next lower level in the

hierarchy. Control returns to the caller when the subroutine enters an end state Figure 6.b shows how to

represent a HHMM as a multi-slice DBN. The final-state variables, f i
t , are used to represent entering an end

state, and to control transitions in the next higher level. If every sub automaton transitions through at least

2The state retained in the slices of embedded Markov models is analogous the trace mechanisms used by Földiák [19] and Barto

and Sutton [2].
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(a)

(b)

Figure 6: The top graphic (a) shows the state-transition diagram for a three-level hierarchical hidden Markov

model. Solid arcs represent transitions between states on the same level of abstraction. Dashed arcs represent

one HMM calling a subordinate HMM in a level lower in the hierarchy; think of the caller as temporarily

relinquishing control of the process to a subroutine. Terminal states — those not calling subroutines — are

shown emitting a unique symbol, but in general such states may have a distribution over a set of output

symbols. Nodes drawn with two concentric circles correspond to end states and signal returning control to

the caller. The bottom graphic (b) depicts the same model as in (a), but in this case represented as a dynamic

belief network where xi
t denotes the hidden state on level i at time t, yt is the observation at time t and f i

t is

used to represent entering an end state (after [48]).
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Figure 7: By storing a constant number of slices per subnet, a subnet graph requiring only O(K) memory

can approximate a hierarchical hidden Markov model represented as a dynamic Bayesian network with K
levels and O(2K) slices. In the graphic, only the nodes enclosed in ellipses are realized in the subnet graph

at the time corresponding to the last slice.

Figure 8: The state transition diagram on the right (a) depicts a stochastic automaton with two distinct sub

automata. The automaton spends most of its time cycling between states 1 and 2, or cycling between states 3

and 4. The goal of slow feature analysis — as depicted in (b) — is to identify these sub automata and cluster

the states accordingly.

two states before entering an end state, it will require a DBN representing a K-level HHMM with O(2K)
slices to simulate one state transition in the top level. Fortunately, we can approximate such a HHMM with

only O(K) space as illustrated in Figure 7.

5 Learning Invariant Features Using Inertial Priors

Before continuing with our discussion of embedded Markov models, we consider what it means to learn

invariant features. Imagine a sequence of observations — quite likely noisy — and suppose the observations

are of different shapes undergoing various transformations — quite likely nonlinear. Assume that consecutive

observations in the sequence tend to come from observing the same shape undergoing the same transforma-

tion, but that periodically the shape or the transformation changes. Figure 8.a shows the state-transition

diagram for a stochastic finite-state automaton characterizing this situation.

The automaton has four states labeled 1 through 4 and three outputs labeled a, b and c. The edges in

the diagram are labeled with transition probabilities, and following each transition the automaton emits the
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Figure 9: This graphic illustrates the key components involved in learning a variable-order hidden Markov

model embedded in a subnet. An observation model (a) maps input yt

i
onto a set of atomic single-observation

states σ ∈ Σ. A bounded-order hidden Markov process (b) is used to account for the evolution of the atomic

single-observation states thereby modeling the transformations governing the input. The bounded-order

Markov model over σ ∈ Σ is then mapped to a first-order Markov model (c) over a set of composite states

ω ∈ Ω. The composite states are clustered (d) to form a set of output classes — the values of xt

i
— so that

composite states that tend to follow one another in time are in the same class.

output associated with its current state. If we were to run this automaton, we would expect it to alternate

between states 1 and 2 for a while, eventually transition to 4, alternate between 3 and 4 for a while, transition

to 1, and so on. The two sets of states that are circled in Figure 8.b correspond to the sub automata on a

given level in a hierarchical hidden Markov model. Learning the invariant feature of a subnet is tantamount

to learning the sub automata governing the input to that subnet. To illustrate the process of learning invari-

ant features, we examine a sequence of graphical models beginning with Figure 5, extending through four

intermediate stages in Figure 9, and culminating in the final form shown in Figure 10.

The first stage involves learning an observation model and is depicted in Figure 9.a. In order to enable

learning invariants, we complicate the picture of the embedded Markov model in Figure 5 by introducing a

new latent variable that mediates between the subnet hidden variable (xt
1) and its set of observed variables

(yt

i
). In describing the state space for this new latent variable, we find it useful to distinguish between the

set of composite variable-duration states, denoted ω ∈ Ω, and the set of atomic single-observation states,
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denoted σ ∈ Σ. Atomic states comprise our vocabulary for describing spatiotemporal patterns; think of

the atomic states as the primitive symbols emitted by the sub automata in the hierarchical hidden Markov

model. Composite states represent the variable-duration distinctive features of the temporal model; think

of the composite states as the signature bigrams, trigrams and, more generally, n-grams that constitute our

language for describing complex spatiotemporal patterns.

Let yyyt = 〈y1
1, ..., y

t

M
〉 signify the multivariate observation at time t. If the yi are continuous, we might

use a mixture of Gaussians to model the observations. The density relating observations to atomic states in

this case is:

p(yyy|σ) =

H
∑

k=1

p(z = h|σ)p(yyy|z = h)

where p(yyy|z = h) = N (yyy|µh,Σh) is a multivariate Gaussian and H is the number of mixture components.

Unfortunately, only the level-one variables are continuous in our model. For all of the other levels in

the hierarchy, the receptive-field variables in subnets are nominal valued, suggesting that we might be able

to use naive Bayes, P (yyy|σ) =
∏

M

i=1 P (yi|σ), to model observations. It is important, however, that we be

able to model the dependencies involving the variables in receptive fields. Instead of the traditional naive

Bayes model, we use a variant of the tree-augmented naive Bayes networks of Friedman et al [21] to model

observations:

P (yyy|σ) =

M
∏

i=1

P (yi|Parents(yi), σ)

where Parents(yi) denotes the set of parent nodes of yi in the graphical model determined by the Friedman

et al algorithm. The Friedman et al algorithm serves to determine the set of intra-level edges that were left

unspecified in the initial description of the underlying Bayesian network.3

Each level in the hierarchy tends to compress both space and time, inducing additional dependencies

among the variables in the higher levels and rendering first-order models inappropriate. To account for

these dependencies, we model the dynamics directly in terms of the atomic single-observation states using a

bounded-memory Markov process with transition probabilities defined by

P (σt|σt−1, ..., σ0) = P (σt|σt−1, ..., σt−L)

where L is the bound on the order of the Markov process. The resulting model is shown in Figure 9.b. with

L = 3. To avoid the combinatorics involved in the use of higher-order models, we employ variable-order

Markov models [57] to represent these long-range temporal dependencies. Variable-order Markov models

have the advantage that they tend to require fewer parameters, and so provide some control over sample

complexity.4

We use a continuous-input variant of the probabilistic suffix tree algorithm [57] following the work of

Sage and Buxton [59] to learn a variable-order stochastic automaton modeling the underlying dynamics. The

states of this automaton correspond to the leaves of the suffix tree and thus the composite variable-duration

hidden states of our embedded Markov model.5 Each composite variable-duration state maps to a sequence

of atomic single-observation states, ω ∈ Ω 7→ Σk for some k, and the transition probabilities are modeled as

the first-order Markov process P (ωt|ωt−1, ..., ω0) = P (ωt|ωt−1) shown in Figure 9.c.

3We are also experimenting with a variant of the structural expectation maximization (SEM) algorithm [20] as a means of

realizing a small subset of a much larger set of potential inter-level connections and implementing a version of Hebbian learning to

establish inter-level edges.
4Variable-duration hidden Markov models as described by Rabiner in [54] offer a representationally equivalent alternative, but

tend to require more parameters.
5Actually, the suffix tree has to be expanded to define a transition function on all pairs of states and symbols. Appendix B of [57]

describes how to construct a probabilistic suffix automaton from the probabilistic suffix tree.
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Figure 10: The four stages illustrated in Figure 9 can be combined a single graphical model whose parameters

are learned by expectation maximization. The assignment of the conditional probability distribution for the

variable xt
1, P (xt

1|x
t−1
1 ), is governed in part by an inertial prior that biases parameter estimation in favor of

models in which (the value of) xt
1 tends to persist.

The final form of the embedded hidden Markov model shown in Figure 9.d is determined by soft clus-

tering the composite states to obtain the conditional probability P (ωt
1|x

t
1). We apply a form of spectral

analysis to the composite state transition matrix [50] and then apply soft K-means to the resulting vectors

using greedy expectation maximization [63]. This final embedded model is related to the input/output hidden

Markov model of Bengio and Frasconi [4] and the sparse Markov transducer of Eskin et al [15].

For purposes of exposition, we presented the embedded hidden Markov model in stages to illustrate

the main components of the model. Indeed, learning embedded models in stages has certain advantages in

terms of online and distributed implementations. However, it is possible and instructive to provide a graph-

ical model that precisely specifies the topology of the network, as well as any assumptions in the form of

prior knowledge required for inference. The key assumption in our model is that the features we are inter-

ested in learning change slowly even though the input is changing rapidly as a result of naturally occurring

transformations. This is the assumption implicit in our use of spectral clustering to define P (ωt
1|x

t
1).

To make this assumption explicit in our model we first need to represent that the output at time t depends

on the output at t − ∆. We do this by adding an arc from xt−∆ to xt in Figure 9.d to obtain the graphical

model shown in Figure 10. To represent the bias that the output changes slowly, we introduce the notion of

an inertial prior on the parameters of the (output) state transition matrix.

Heckerman [26] introduced the likelihood equivalent uniform Bayesian Dirichlet (BDEU) metric as a

means of scoring structures in learning Bayesian networks. To implement a prior using the BDEU metric,

we first have to choose an equivalent sample size, which specifies the degree to which we expect the model

parameters to change as we account for new evidence during parameter estimation. The equivalent sample

size is converted into a matrix of pseudo counts weighted to account for the size of the conditional probability

tables we are trying to learn. The pseudo counts are used during expectation maximization to adjust the

expected sufficient statistics in updating the model parameters. Dirichlet priors serve as a regularizer and

help to prevent over-fitting.

To implement an inertial prior for the model in Figure 10, we simply re-weight the pseudo counts within

the state-transition table representing P (xt|xt−∆) by fattening up the entries along the diagonal that govern

self-transitions. With this additional bias, we can learn models that reliably identify and track the states of

sub automata comprising the dynamics of subnet input. The method works across a range of processes and
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Figure 11: An illustration of how temporal resolution is determined within a hierarchy of spatiotemporal

features. Each of the four red boxes represents a sequence of output distributions of the binary hidden

variable for some subnet. The shaded green bars provide an indication of the sampling rate for the subnets

immediately upstream of the specified variables.

is not sensitive to the parameter governing the re-weighting of diagonal entries.

5.1 Variable-duration Hierarchical Hidden Markov Models

Hierarchical hidden Markov models [18] allow us to model processes at different temporal resolutions. We

could force each subnet to span a greater temporal extent than its children by having it sample the output

of its children at intervals, rather than aligning the slices of its embedded hidden Markov model one-to-one

with those of its children. In this section, we briefly explore another alternative that we are considering for

the distributed implementation of our model.

There is no need to specify distinct learning and inference phases in our model, but it is simpler to

explain what is being learned if we make such a distinction. Assume for the sake of discussion, that learning

proceeds one level of subnets at a time starting from bottom of the hierarchy. Each individual subnet receives

a sequence of outputs (as described in Section 3) from each of the features associated with the nodes in its

receptive field.

During each primitive compute cycle, each subnet collects potentials from each of its neighbors in the

subnet graph, updates its belief function, and produces an output. Each subnet also buffers some fixed

number of outputs from the subnets in its receptive field. It is important to note, however, that while a subnet

may produce an output at time t, that output need not be directly used in updating the subnets receiving that

output — at least not in the sense that every output corresponds to a slice in some embedded hidden Markov

model.

If we assume that the period of the primitive compute cycle is short enough that we can recover the full

Fourier spectrum of the signal underlying the sequence of outputs produced by any collection of subnets,

then we use the Nyquist rate (twice the period of the highest frequency component in the Fourier spectrum)

to determine the delay between atomic single-observation states.6 Figure 11 attempts to render this sampling

process graphically. Each of the four red boxes in the figure depicts a sequence of output distributions of the

hidden variable (binary in this example) for some subnet. The shaded green bars provide an indication of the

sampling rate for the subnets immediately upstream of the specified variables. These samples correspond to

the multivariate observations yyyt introduced earlier and serve to instantiate the slices in the embedded hidden

Markov models. Given that the processes defined on Ω are first-order Markov (in contrast with the processes

defined on Σ), we don’t actually have to keep around more than two slices since the past output history can

now be summarized in a single slice.

6There is evidence to suggest that cortex is capable of performing a similar sort of Fourier analysis as part of constructing spatial

representations [39].
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5.2 Balancing Selectivity and Invariance

Each subnet can now be viewed as identifying the sub automata responsible for its observed input. Suppose

the atomic states Σ are associated with patterns of light and dark corresponding to simple shape fragments

such as the following: . Consider the case of two subnets with adjacent receptive fields

presented with the following sequences of inputs and producing x
(1)
1 and x

(2)
1 , respectively, as output:

The top subnet produces x
(1)
1 for the sequence σ

(1)
1 , σ

(1)
2 , σ

(1)
3 , σ

(1)
4 and the bottom subnet produces x

(2)
1 for

the sequence σ
(2)
1 , σ

(2)
2 , σ

(2)
3 , σ

(2)
4 , since they have been trained on moving images and produce output that is

invariant to translation.

Suppose that a third subnet resides in the level above and takes as input the output of subnets one and

two. Subnet three would see x
(1)
1 and x

(2)
1 and might classify this pattern as a somewhat longer bar tilted at

approximately 5◦ off vertical and moving right (or up, e.g., see Figure 12), but what happens in the following:

In this case, subnets one and two might again output x
(1)
1 and x

(2)
1 , since they are trained to respond invariant

with respect to translation. But then subnet three will respond exactly as before even though the input is not

a continuous bar. Ullman and Soloviev resolve this dilemma by employing overlapping receptive fields. In

their approach, subnet three would report a continuous canted bar only if this interpretation is consistent with

all of the subnets spanning the relevant image region:

The output transition model P (xt|xt−1) responds invariant with respect to common transformations in the

input allowing the model to generalize to novel stimuli. At the same time, the observation model P (yyy|σ)
selectively combines the output from several invariant features whose receptive fields overlap thereby pre-

venting the model from over generalizing. The observation model also plays a key role in providing top-down

priors by representing the dependencies among the receptive-field variables.

We end this section with a brief discussion of some limitations and extensions of the approach described

thus far. The first limitation concerns our ability to unambiguously capture the dynamics inherent in the in-

put to a given subnet. Adelson and Movshon [1] discuss the aperture and temporal-aliasing problems which

address the impossibility of simultaneously determining direction and velocity when viewing a moving ob-

ject through a small-aperture window. Figure 12 illustrates the problem by showing a sequence of images
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Figure 12: The problem of simultaneously determining the direction and velocity of an object when viewed

through a small aperture is referred to as the aperture or temporal aliasing problem [1].

Figure 13: This graphic represents the atomic single-observation states corresponding to the bottom left-hand

corner of an axis-aligned rectangle which is allowed to move left, right, up, down, and in either direction

along any diagonal. The letters A–Q correspond to the atomic single-observation states in Σ.

consistent with several different direction-velocity pairs. We simply accept this ambiguity on a given level,

assuming that in most cases it will get resolved in subsequent levels of the hierarchy which enjoy a greater

temporal and spatial extent.

The second limitation concerns our ability to exploit the assumed temporal homogeneity of input se-

quences. Consider the depiction of Σ shown in Figure 13 and assume that the input sequence consists of

sequences showing just the bottom right hand corner of an axis-aligned rectangle starting from an arbitrary

point in the receptive field and moving left, right, up, down or back and forth along any diagonal. This is the

sort of input and transformations that we are likely to see in the experiments described in Section 6. Note

that the processes governing the transformations illustrated in Figure 13 are not first order. If a sequence

of inputs starts in, say, J , the next inputs might be E, F , G, I , K, M , N , O or even J if the rectangle is

not moving at all relative to the viewer’s frame of reference. However, if the viewer has seen the input M
followed by J , then the next input is likely to be G.

If a sequence begins in C, then D and a succession of Qs may follow. If it begins in B and the object

is moving in the same direction, we’ll see C followed by D and then a succession of Qs. Ideally, we’d

like to group B,C,D,Q∗ together with C,D,Q∗ since they are both generated by the same process. If the

method of using variable-order Markov models performs as we expect it to, the subsequences B,C,D,Q and

C,D,Q will be represented as separate composite variable-duration states. Moreover, if the inertial priors

impose their bias as we have witnessed in other experiments, these two composite steps will be grouped by
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the output variables of subnets. We have not as yet amassed enough experimental evidence to determine

if this desired behavior can be achieved robustly. The next section provides a snapshot of where we are in

terms of developing prototypes and running experiments.

6 Implementation

There is a great deal that we don’t know about the primate cortex. Indeed, it can be argued persuasively that

we have a firm handle on as little as 10% of V1, which is arguably the most extensively studied area of the

visual cortex [52]. Even so there is merit in developing large-scale simulations to test theories and explore

practical applications. For the last year and a half, we have been working toward just such a goal.

The models and algorithms described in the previous sections were designed for implementation on a

computing cluster of the sort now relatively common in research labs: hundred-plus processors running at

better than 2GHz, each having 2GB or more of memory and communicating though a fast interconnect, e.g.,

10-Gigabit Ethernet. A single subnet with a 3 × 3 receptive field consisting of variables that can take on

ten possible values can easily have conditional probability tables of size 105, and exact inference using the

junction-tree algorithm [10, 30] can involve cliques of size 107 or more depending on the arrangement of

intra-level edges. If each subnet has a dedicated processor, a hierarchical model consisting of, say, four levels

can process one input in less than 100 milliseconds assuming the sort of hardware outlined above.

Since describing the basic approach in 2005 [11], we have built and experimented with several imple-

mentations. The first implementation was described in [12]; it uses a different topology for subnets and does

not deal with time. This early prototype was written in Matlab and tested on the NIST hand-written digit

database. The prototype managed a little better than 90% classification on the training data and better than

80% on the test data having seen only 1/3 of the available training data. This level of performance falls well

short of the best algorithms but was not surprising given that our algorithm learned the parameters for all but

the top-level subnet in an unsupervised manner. We also ran a set of experiments exploring the limitations

of several layer-by-layer learning techniques and concluded that, without some form of supervision for the

lower levels, significantly better performance is not possible. The results for these experiments as well as

those for the digit recognition experiments are available on a web site created as a companion to this paper

site http://www.cs.brown.edu/∼tld/projects/cortex/.

Next we developed a prototype MPI-based7 version of the atemporal implementation as a proof of con-

cept. The MPI version relied on running each subnet in a separate Matlab process and was useful primarily

for debugging the message-passing algorithms in a distributed, asynchronous setting. We also implemented

an initial temporal version using subnets with embedded hidden Markov models, but this version turned out

to be impractical due in part to the size of the subnets employing the topology used in the early prototypes.

The latest Matlab implementation includes all of the features described in this paper (including the new

subnet topology) except the technique for automatically determining subnet sampling rates described in Sec-

tion 5.1. The code for this implementation along with a study of models for learning invariants is available

on the companion web site.

In addition to experiments on the NIST digit database and various synthetic datasets, the on-line materials

include a set of models and experimental results based on the pictionary dataset that was developed by Dileep

George to test an implementation (see [23]) of hierarchical temporal memory [24, 25]. In the networks used

in experiments with the pictionary dataset, the lowest level is 27 × 27, each subnet has a 3 × 3 receptive

field, and there are no overlaps among the receptive fields. The nodes in each level are arranged in a square

grid as shown in Figure 14.a, and subscribe to the fixed pattern of intra-level edges shown in Figure 14.b.

7MPI (for “message-passing interface”) is a specification for parallel programming on a variety of hardware using a message-

passing protocol for interprocess communication.
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Figure 14: One level in the Bayesian network used for the pictionary dataset illustrating (a) the node-

numbering scheme and (b) the pattern of intra-level connections showing how this pattern together with

the node-numbering scheme ensure that the graph is acyclic and the natural ordering on the integers consti-

tutes a topological sort of the nodes in the network. The width of a level is m = w + (p− 1)(w − o) where

w is the width of the receptive fields, p is the width of the parent level and o is the overlap between adjacent

receptive fields.

Figure 15: The forty-eight patterns comprising the pictionary dataset. These prototypes are used to generate

sequences of images for evaluating invariant features.
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Figure 16: A cross-sectional view of the hierarchical Bayesian network used for experiments involving the

pictionary dataset showing a small portion of the 820 nodes that comprise this network.

The resulting subnet graph consists of 91 subnets arranged in three levels, with a single subnet in level three,

nine in level two, and 81 subnets in level one (see Figure 16).

The binary images in the pictionary dataset are constructed from a set of forty-eight line drawings each

representing a simple schematic shape, such as a bed, a cat, or the letter H, called a prototype (see Figure 15).

To construct an image sequence, select a prototype shape, create the first frame in the sequence by positioning

the prototype shape at a randomly chosen position in a 27× 27 image field, select a transformation, and then

obtain a sequence of frames by applying the selected transformation to frame i to obtain frame i + 1.

The bottom two levels are trained in an unsupervised manner, and then the top level is trained in a

supervised manner using the labels for the prototypes. In a typical experiment, we present the system with

a thousand or so randomly generated sequences to train the bottom levels. Then we present an additional

hundred or so sequences while assigning labels to the topmost node in the network which corresponds to the

hidden node in the top subnet. We test the system by presenting an additional set of sequences and comparing

the maximum a priori (MAP) value of the hidden node in the top-level subnet with the label of the last frame

in the sequence. Performance is measured as the number of times the MAP estimate agrees with the label.

If we consider eight possible transformations, say, translations up, down, left, right and along the di-

agonals, eight possible prototypes of size no more than 8 × 8, require that the first frame of any sequence

completely contain the prototype, and constrain the length of the sequences to exactly five frames, then we

have more than 20,000 training and testing examples to choose from. Randomly choosing from among the

eight labels yields an expected performance of 12.5%. If we present 100 sequences of length five for a total

of 500 frames we may not even see every prototype under all transformations.

The Matlab implementation simulates a distributed system within a single Matlab process and can take

a long time to train and test. To expedite the training and testing, we take several shortcuts: On level one,

we tie the parameters across all of the 81 subnets and train just one subnet with 10,000 short sequences

comprising approximately 25,000 individual frames. On level two, we partition the subnets into five groups

covering separate regions of the visual field, tie the parameters of all the subnets within each group, and then

train one subnet in each group selected so that it is centrally located within its region of the visual field. The

single subnet in level three is trained in a supervised manner as described above.

In the experiments described here, training proceeds level by level though this is not strictly necessary.

Once a subnet is trained, it begins to receive messages containing potentials from its parents and children in

the subnet graph. Trained subnets incorporate these potentials into their local belief function and propagate

new potentials to their parents and children. When all of the subnets except those in the top level are

trained, the top-level subnets (there is only one in the pictionary models) begin receiving potentials from

their children and labels in the form of degenerate potentials (a vector with 0 in each position except the

position corresponding the label index which is assigned 1) from the supervisory program in charge of

supplying input to the bottom level and labels to the top level. Once the top-level subnets have accumulated

enough training data, they begin to send potentials back to the supervisory program just as if it was their

parent. These potentials are used to evaluate the performance of the network as a whole.

Once all of the subnets have been trained, evaluation takes three cycles of inference per sequence frame,
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# TESTING # TRAINING % CORRECT ELAPSED TIME

500 500 35.56% (64/180) 32614 seconds (approximately 9 hours)

400 750 38.36% (56/146) 47319 seconds (approximately 13 hours)

600 1000 45.21% (99/219) 62279 seconds (approximately 17 hours)

500 1250 40.56% (73/180) 83434 seconds (approximately 23 hours)

600 1500 47.20% (101/214) 89734 seconds (approximately 25 hours)

500 1750 51.40% (92/179) 105910 seconds (approximately 29 hours)

500 2000 46.99% (86/183) 163943 seconds† (approximately 46 hours)

500 2500 53.55% (98/183) 199477 seconds† (approximately 55 hours)

500 2750 55.49% (101/182) 189110 seconds† (approximately 53 hours)

Table 1: Shown are the results from nine experiments using the pictionary dataset. Each experiment uses

eight of the forty-eight prototypes in the dataset, and so random guessing yields 12.5% in expectation. The

columns in the table correspond to the number of frames used for training, the number frames used for

testing, the percentage of sequences in which the MAP assignment for the last frame in a sequence matches

the label of the prototype being transformed in the sequence, and, finally, the elapsed time required to run

the experiment (all jobs except those marked with † were run on a dedicated processor).

one cycle for each level as messages are passed up the hierarchy. For pictionary evaluation, we don’t bother

with passing messages back down the hierarchy as we are only concerned with the belief function computed

by the top-level subnets. This implies that processing each frame requires 91 subnets to update their belief

functions and pass messages. Performing these 91 updates serially can take considerable time.

On a dedicated 2GHz processor with 2GB of memory, training and testing, including both learning and

inference for all but the first level (which is trained separately so that its parameters can be reused in several

experiments), takes about one minute per frame. For example, an experiment involving 1500 frames takes

a little over 24 hours. This has limited the size and type of experiments we have been able to run and has

motivated our work on implementations that can take advantage of distributed computing — more about

which subsequently. Nevertheless we have performed many smaller experiments and we have made our

Matlab implementation available on the companion web site for others to replicate our experiments and

conduct their own.

Table 1 shows the results of nine representative experiments; more results are available on the companion

web site along with the code used to produce them. The level of performance is respectable given the small

amount of training data used and the fact that these results required no tuning of parameters, unless one

counts the rather Draconian step of tying the parameters in levels one and two to achieve reasonable running

time (which is more likely to impact adversely performance). These results rely exclusively on first-order

and zero-order models even though, as pointed out in Section 5.2, the transformations in our experiments are

likely best modeled as second-order processes. The first implementation (in Matlab) for learning variable-

order Markov processes using inertial priors and the DBN shown in Figure 10 required approximately 20

minutes to train on 10,000 sequences of average length 5 and an alphabet of 25. Doubling the alphabet

size increases the time fivefold, while time scales linearly with the number of sequences. The latest version

which decomposes training into three stages depicted in Figure 4.b and the models shown in Figure 9 is

written largely in C and takes less than a minute to train on 10,000 sequences of average length 5 and an

alphabet of 25.

More important than our not using variable-order models is the fact that we use first-order models only

on level one; the models in subnets on levels two and three are zero-order.8 The first-order subnets on level

8This choice of models was forced on us by memory limitations and our single-minded pursuit of a parallel implementation.
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one can take advantage of their inertial priors to support the sort of semi-supervised learning described in

Section 5. Learning in the zero-order subnets on level three is facilitated through the use of labels. The

zero-order subnets on level two, however, have neither labels nor informative priors to guide learning. We

are confident that we can significantly improve upon the results shown in Table 1 by using first-order models

in the subnets on level two.

At this point, we are concentrating on a C++ implementation that will free us from our dependence on

Matlab and, in particular, on having to manage all of the subnets within a single process running on a single

machine. The current Matlab implementation owes much to Kevin Murphy’s Bayes Net Toolbox (BNT) [46].

Happily, we were able get a good deal of the functionality of BNT by using Intel’s open-source Probabilistic

Networks Library (PNL) http://www.intel.com/technology/computing/pnl/index.htm

which drew upon BNT for inspiration and technical detail.

It is hard to beat Matlab in performing basic vector and matrix operations, but we achieve close to the

same level of performance on these operations using a C++ interface to the BLAS and LAPACK Fortran

libraries which Matlab also leverages for this purpose. The initial attempts to parallelize our code using

MPI/LAM [9] were frustrated by the low-level nature of MPI and the overhead involved in porting to various

clusters. We are now collaborating with three engineers at Google to take advantage of Google’s considerable

computational resources and the layer of software that shelters Google application programmers from the

annoying details of processor allocation and inter-processor communication. As results become available,

they will be reported on the companion web site.

7 Discussion and Related Work

The main contribution of this paper is a class of probabilistic models and an associated bias for learning

invariant features. Instances of this class can be embedded as components within a more comprehensive

hierarchical model patterned after the visual cortex and approximating a hierarchical hidden Markov model.

We have mentioned much of the directly related work in the context of the preceding discussion. Here we

review additional relevant work and then conclude with a discussion of what we believe to be some of the

most important remaining technical challenges.

Wiskott and Sejnowski [65] present a neurally-inspired approach to learning invariant or slowly-varying

features from time-series data. It was their intuition which first led us to pursue the line of research explored

in this paper: “The assumption is that primary sensory signals, which in general code for local properties,

vary quickly while the perceived environment changes slowly. If one succeeds in extracting slow features

from the quickly varying sensory signal, one is likely to obtain an invariant representation of the environ-

ment.” Later we encountered the earlier work of Földiák providing an account [19] of Hebbian learning in

complex cells in which the output of a cell is adjusted in accord with its output at the previous time step:

“This temporal low-pass filtering of the activity embodies the assumption that the desired features are stable

in the environment.”

Hawkins and George [25] stress the importance of “spatial and temporal pooling” in training their hi-

erarchical temporal models. Hawkins [24] presents a general cortical model that incorporates variants of

many of the basic ideas presented above, and George and Hawkins [23] describe a preliminary implemen-

tation of the Hawkins’ model. Their implementation does not employ a temporal model per se despite their

stated emphasis on identifying frequently occurring sequences generated by a common cause. By using a

When run in a single Matlab process, the simulated distributed model with first-order subnets on both level one and level two

requires seven gigabytes just to store the model parameters. Our mindset all along has been that we must implement our model to

run on parallel hardware if we are to demonstrate its merits convincingly on interesting problems, and, clearly, pictionary is a toy

problem meant to emphasize the task of learning invariants. This mindset has allowed us to focus on developing parallel codes, but

it has also deflected us from developing efficient serial codes.
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more expressive temporal model, we are able to represent a richer set of causes and thus potentially im-

prove generalization. They also rely on tree-structured Bayesian networks with their obvious computational

advantages and representational shortcomings (they do not allow overlapping receptive fields or intra-level

edges).

Wiskott and Sejnowski impose what we have referred to as inertial priors to bias learning to find invariant

features. Inertial priors together with the assumption of local homogeneity enable a form of semi-supervised

learning. Inputs corresponding to instantiations of receptive-field variables are obviously not labeled. How-

ever, we assume that inputs in close temporal proximity will tend to be associated with the same cause, as

Hawkins might characterize it, and, hence, they have the same label.

Bray and Martinez [8] implement a form of inertial bias by maximizing output variance over the long

term while minimizing output variance over the short term. Kabán and Girolami [36] provide an alternative

approach based on generalized topographic maps [6] for exploiting locally homogeneous regions of text in

documents. Our approach to modeling time using variable-duration Markov models allows us to implement

inertial priors directly within the underlying Bayesian graphical model.

Psychologists have long been interested in how subjects group objects in space and time. Kubovy and

Gepshtein [38] review the psychophysical evidence for current theories about how we group objects accord-

ing to their spatial and temporal proximity. Their discussion of Shimon Ullman’s early work was particularly

helpful in thinking about learning spatiotemporal features.

Our inspiration for modeling the visual cortex as a hierarchical Bayesian network came from [42]. In

the simplest instantiation of the Lee and Mumford model within our framework, each subnet is of the form

P (xi|xi+1) and (exact) inference can be accomplished using Pearl’s belief propagation algorithm [53] by

passing λ messages P (ξ−|xi) to subnets upstream in the visual pathway, and π messages P (xi+1|ξ
+) down-

stream, where ξ+ and ξ− represent the evidence originating, respectively, above and below in the hierarchy.

Overlapping receptive fields and intra-level edges necessarily complicate this simple picture. In particular,

separate subnets may not assign the same potentials to nodes in the intersection of their respective receptive

fields. Different subnets may even impose different local topologies over the same variables since connec-

tivity among receptive field variables is learned independently.

While we originally viewed the ability of subnets to impose different local topologies on their shared

variables as a liability, we now view it as a feature of our model that contributes to its robustness. However,

we do take steps to ensure that subnets agree, at least approximately, on the potentials they assign to shared

variables. Partial agreement is accomplished by having subnets with overlapping receptive fields exchange

potentials. This exchange occurs prior to each update of the local belief function which occurs twice per

input, once on passing potentials up the hierarchy starting from the input level and once on passing potentials

back down the hierarchy. Since the receptive fields of subnets in the higher levels span large portions of their

respective levels, this means that information tends to spread more quickly among the nodes at the highest

levels. A subnet with hidden variable x receives potentials corresponding to priors of the form P (x|ξ) from

all of the subnets whose receptive fields contain x; to resolve any remaining differences, these potentials are

combined into a single potential as a weighted average.

There is no shortage of proposals suggesting variants of the sort of level-by-level learning that we have

used in our algorithms. In particular, Hinton turned to hierarchical learning in restricted Boltzmann machines

as a means of tractable inference. Restricted Boltzmann machines are a special case of the product of experts

(PoE) model [27]. In PoEs, the hidden states are conditionally independent given the visible states just as

they are in our networks. Mayraz and Hinton [43] suggest the use of the following strategy for learning these

multi-layer models:

“Having trained a one-hidden-layer PoE on a set of images, it is easy to compute the expected

activities of the hidden units on each image in the training set. These hidden activity vectors

will themselves have interesting statistical structure because a PoE is not attempting to find
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independent causes and has no implicit penalty for using hidden units that are marginally highly

correlated. So we can learn a completely separate PoE model in which the activity vectors of

the hidden units are treated as the observed data and a new layer of hidden units learns to model

the structure of this ‘data’.”

A number of researchers have made similar observations and put forward proposals for performing inference

that exploit the same underlying intuitions.

We were originally attracted to the idea of level-by-level parameter estimation in reading [23] although

the basic idea is highly reminiscent of the interactive activation model described in [44]. In the George and

Hawkins algorithm, each node in a Bayesian network collects instantiations of its children that it uses to

derive the state space for its associated random variable, and estimate the parameters for the conditional

probability distributions of its children. The states that comprise the state space for a given node correspond

to perturbed versions of the most frequently appearing vectors of instantiations of its children. Their network

is singly connected and, for this class of graphs, Pearl’s belief-propagation algorithm is both exact and

efficient.

Hinton, Osindero and Teh [29] present a hybrid model combining Boltzmann machines and directed

acyclic Bayesian networks. They also employ level-by-level parameter estimation in an approach similar to

the algorithm for learning restricted Boltzmann machines mentioned earlier. They apply Hinton’s method of

contrastive divergence in an attempt to ensure that units within a layer are diverse in terms of the features

they model and various methods of isolating and tying parameters to control convergence. We expect that

for many perceptual learning problems the particular way in which we decompose the parameter-estimation

problem (which is related to Hinton’s weight-sharing and parameter-tying techniques) will avoid potential

problems due to early (and permanently) assigning parameters to the lower layers.

Yann LeCun and his colleagues [41] have developed a class of models called Multi-Layer Convolutional

Neural Networks that are trained using a version of the back-propagation algorithm [58] and have been

shown to be effective in object recognition [40]. Fei-Fei and Perona [17] have a Bayesian approach to

learning hierarchical models for recognizing natural scene categories [16].

In an important sense, the main technique presented in this paper is a one-trick pony. Our basic premise

is that inertial priors can turn an unsupervised learning problem into a semi-supervised problem, assuming

that the basic underlying assumptions apply. All of the other pieces depend on this one, rather simple idea.

We believe that the best way to amplify the value of inertial priors is to combine this bias with attentional

mechanisms so that, in addition to exploiting the assumption that world changes slowly, we force the world,

or rather our perception of the world, to change under our control, for example, by moving our eyes or

our bodies. By making use of our ability to intervene in the world, we can very often resolve perceptual

ambiguity. Indeed, in many cases, it is only by engaging the world that we can obtain the information

needed to self-supervise our learning.
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