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First, neurophysiological evidence for the learning of invariant representations in the

inferior temporal visual cortex is described. This includes object and face representations

with invariance for position, size, lighting, view and morphological transforms in the

temporal lobe visual cortex; global object motion in the cortex in the superior temporal

sulcus; and spatial view representations in the hippocampus that are invariant with

respect to eye position, head direction, and place. Second, computational mechanisms

that enable the brain to learn these invariant representations are proposed. For the

ventral visual system, one key adaptation is the use of information available in the

statistics of the environment in slow unsupervised learning to learn transform-invariant

representations of objects. This contrasts with deep supervised learning in artificial

neural networks, which uses training with thousands of exemplars forced into different

categories by neuronal teachers. Similar slow learning principles apply to the learning

of global object motion in the dorsal visual system leading to the cortex in the superior

temporal sulcus. The learning rule that has been explored in VisNet is an associative

rule with a short-term memory trace. The feed-forward architecture has four stages,

with convergence from stage to stage. This type of slow learning is implemented in the

brain in hierarchically organized competitive neuronal networks with convergence from

stage to stage, with only 4-5 stages in the hierarchy. Slow learning is also shown to

help the learning of coordinate transforms using gain modulation in the dorsal visual

system extending into the parietal cortex and retrosplenial cortex. Representations are

learned that are in allocentric spatial view coordinates of locations in the world and

that are independent of eye position, head direction, and the place where the individual

is located. This enables hippocampal spatial view cells to use idiothetic, self-motion,

signals for navigation when the view details are obscured for short periods.

Keywords: face cells, spatial view cells, hippocampus, navigation, object recognition, inferior temporal visual

cortex, unsupervised learning, convolutional neural network

INTRODUCTION

This paper describes advances in how slow learning that takes advantage of the
statistics of the environment is a useful principle in helping to build not only invariant
representations in the ventral visual system of objects and faces, and invariant representations
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of object-based motion, but also allocentric spatial view
representations in the parietal cortex and posterior cingulate
cortex for use by the hippocampus in memory and navigation.
The principles of slow learning described here may enable some
transform-invariant representations to be learned that are not
possible using principles of symmetry alone.

First neurophysiological evidence on the transform-invariant
neuronal representations that are found in the primate ventral
visual system is described. Then a biologically plausible approach,
VisNet, to how unsupervised learning in hierarchical feedforward
networks is computed, is updated with recent research. VisNet
is a 4-Layer hierarchical network with convergence from stage
to stage that emulates the architecture of the primate ventral
visual system. Each stage operates as a competitive network,
and uses slow learning with an associative synaptic modification
rule to learn from the statistics of the environment. In the
short term, the statistics tend to be about the same object etc.,
because of the way in which visual objects are fixated for short
periods, during which different transforms may be shown (Rolls,
2012, 2021a). This contrasts with deep supervised learning in
artificial neural networks, which uses training with thousands of
exemplars forced into different categories by neuronal teachers
using backpropagation of error learning (LeCun et al., 2010;
LeCun et al., 2015; Yamins and DiCarlo, 2016). Key aspects of
VisNet that are described as biologically plausible are that it
uses a local synaptic learning rule in which the information is
present in the pre- and postsynaptic rates without the need for
backpropagation of error as in deep learning (LeCun et al., 2010,
2015; Yamins and DiCarlo, 2016) or for lateral propagation of
synaptic weights as in deep convolution networks (Yamins and
DiCarlo, 2016; Rajalingham et al., 2018); that it is unsupervised
and self-organizing, without any need for a teacher for every
output neuron; and that it learns by using information present
in the statistics of the inputs from the natural world that tend
to be about the same object, spatial view, etc. over short periods
and that can be utilized by slow learning. These properties
make VisNet an important model for the learning of invariant
representations in the brain; and of interest for the development
of future unsupervised artificial neural networks by providing
some guiding principles.

This biologically plausible approach to transform-invariant
object recognition was initiated by Rolls (1992), which was
followed by a full model (Wallis and Rolls, 1997), and an updated
description with many results (Rolls, 2012). The present paper
provides an update to Rolls (2012) on the architecture and further
developments with VisNet, together with a description of a
version of VisNet written inMatlab for tutorial use (Rolls, 2021a).
The further developments include finding and recognizing
objects in natural scenes using saliency in the dorsal visual system
to fixate on objects, combined with invariant object recognition
in the ventral visual system to recognize the object at the fixated
location (Rolls and Webb, 2014). Further developments are how
non-accidental properties of objects can be learned by the slow
learning implemented in VisNet (Rolls and Mills, 2018); and
how visually different views of objects can be recognized as of
the same object by VisNet but not by HMAX (Robinson and
Rolls, 2015). This paper also extends this unsupervised learning

approach to object-based motion in the dorsal visual system
(Rolls and Stringer, 2006b) to provide a mechanism for the
object-based motion representations found in the cortex in the
superior temporal sulcus (Hasselmo et al., 1989b).

This paper also extends this slow learning approach to
coordinate transforms in the dorsal visual system and parietal
cortex that result in allocentric (world based) coordinates (Rolls,
2020), and that allow hippocampal spatial view cells to be updated
by self-motion for navigation when the view is temporarily
obscured (Rolls, 2021b). This extension helps to show how the
slow learning approach used in VisNet that uses statistics present
from the environmental inputs may be useful in a number of
different brain systems.

The present paper also contrasts the unsupervised slow
learning implemented in VisNet with many current approaches
to vision that use deep learning and convolutional networks,
highlighting what needs to be incorporated into models that
may apply to understanding the brain, and some principles
that are likely to be useful in future developments of artificial
neural networks.

TRANSFORM-INVARIANT
REPRESENTATIONS OF OBJECTS AND
FACES

Neuronal Responses in the Brain With
Transform-Invariant Responses to
Objects and Faces
While recording in the inferior temporal visual cortex and
amygdala, we discovered face cells, which respond in macaques
much more to the sight of faces than to non-face visual stimuli
(Perrett et al., 1979, 1982; Sanghera et al., 1979; Rolls, 1984, 2011,
2012, 2021a), with consistent findings by others (Desimone et al.,
1984; Desimone, 1991; Gross, 1992; Sheinberg and Logothetis,
2001; Freiwald and Tsao, 2010; Li and DiCarlo, 2012; Tsao, 2014).

Many properties were discovered, including translation
(Tovee et al., 1994), size and contrast (Rolls and Baylis, 1986),
lighting (Rolls and Stringer, 2006a), spatial frequency (Rolls et al.,
1987), and even for some neurons view (Hasselmo et al., 1989b),
invariance; sparse distributed tuning to different faces (Rolls and
Tovee, 1995; Rolls et al., 1997b,c; Franco et al., 2007; Rolls and
Treves, 2011); the sensitivity of these neurons to combinations of
features in the correct spatial arrangement (Perrett et al., 1979;
Rolls et al., 1994); and the tuning for some neurons to face
identity, and of others to face expression, and face and head
motion (Rolls et al., 1987; Hasselmo et al., 1989a,b; Rolls, 2012,
2021a). All of these properties make them useful for natural
behavior, because as a population they encode the identity of
an individual in an invariant way, so that when associated with
an outcome (for example a social reward, or punisher) in the
next brain region, there would be automatic generalization of
the association learning to other transformed views of the same
individual or object (Rolls, 2021a).

Similar neurons in the inferior temporal visual cortex code in
a transform-invariant way for objects (Booth and Rolls, 1998)
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including in natural scenes, and use sparse distributed firing
rate coding not temporal coding (Rolls et al., 2003, 2006a;
Aggelopoulos et al., 2005; Franco et al., 2007; Rolls and Treves,
2011; Rolls, 2021a).

A key property of inferior temporal cortex neurons that code
for objects or faces that is relevant to how the brain recognizes
objects is that their receptive fields shrink to about the size of
objects in complex natural scenes, so that the whole scene is not
computed at one time, but instead there are repeated fixations
to different parts of a scene, with object recognition performed
separately for each part of a scene (Rolls et al., 2003; Aggelopoulos
and Rolls, 2005; Aggelopoulos et al., 2005; Rolls, 2021a).

Another key property of these neurons for understanding
the mechanisms of visual perception is that they can perform
visual object recognition using forward processing only without
backward propagation of any signals being important, as shown
by experiments with backward visual masking (Rolls and Tovee,
1994; Rolls et al., 1999; Rolls, 2003, 2005, 2021a).

Another important property is that these inferior temporal
cortex neurons modify their responses to new but not already
familiar objects in the first few presentations of a new object
(Rolls et al., 1989a; Tovee et al., 1996; Dolan et al., 1997),
providing evidence on how new representations are built by a
self-organizing process in the temporal lobe cortex.

All of these neuronal response properties of macaque inferior
temporal cortex and related neurons described more fully
elsewhere (Rolls, 2021a) were used to help design the model of
invariant visual object recognition, VisNet, described next, which
has, as a key goal, helping to understand themechanisms of visual
object and face perception in the primate including human brain.

Unsupervised Slow Learning of
Transform-Invariant Representations in a
Model of the Ventral Visual System,
VisNet
The Architecture of VisNet

Having discovered many properties of inferior temporal cortex
neurons, Rolls was keen to go beyond phenomenology to
mechanisms that might produce such interesting neurons (Rolls,
1992). He proposed that hierarchical organization fromV1 via V2
and V4 to the inferior temporal visual cortex with convergence
from stage to stage and competitive learning was a way to set
up neurons with large receptive fields that could become tuned
to feature combinations that represent objects, and do this with
translation invariance (Figure 1). VisNet is a feature hierarchy
network [described in detail elsewhere) (Rolls, 2016, 2021a)], and
emulates to some extent the sparse distributed encoding that is
found for objects and faces in the ventral visual system (Rolls
and Treves, 2011; Rolls, 2021a). The hierarchical organization
is important for brain systems to learn about the natural world,
because it means that a single neuron need receive only a limited
number (∼10,000) inputs from the previous stage (Figure 1).
Important aspects of the design to make it biologically plausible
is that the whole problem is solved in a network with only four
Layers; that the computation is feedforward, with no feedback
of errors or anything else required for learning; and with no

supervision of the training by for example separate teachers for
each neuron in the output Layer.

The short-term memory trace learning rule used in VisNet

A key part of the proposal for VisNet is learning that uses a
short-term memory trace for previous neuronal activity, so that
the neurons could learn to respond to different transforms of
an object, which in the real world typically occur close together
in time (Rolls, 1992). A similar principle had been proposed for
translation invariance (Földiák, 1991), but Rolls extended this to
all types of invariance, and outlined how this could be set up
in a hierarchical model (Rolls, 1992). The full model was built
(Wallis et al., 1993; Wallis and Rolls, 1997), which is known as
VisNet (Rolls, 2012), and a reduced version of which in Matlab is
available with Brain Computations: What and How (Rolls, 2021a).
The trace learning rule is biologically plausible, and could involve
processes such as the long time constant of NMDA receptors, or
local cortical attractor network operations, which do keep cortical
neurons firing for a few hundred ms (Rolls and Tovee, 1994;
Rolls, 2003, 2021a).

The short-term memory trace that enables inputs occurring
close together in time, as they would in the natural world, to
become associated is implemented in the hierarchical competitive
network (Rolls, 2012, 2021a) model by using associative synaptic
modification with a small change that allows the postsynaptic
term to remain active for short periods in the order of 100 ms
or more. The short-term memory trace update learning rule that
we have used has the following form (Rolls, 2012, 2021a):

δwj = αȳτ xj (1)

where

ȳτ
= (1 − η)yτ

+ ηȳτ−1 (2)

and
xj is the j

th input to the neuron;
y is the output from the neuron;
ȳτ : is the Trace value of the output of the neuron at time step

τ ;
α is the learning rate;
wj is the synaptic weight between the jth input and the neuron;
η is the trace update proportion, with 0 meaning no trace, just

associative learning. The optimal value varies with the number of
transforms of each object, and is typically 0.8. Many variations
of this learning rule have been explored (Rolls and Milward,
2000; Rolls and Stringer, 2001). The general form of the rule for
computational purposes can be as shown in Equation (1), but
the actual mechanism in the brain might utilize a slow synaptic
eligibility trace such as provided by the NMDA receptors with
their long time constant, as well as a tendency for neuronal firing
to continue due to local attractor networks (Rolls, 2012, 2021a).

During training, all transforms of one object are presented
in random sequence so that the trace rule can help learning
that all of these are transforms of the same object because they
occur close together in time; then all transforms of another
object are shown; etc.

Layer 1 of VisNet is trained with a purely associative
learning rule with no short-term memory trace, to enable feature
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FIGURE 1 | Convergence in the visual system. (Right) Convergence in the ventral stream cortical hierarchy for object recognition. LGN, lateral geniculate nucleus;

V1, visual cortex area V1; TEO, posterior inferior temporal cortex; TE, anterior inferior temporal cortex (IT). (Left) Convergence as implemented in VisNet, the model

of invariant visual object recognition described here. Convergence through the hierarchical feedforward network is designed to provide Layer 4 neurons with

information from across the entire input retina, by providing an increase of receptive field size of 2.5 times at each stage. Layer 1 of the VisNet model corresponds to

V2 in the brain, and Layer 4 to the anterior inferior temporal visual cortex (TE). In this paper ‘Layer’ with a capital L indicates a Layer of a neuronal network which may

correspond to a brain region as here. This is distinct from the 6 architectonic layers in neocortex, designated here with a small letter l in ‘layer’.

combination neurons to be formed that represent the relative
spatial locations of the features before any invariance learning
starts in Layer 2. This solves the feature binding problem, as
described below and elsewhere (Rolls, 2012, 2021a).

The VisNet network

VisNet consists of a series of feedforward hierarchically
connected competitive networks with convergence from Layer
to Layer, with four Layers, as illustrated in Figure 1. The
connections to a neuron in one Layer come from a confined
and topologically related region of the preceding Layer. The
connections to a neuron in one Layer come from a small
region of the preceding Layer using a Gaussian distribution of
connection probabilities defined by the radius which will contain
approximately 67% of the connections from the preceding Layer.
Table 1 shows this radius for each Layer of 32 × 32 neurons
per Layer, with each neuron receiving 200 synaptic connections
from the neurons in the preceding Layer. The radii are set
so that neurons at the fourth Layer of VisNet are able to be
influenced by inputs from a stimulus at any location in Layer
1 (Rolls, 2012). The activation of a neuron is calculated as the
synaptically weighted sum of the rate inputs it receives from
the preceding Layer, i.e., as a dot or inner product between the
input rates and the synaptic weights (Rolls and Milward, 2000;
Rolls, 2012, 2021a; Rolls and Mills, 2018). The activations are
converted into rates with a sigmoid or threshold-linear activation
function, with the sparseness of the representation in a Layer set
as described next.

Competition and mutual inhibition in VisNet

In a competitive network (Rolls, 2021a), mutual inhibition is
required between the neurons within each Layer, so that for
any one stimulus only a proportion of neurons is active. The
activation of the neurons in a Layer is first calculated by the dot
product of the synaptic weights of a neuron and the rates of the

neurons in the preceding Layer to which it is connected by the
synaptic weights. Then the activations are converted into rates
using a sigmoid or threshold linear activation function, and the
threshold for the activation function is set so that the sparseness
across the neurons of the rates becomes a value specified by a
sparseness parameter a that is typically 0.01, where sparseness is
defined as

a =
(
∑

i yi/n)
2

∑
i y

2
i /n

(3)

where n is the number of neurons in the Layer, and yi is the
firing rate of the ith neuron in a Layer. Setting the sparseness in
this way implements a form of competition within the network,
in that only the neurons with the highest activations have rates
greater than zero after the sparseness has been set as specified.
This measure of sparseness is one that is useful in the quantitative
analysis of the capacity of neuronal networks (Rolls and Treves,
1990; Treves, 1991; Treves and Rolls, 1991; Rolls, 2016, 2021a),
and in neurophysiological measures of neuronal representations
in the brain (Rolls and Tovee, 1995; Franco et al., 2007; Rolls
and Treves, 2011; Rolls, 2016, 2021a). If the neurons have binary
rates, the sparseness is the proportion of neurons that is active for
any one stimulus.

The inputs to VisNet are provided by V1-like neurons

produced by Gabor filtering of input images

The inputs to VisNet are computed to have elongated receptive
fields of the type found in the primary visual cortex V1, in
order to allow comparison of the neurons in VisNet at different
stages to those in the brain. The Gabor filters (Daugman, 1988)
have four spatial frequencies, four orientations, and positive or
negative. The Layer one neurons are connected to these with
radii as described above and in Table 1, and with the number
of connections to each frequency scaled according to the spatial
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TABLE 1 | VisNet dimensions.

Dimensions # connections Radius

Layer 4 32 × 32 200 12

Layer 3 32 × 32 200 12

Layer 2 32 × 32 200 12

Layer 1 32 × 32 272 15

Input layer 256 × 256 × 32 – –

Dimensions shows the number of neurons in each of the 4 Layers. # Connections

shows the number of synaptic connections onto each neuron. Radius shows the

radius of the connectivity from the previous Layer of a single neuron (see text). This

is for the small tutorial version of VisNet written in Matlab and made available with

Brain Computations: What and How (Rolls, 2021a). That tutorial version of VisNet

can be scaled up to at least 256 × 256 neurons per Layer, and 1,000 synaptic

connections to each neuron.

frequency, as described in detail elsewhere (Rolls, 2012, 2021a;
Rolls and Mills, 2018).

Different Learning Rules in VisNet

The learning rule used in the upper Layers of VisNet to perform
transform-invariant learning is by default purely associative
learning involving a post-synaptic trace of recent neuronal
activity and the presynaptic rate input (Eqn. 1), as this is
very biologically plausible (Wallis and Rolls, 1997; Rolls and
Milward, 2000). More powerful learning rules that use local (not
back-propagated) error correction learning or local temporal
difference learning have been investigated, and these can improve
the learning of transform-invariant representations considerably
(Rolls and Stringer, 2001). They all involve information that is
potentially local, that is present at the synapse, and do not require
an external teacher to provide the training signal for a particular
neuron or synapse.

A very simple example of a rule of this type involves increasing
the synaptic weights of active inputs if the short-term memory
trace ȳτ is greater than the current firing y; and decreasing the
synaptic weights of active inputs if the short term memory trace
ȳτ is less than the current firing y, as follows:

δwj = α(ȳτ
− y)xj (4)

This version of the learning rule is available with the Matlab
version of VisNet made available with Brain Computations: What
and How (Rolls, 2021a). Many more types of learning rule are
described by Rolls and Stringer (2001).

Translation and View Invariant Representations

This trace rule learning has been shown to be useful as a
key principle of training of biologically plausible models of
learning translation, size, and view invariant representations of
objects and faces (Wallis and Rolls, 1997; Stringer and Rolls,
2000, 2002, 2008; Rolls, 2012, 2016, 2021a; Perry et al., 2006;
Rolls and Webb, 2014).

Feature Binding

VisNet is a feature hierarchy network, which forms feature
combination neurons at each stage of the network using
competitive learning (Rolls, 2021a). It is important that features
are bound together early on in processing in the correct relative

spatial position. For example, a vertical and horizontal line might
form a T, or an L, or a +. To ensure that the relative spatial
positions of features are learned before any invariance is learned
which would destroy the feature binding just described, the first
Layer of VisNet (corresponding to V2) uses purely associative
learning, without any temporal trace of previous activity.

To ensure that feature binding is accomplished with this
architecture, VisNet was trained on stimuli that consisted of
all possible combinations of the four lines that form a square
(analogous to what is shown in Figure 2), and VisNet was able to
learn correctly separate representations of all the resulting stimuli
(Elliffe et al., 2002). The experiment also shows that VisNet can
separate objects even though they are subsets or supersets formed
from the same set of features (Elliffe et al., 2002). Thus feature
binding operates well in VisNet, and later stages of VisNet can
learn transform-invariant representations of each of these objects
formed of different combinations of features in the correct spatial
positions relative to each other.

Moreover, in a similar paradigm (Figure 2) it was shown that
the feature combination neurons learned at intermediate Layers
of VisNet can be used in the final Layer of VisNet as components
of different objects (Rolls and Mills, 2018). This is important, for
the use of feature combination neurons at intermediate stages for
several different objects at the final stage is a key way that this
architecture can use to represent many different objects, with a
high capacity at the final stage, because the intermediate-stage
representations are not just for a single object (Rolls and Mills,
2018). Part of the importance of this is that it shows that VisNet
is not a look-up table.

Further, it was shown that if the intermediate Layers of
VisNet are trained on feature combinations, then the final Layer
of VisNet can learn about new objects that are formed from
different combinations of what has been already learned in the
intermediate Layers (Elliffe et al., 2002). In the real world, this
potentially enables rapid learning of new objects in higher Layers
of the system, because the early Layers will already have learned
features that occur in the natural world.

The ways in which feature hierarchy networks are useful for
solving the computational problems that arise in invariant visual
object recognition are considered further by Rolls (2021a).

Operation in Cluttered Natural Environments, and

With Partial Occlusion of Objects

Once trained on a set of objects, VisNet can recognize them in
cluttered natural environments (Stringer and Rolls, 2000). The
reason for this is that neurons are not tuned by learning to the
cluttered background, so it does not interfere with the neuronal
selectiveness which has been trained to the objects.

Further, once trained on a set of objects, partial occlusion of an
object produces little impairment of performance (Stringer and
Rolls, 2000), because the operation of the network is associative,
and generalization occurs (Rolls, 2021a).

VisNet can also learn invariant representations of an object
even if there are other objects in the scene, provided that
the transforms of the object are presented close together in a
sequence, with multiple other objects somewhere in the sequence
(Stringer and Rolls, 2008). This is useful if the learning is about
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FIGURE 2 | Encoding of information in intermediate Layers of VisNet. The 13 stimuli used to investigate independent coding of different feature combinations by

different neurons in intermediate Layers of VisNet. Each of the 13 stimuli was a different feature, or feature combination with adjacent features, that was learned to be

a different object by VisNet, demonstrating that VisNet can learn to represent objects as different even when they have overlapping features. Moreover, these feature

combination neurons could be used by further combination in higher Layers of VisNet to represented more complex objects. (After Rolls and Mills, 2018).

an object when sometimes other objects or backgrounds are
present. The reason for this is that if the different transforms
of one object are shown close together in the sequence, the
invariance that will be learned is about those transforms of the
object (Stringer and Rolls, 2008). This property is important for
understanding that what is learned as invariant by VisNet is
about the transforms that occur close together in time, and are
therefore in the real world likely to be transforms of the same
object. This was made clear in an experiment with morphological
transforms described next.

In natural viewing conditions, the way in which lighting falls
on objects can change their appearance, and training with the

temporal trace learning rule can produce lighting transform-
invariant representations (Rolls and Stringer, 2006a).

Invariance Over Morphological and 3D Transforms of

Objects

When a human is seen walking or sitting down, or standing
up, one of these poses can be recognized independently of
the individual, or the individual person can be recognized
independently of the pose. The same applies to deforming objects.
For example, for a flag that is seen deformed by the wind, either
hanging languidly or blowing in the wind, the identity of the flag
can usually be recognized independently of its deformation; or
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the deformation can be recognized independently of the identity
of the flag [see Figure 3, which shows example of the images used
in the investigation by Webb and Rolls (2014)].

Webb and Rolls (2014) hypothesized that the primate visual
system can implement these different types of recognition by
using temporo-spatial continuity as objects transform to guide
learning. They hypothesized that pose can be learned when
different people are successively seen in the same pose, or
objects in the same deformation. They also hypothesized that
representations of people that are independent of pose, and
representations of objects that are independent of deformation
and view, can be learned when individual people or objects
are seen successively transforming through different poses or
deformations and views (Webb and Rolls, 2014).

These hypotheses were tested with VisNet, and it was
shown that pose-specific or deformation-specific representations
were built that were invariant with respect to individual and
view, if the statistics with which the inputs were presented
included the same pose or deformation in temporal proximity
(Webb and Rolls, 2014).

Further, it was shown that identity-specific representations
were learned that were invariant with respect to pose or
deformation and view, if the statistics with which the inputs
were presented included the same person in different poses, or
the same flag in different deformations, in temporal proximity
(Webb and Rolls, 2014).

Webb and Rolls (2014) proposed that this is how pose-specific
and pose-invariant, and deformation-specific and deformation-
invariant, perceptual representations are built in the brain.

This illustrates an important principle, that information is
present in the statistics of the inputs present in the world,
and can be taken advantage of by slow learning of the type
implemented in VisNet to learn different types of representation.
This was powerfully illustrated in this investigation in that the
functional architecture and stimuli were identical, and it was
just the temporal statistics of the inputs that resulted in different
types of representation being built (Webb and Rolls, 2014; Rolls,
2021a).

A similar principle applies to surface features on objects
as the view of the object transforms: the appearance of
the surface features transform. We showed that VisNet can
learn view invariant transforms of 3D objects as they rotate
into different views and their surface features transform
(Stringer and Rolls, 2002).

Non-accidental Properties

Some neurons in the visual system code for non-accidental
properties of objects, such as convex vs. concave curvature vs.
a straight edge (Vogels et al., 2001; Kim and Biederman, 2012).
Non-accidental properties remain constant over view transforms,
whereas the degree of curvature varies continuously with the
transform (a metric property). We showed in VisNet how non-
accidental properties of objects can be encoded as a result of self-
organizing slow learning (Rolls and Mills, 2018), with the stimuli
shown in Figure 4. Because of the trace learning rule, different
transforms of objects produce different degrees of curvature,
the metric property, but not different types of non-accidental

property (such as concave vs. convex vs. straight), so neurons
in VisNet learn to generalize over degree of curvature because a
whole series occur close together in time while a particular object
is being viewed, but not of non-accidental properties, which are
different for different objects (Rolls and Mills, 2018).

The trace synaptic learning rule enables what is most
persistent across time about an object to become learned as
an invariant property, because that is how the statistics of
real objects as they transform in the natural world behave
(Rolls, 1992, 2021a; Wallis and Rolls, 1997). This is sometimes
called slow learning and has been fruitfully followed up by a
number of investigators (Wiskott and Sejnowski, 2002; Wyss
et al., 2006; Franzius et al., 2007; Weghenkel and Wiskott,
2018), and may apply to the formation of complex cells in V1
(Matteucci and Zoccolan, 2020).

Receptive Fields of Inferior Temporal Cortex Neurons

Shrink in Complex Natural Scenes, and Top-Down

Attention Is Less Effective

The receptive fields of macaque inferior temporal cortex neurons
are large (70◦ in diameter) with a blank background (which is
how neurophysiology has classically been performed), but shrink
to approximately 8◦ in radius (for a 5◦ stimulus) in complex
natural scenes (Rolls et al., 2003). This has the great advantage
that the output of the visual system in a complex natural world is
primarily about the object at the fovea, so that subsequent stages
of brain processing can represent the reward value of the object
being looked at, and decide whether to perform actions toward
that object (Rolls, 2016, 2021a). This greatly simplifies the neural
computations that need to be performed, because the whole scene
does not need to be processed at once, as in typical artificial vision
systems, which thereby run intomassive computational problems
(Rolls, 2016, 2021a). Primates (including humans) have a fovea,
and a greatly expanded cortical magnification factor for the fovea
(Rolls and Cowey, 1970; Cowey and Rolls, 1975), to provide
this functionality. Primates therefore use serial processing, by
successive fixations on different parts of a scene, as necessary. An
advantage of this functional architecture is that the coordinates
for actions in space can be passed through the world, when
the actions are toward a visually fixated object (Rolls, 2016,
2021a).

The mechanism for the shrinkage of the receptive fields of
inferior temporal cortex neurons in complex natural scenes has
been modeled by a network with greater cortical magnification
for the fovea than for the periphery (Trappenberg et al., 2002).
In a plain background, an object in the periphery can produce
neuronal firing, because there is no competition from objects
at the fovea. But when objects are at the fovea, they win the
competition, because of the greater cortical magnification factor
(Trappenberg et al., 2002).

Top-down attention, for example when an individual is
searching a scene for a particular object, has a greater effect on
neuronal responses for objects in a plain background than in
a complex natural scene (Rolls et al., 2003). The same model
accounts for this because when an object is at the fovea, the
bottom-up visual inputs are relatively strong because of the large
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FIGURE 3 | Deformation-invariant object recognition. The flag stimuli used to train VisNet to demonstrate deformation-invariant object recognition. Each flag is

shown with different wind forces and rotations. Starting on the left with the first pair of images for each flag, both the 0 and 180◦ views are shown for a windspeed of

0; and each successive pair is shown for the wind force increased by 50 Blender units. Visnet learned to categorize these 4 flags as 4 different flags provided that

the different deformations of each flag were shown close together in the temporal sequence during training, to make use of the trace learning rule. (After Webb and

Rolls, 2014).

cortical magnification factor, and dominate the neuronal firing
(Trappenberg et al., 2002).

Top-Down Attention for Objects or Spatial Locations

Top down attentional effects have also been investigated in a
hierarchical VisNet-like network which incorporates a foveal
cortical magnification factor and top-down projections with a
dorsal visual stream so that attentional effects can be investigated,
with the architecture illustrated in Figure 5 (Deco and Rolls,
2004). The architecture used the trace learning rule to achieve
translation invariance. With this architecture, it was shown that
the receptive fields were smaller in the complex natural scene
than with a plain background; and that top-down selective
attention (originating from the ventral prefrontal cortex PF46v
in Figure 5) could act to increase the receptive field sizes of
inferior temporal visual cortex (IT) neurons (Deco and Rolls,
2004). Investigations with a similar ‘what’/‘where’ architecture
have shown how top-down attention to an object can have effects
on the spatial representations; and how top-down attention to
a location can have effects on which object is selected (Deco
and Rolls, 2002, 2005; Rolls and Deco, 2002, 2006; Deco et al.,
2004). (Many investigations with this architecture are described
in Computational Neuroscience of Vision (Rolls and Deco, 2002),
available for download1).

1https://www.oxcns.org

The Representation of Multiple Objects in a Scene

With a Single Visual Fixation; And the Learning of

Spatial Scenes by Hippocampal Spatial View Cells

When the neuronal representations of objects are distributed
across a population of neurons, a problem arises about
how multiple objects can be represented in a scene, because
the distributed representations of different objects overlap,
and it becomes difficult to determine whether one new
object, or several separate objects, is present in the scene
(Mozer, 1991), let alone the relative spatial positions of the
objects in a scene. Yet humans are able to identify several
different objects in a scene and their relative spatial locations
even in short presentation times without eye movements
(Biederman, 1972).

Aggelopoulos and Rolls (2005) investigated this in recordings
from single inferior temporal visual cortex neurons with five
objects simultaneously present in the neuronal receptive field. It
was found that in this condition with simultaneously presented
visual stimuli, all the neurons responded to their effective
stimulus when it was at the fovea, and some neurons responded
to their effective stimulus when it was at some but not other
parafoveal locations 10 degrees from the fovea. This asymmetry
demonstrates a way of encoding across a population of neurons
the position of multiple objects in a scene, and their locations
relative to the fovea. The positions of the object with respect to
the fovea, and thus their spatial locations relative to other objects

Frontiers in Computational Neuroscience | www.frontiersin.org 8 July 2021 | Volume 15 | Article 686239

https://www.oxcns.org
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


Rolls Invariant Object and Spatial Representations

FIGURE 4 | Learning non-accidental properties of objects. The stimuli used to investigate non-accidental properties (NAP) vs. metric properties (MP) of encoding in

VisNet. Each object is shown as white on a gray background. Objects 1–3 all have the non-accidental property of concave edges. Objects 1–3 are different in their

metric properties, the amount of curvature. Object 4 has the non-accidental property of parallel edges. Objects 5–7 have the non-accidental property of convex

edges, and different metric properties from each other, the amount of the convexity. The vertical view of each object was at 0◦ of tilt, with the images at –6 and 6◦ of

tilt illustrated. Different amounts of tilt of the top toward or away from the viewer are shown at the tilt angles indicated. Each object was thin, and was cut off near at

the top and bottom of each object to ensure that any view of the top or bottom of the object did not appear, so that the type of curvature of the edges (concave,

straight, or convex) was the main cue available. (After Rolls and Mills, 2018).

in the scene, can thus be encoded by the subset of asymmetric
neurons that are firing (Aggelopoulos and Rolls, 2005).

Building on this foundation, it was shown in a unifying

computational approach that representations of spatial scenes

can be formed by adding an additional self-organizing Layer

of processing beyond the inferior temporal visual cortex which

learns and takes advantage of these asymmetries in the receptive

fields in crowded scenes of inferior temporal cortex neurons

(Rolls et al., 2008). Scenes consisting of a set of 4 objects

presented simultaneously in 4 quadrants of a scene resulted in

neurons in the fifth Layer learning representations that required
the components of the scene to be in the correct fixed spatial
relationship to each other (Rolls et al., 2008). This is one way
in which it is proposed that spatial view cells, present in the
hippocampus and parahippocampal gyrus (Rolls et al., 1989b,
1997a, 1998; Feigenbaum and Rolls, 1991; Rolls and O’Mara,
1995; Robertson et al., 1998; Georges-François et al., 1999;
Rolls and Xiang, 2006; Rolls and Wirth, 2018; Rolls, 2021b)
which receive from high order visual cortical areas (Epstein
and Baker, 2019; Huang et al., 2021), learn to respond to
scenes and indeed to particular locations in a scene (Rolls,
2021a,b).

Finding and Recognizing Objects and People in

Natural Scenes: The Roles of the Dorsal and Ventral

Visual Systems

When humans and other primates look at a visual scene, the eyes
fixate on a succession of locations in a scene, and recognize the
objects at each location. This greatly simplifies the task for the
object recognition system, for instead of dealing with the whole
scene as in traditional computer vision approaches, the brain
processes just a small visually fixated region of a complex natural
scene at any one time, and then the eyes move to another part of
the scene. A neurophysiological mechanism that the brain uses
to simplify the task of recognizing an object in complex natural
scenes is (as described above) that the receptive fields of inferior
temporal cortex neurons reduce from 70◦ in diameter when
tested under classical neurophysiology conditions with a single
stimulus on a blank screen, to as little as a radius of 8◦ (for a 5◦

stimulus) in a complex natural scene (Sheinberg and Logothetis,
2001; Rolls et al., 2003). When searching in a complex natural
scene for an object, the high resolution fovea of the primate visual
system is moved by successive fixations until the fovea comes
within approximately 8◦ of the target, and then inferior temporal
cortex neurons respond to the target object, and an action can be
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FIGURE 5 | Cortical architecture for hierarchical and attention-based visual perception. The system has six modules organized so that they resemble the ventral

visual stream (Left) and dorsal visual stream (Right) of the primate visual system. Information from the lateral geniculate (LGN) enters V1. The ventral visual stream

leads through V2–V4 to the inferior temporal visual cortex (IT), and is mainly concerned with object recognition. The dorsal visual stream leads via areas such as MT

into the posterior parietal cortex (PP), and is involved in this model in maintaining a spatial map of an object’s location. The solid lines with arrows between levels

show the forward connections, and the dashed lines the top-down backprojections. Short-term memory systems in the prefrontal cortex (PF46) apply top-down

attentional bias to the object (from PFv) or spatial processing (from OFd) streams. (After Deco and Rolls, 2004).
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initiated toward the target object, for example to obtain a reward
(Rolls et al., 2003). This experiment also provides evidence that
the inferior temporal cortex neurons respond to the object being
fixated with not only view, size, and rotation invariance, but also
with some translation invariance, in that the eyes may be fixating
8◦ from the center of the object when the inferior temporal cortex
neurons respond during visual search (Rolls et al., 2003).

The following question arises: how are the eyes guided in a
complex natural scene to fixate close to what may be an object?
The dorsal visual system deals with this by implementing a
bottom-up saliency mechanism that can guide saccades to salient
visual stimuli, using salient properties of the stimuli such as
high contrast, color, and visual motion (Miller and Buschman,
2012). (Bottom-up refers to inputs reaching the visual system
from the retina). A dorsal visual system region involved is the
lateral intraparietal cortex (LIP), which contains saliency maps
sensitive to strong sensory inputs (Arcizet et al., 2011). Highly
salient, briefly flashed, visual stimuli capture the response of LIP
neurons, and behavior (Goldberg et al., 2006).

We investigated computationally how a dorsal visual system
bottom-up saliency mechanism could operate in conjunction
with the ventral visual stream reaching the inferior temporal
visual cortex to provide for invariant object recognition in natural
scenes (Rolls and Webb, 2014). The hypothesis investigated was
that the dorsal visual stream uses saliency to guide saccadic
eye movements to salient stimuli in large parts of the visual
field but cannot perform object recognition; and that the ventral
visual stream performs invariant object recognition when the
eyes are guided to be sufficiently close to the target object by the
dorsal visual system. The experiments just described show that
translation invariance of about 8◦ needs to be implemented in
the ventral visual system for this mechanism because the eyes
can be 8◦ from the target when it is recognized by inferior
temporal cortex neurons, and an action is initiated, such as
reaching to touch the object if it has been identified as a target
object (Rolls et al., 2003; Aggelopoulos and Rolls, 2005). However,
the ventral visual stream needs to implement not only this
degree of translation invariance, but also size and view invariance
to account for invariant object identification in natural scenes
(Rolls, 2021a).

To investigate how the dorsal and ventral visual systems
may cooperate in object search and identification in complex
natural scenes, we simulated a system with a dorsal visual system
saliency map, and a ventral visual system model provided by
VisNet that had to deal with translation invariance up to 8◦, but
also view invariance (Rolls and Webb, 2014). The dorsal visual
system was simulated to provide a saliency map that would guide
the locations to which visual fixations would occur. This was
implemented with a bottom up saliency algorithm that adopts the
Itti and Koch (2000) approach to visual saliency, and implements
it by graph-based visual saliency (GBVS) algorithms (Harel et al.,
2007). The basis for the saliency map consists of features such
as high contrast edges, and the system knows nothing about
objects, people, vehicles etc. This system performs well, that is
similarly to humans, in many bottom-up saliency tasks (Harel
et al., 2007). With the scenes illustrated in Figure 6A, the saliency
map that was produced is illustrated in Figure 6B. The peaks in

this saliency map were used as the sites of successive ‘fixations,’
at each of which a rectangle (of 384 pixels × 384 pixels) was
placed, and was used as the input image to VisNet as illustrated
in Figure 6C. VisNet had been trained on four views spaced
45◦ apart of each of the 4 objects/people, with a 25-location
grid with a spacing of 16 pixels for translation invariance. We
found that performance was reasonably good, in that the objects
could be found in the complex natural scenes by the saliency
mechanism, and identification of the object at the location to
which the system had been guided by the saliency map was 90%
correct where chance was 25% correct, for which object or person
had been shown. That is, even when the fixation was not on
the center of the object, performance was good. Moreover, the
performance was good independently of the view of the person or
object, showing that in VisNet both view and position invariance
can be trained into the system using slow learning (Rolls and
Webb, 2014). Further, the system also generalized reasonably to
views between the training views which were 45◦ apart. Further,
this good performance was obtained when inevitably what was
extracted as it was close to the fovea included parts of the
background scene within the rectangles illustrated in Figure 6C

(Rolls and Webb, 2014).
This investigation elucidated how the brain may solve this

major computational problem of recognition of multiple objects
seen in different views in complex natural scenes, by moving
the eyes to fixate close to objects in a natural scene using
bottom-up saliency implemented in the dorsal visual system,
and then performing object recognition successively for each
of the fixated regions using the ventral visual system modeled
to have both translation and view invariance in VisNet (Rolls
and Webb, 2014). The research emphasizes that because the
eyes do not find the center of objects based on saliency, then
translation invariance as well as view, size etc. invariance needs
to be implemented in the ventral visual system. The research
showed how amodel of invariant object recognition in the ventral
visual system, VisNet, can perform the necessary combination
of translation and view invariant recognition, and moreover can
generalize between views of objects that are 45◦ apart during
training, and can also generalize to intermediate locations when
trained in a coarse training grid with the spacing between trained
locations equivalent to 1–3◦ (Rolls andWebb, 2014; Rolls, 2021a).

Slow Learning in an Attractor Model of Invariant

Object Recognition

VisNet uses a short-term memory trace learning rule in
the feedforward connections of its competitive networks. An
alternative architecture is to use an attractor network with a
short-term memory trace learning rule in the recurrent collateral
feedback connections. With this architecture it was shown that
the number of objectsO that can be stored and correctly retrieved
is

O = kC/s

where C is the number of synapses on each neuron devoted to
the recurrent collaterals from other neurons in the network, s
is the number of transforms (e.g., views) of each object, and k
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FIGURE 6 | Finding and recognizing objects in natural scenes. (A) Eight of the twelve test scenes. Each scene has four objects, each shown in one of its 4 views.

(B) The bottom-up saliency map generated by the GBVS code for one of the scenes. The highest levels in the saliency map are red, and the lowest blue.

(C) Rectangles (384 pixels × 384 pixels) placed around each saliency peak in the scene for which the bottom-up saliency map is illustrated in (B). (After Rolls and

Webb, 2014).

is a factor that is in the region of 0.07–0.09 (Parga and Rolls,
1998). There is a heavy cost to be paid for large numbers of
views s, and the approach of using the recurrent collaterals
as an attractor network to perform transform invariant object
recognition has not been pursued further. However, the recurrent
collaterals could be useful to help to store categories of objects
learned by using VisNet-like mechanisms. The object recurrent
attractor would help to ‘clean up’ a somewhat ambiguous
image into one or another object category, and indeed evidence
for this has been found (Akrami et al., 2009). Further, the
neocortex can be considered to perform competitive learning in
a neuronal population in a brain area, supplemented by attractor
or autoassociation properties endowed by the recurrent collateral
connections (Rolls, 2016).

The Capacity of VisNet

Several factors that make a useful contribution to the number
of objects that can be recognized by VisNet have been noted
above. These factors include the use of sparse distributed
representations, and the reuse of intermediate-Layer neurons as
components of different objects represented at the final Layer. But
how VisNet would scale up to provide a model of human visual
object representations is a topic of interest. VisNet in quite a small
form of 32 × 32 neurons in each of 4 Layers, and 200 synapses

on to each neuron from the preceding Layer, is small compared
to what is found in the neocortex. Cortical pyramidal cells often
have in the order of 20,000 synapses per neuron, with perhaps
10,000 devoted to recurrent collateral inputs, perhaps 5,000
synapses to feedforward inputs that could be used for competitive
learning, and perhaps 5,000 to backprojections ending in layer 1
(Rolls, 2016). The number of neurons in such a cortical module
might be in the order of 100,000 (Rolls, 2016). Each such module
would occupy a region of the cortical mantle with an area of
a few mm2. An important property is that this connectivity is
diluted, with the dilution in the order of perhaps 0.1, and that
could help with capacity, as each neuron potentially receives a
different combination of the afferents from the preceding cortical
area. The ventral visual system could have tens to hundreds of
such modules (Rolls, 2016).

With these factors in mind, it is difficult to know whether
VisNet would scale up sufficiently to account for primate/human
visual object recognition. What we do know at present is that
a model of VisNet with the size specified above when trained
on 50 real-world object images (Geusebroek et al., 2005) each
with 9 views separated by 40◦ can represent the object from
any view with 90% correct. (Chance is 2% correct). When tested
with interpolated views each 20◦ from the nearest trained view,
performance is 68% correct. These levels of performance are
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obtained with the Matlab-only implementation of VisNet that is
made available with Brain Computations: What andWhere (Rolls,
2021a) at https://www.oxcns.org.

Comparison of HMAX With VisNet

HMAX is an approach to invariant object recognition that
builds on the hypothesis that not only translation invariance [as
implemented by Fukushima (1980) in the Neocognitron], but
also other invariances such as scale, rotation and even view, could
be built into a feature hierarchy system (Riesenhuber and Poggio,
1999, 2000; Serre et al., 2007a,b). HMAX is a feature hierarchy
network that uses alternate ‘simple or S cell’ and ‘complex or C
cell’ Layers in a design analogous to Fukushima (1980). Each S cell
Layer works by template matching based on the inputs received
from the previous Layer. Each local patch of S cells is propagated
laterally [that is, copied throughput the Layer, a property adopted
also by deep convolutional neural networks (LeCun et al., 2015;
Rajalingham et al., 2018), and of course completely biologically
implausible (Rolls, 2016, 2021a)]. The function of each ‘C’ cell
Layer is to provide some translation invariance over the features
discovered in the preceding simple cell Layer, and operates by
performing a MAX function on the inputs. A non-biologically
plausible support vector machine (or least squares computation)
performs classification of the representations of the final Layer
into object classes. This is a supervised type of training, in which
a target is provided from the outside world for each neuron in the
classification Layer. The standard HMAX model (Riesenhuber
and Poggio, 1999, 2000; Serre et al., 2007a,b; Mutch and Lowe,
2008) has no short-term memory trace slow learning synaptic
modification rule. It is therefore interesting and informative to
compare it with VisNet.

Robinson and Rolls (2015) compared the performance of
HMAX and VisNet in order to help identify which principles of
operation of these two models of the ventral visual system best
account for the responses of inferior temporal cortex neurons.
First, when trained with different views of a set of objects, HMAX
performed very poorly because it has nomechanism to learn view
invariance, i.e., that somewhat different images produced by a
single object seen in different views are in fact of the same object.
In contrast, VisNet learned this well, using its short-termmemory
trace learning rule to do this. Also, the final Layer of HMAX was
found to have very non-selective and distributed representations,
unlike those found in the brain (Robinson and Rolls, 2015).

Second, it was shown that VisNet neurons, like many neurons
in the inferior temporal visual cortex (Perrett et al., 1982;
Rolls et al., 1994), do not respond to images of faces in
which the parts have been scrambled, and thus encode shape
information, for which the spatial arrangements of the features is
important. HMAX neurons responded to both the unscrambled
and scrambled faces, indicating that the presence of low level
visual features including texture may be relevant to HMAX
performance, and not the spatial arrangements of the features and
parts to form an object (Robinson and Rolls, 2015). Moreover, the
VisNet neurons and inferior temporal cortex neurons encoded
the identity of the unscrambled faces (Robinson and Rolls,
2015), and did this with sparse distributed representations, with
well tuned neurons (Rolls and Tovee, 1995; Rolls et al., 1997c;

Franco et al., 2007; Rolls and Treves, 2011; Rolls, 2021a). Further,
the neurons in the last Layer of HMAX before the support vector
machine had very distributed representations with poorly tuned
neurons (Robinson and Rolls, 2015), quite unlike those in VisNet
and the inferior temporal visual cortex just described.

Third, it was shown that VisNet can learn to recognize
objects even when the view provided by the object changes
catastrophically as it transforms, whereas HMAX has no learning
mechanism in its S-C hierarchy that can perform such view-
invariant learning (Robinson and Rolls, 2015). The objects used
in the investigation with VisNet and HMAX are illustrated in
Figure 7 (Robinson and Rolls, 2015). The two objects (two
cups), each with four views, were made with Blender. VisNet was
trained with all views of one object shown in random permuted
sequence, then all views of the other object shown in random
permuted sequence, to enable VisNet to learn with its temporal
trace learning rule about the different images that occurring
close together in time were likely to be different views of the
same object. The performance of VisNet was 100% correct: it
self-organized neurons in its Layer 4 that responded either to
all views of one cup (labeled ‘Bill’) and to no views of the
other cup (labeled ‘Jane’), or vice versa. HMAX neurons did not
discriminate between the objects. Instead the HMAX neurons
responded more to the images of each object that contained
text. This strong influence of text rather than encoding for
objects is consistent with the fact that HMAX is operating to
a considerable extent as a set of image filters, the activity in
which is much influenced by text regardless of which object it
belongs to. HMAX has no mechanism within its S-C Layers
that enables it to learn which input images belong to one
object vs. another, whereas VisNet can solve this computational
problem, by using temporal and spatial continuity present in
the way that objects are viewed in a natural environment
(Robinson and Rolls, 2015).

This highlights the importance of learning from the statistics
produced by transforms of objects as they are viewed in the world,
and shows how unsupervised slow learning can be successful
(Rolls, 2021a). VisNet also shows how its type of learning can be
performed without prejudging what is to be learned, and without
providing a biologically implausible teacher for what the outputs
of each neuron should be, which in contrast is assumed in HMAX
and deep learning. Indeed, in deep learning with convolution
networks the focus is still to categorize based on image properties
(Rajalingham et al., 2018; Zhuang et al., 2021), rather than object
properties that are revealed for example when objects transform
in the world (Rolls, 2021a).

Comparison of Hierarchical Convolutional Deep

Neural Networks With VisNet

A different approach has been to compare neuronal activity in
visual cortical areas with the neurons that are learned in artificial
models of object recognition such as hierarchical convolutional
deep neural networks (HCNN) (Yamins and DiCarlo, 2016;
Rajalingham et al., 2018). Convolution networks involve non-
biologically plausible operations such as error backpropagation
learning, and copying what has been set up in one part of
a Layer to all other parts of the same Layer, which is also a
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FIGURE 7 | View invariant representations by VisNet but not by HMAX. The two objects, cups, each with four views. HMAX of Riesenhuber and Poggio (1999) fails

to categorize these objects correctly, because, unlike VisNet, it has no slow learning mechanism to associate together different views of the same object. (After

Robinson and Rolls, 2015).

non-local operation (LeCun et al., 2010, 2015; Bengio et al.,
2017; Rolls, 2021a). They also require a teacher for each output
neuron, which again is biologically implausible (Rolls, 2021a).
The parameters of the hierarchical convolutional deep neural
network are selected or trained until the neurons in the artificial
neural network become similar to the responses of neurons
found in the brain. The next step of the argument then seems
to need some care. The argument that appears to be tempting
(Yamins and DiCarlo, 2016; Rajalingham et al., 2018) is that
because the neurons in the HCNN are similar to those in
for example the inferior temporal visual cortex, the HCNN
provides a model of how the computations are performed in
the ventral visual system. But of course the model has been
trained so that its neurons do appear similar to those of real
neurons in the brain. So the similarity of the artificial and real
neurons is not surprising. What would be surprising is if it
were proposed that the HCNN is a model of how the ventral
visual stream computes (Yamins and DiCarlo, 2016; Rajalingham
et al., 2018), given that a HCNN with its non-local operation
does not appear to be biologically plausible (Rolls, 2021a).
VisNet, in contrast, utilizes only local information such as the
presynaptic and postsynaptic firing rates and a slowly decaying
trace of previous activity (that could be implemented by a local
attractor network using the recurrent collateral connections),
so is a biologically plausible approach to invariant visual object
recognition (Rolls, 2021a).

Although progress has been made in unsupervised
versions of deep convolutional neural networks trained
with backpropagation of error (Zhuang et al., 2021), the
network still relies on image features to discriminate objects,
and therefore will have problems with learning view invariant
object representations to solve problems such as that illustrated
in Figure 7 in which different views of an object have different
image properties (Robinson and Rolls, 2015). VisNet solves
this and other aspects of invariant object recognition by
using the statistics of the world captured by slow learning
(Robinson and Rolls, 2015).

Another approach is to use unsupervised learning with a
spike-timing dependent local synaptic learning rule, with a
winner-take-all algorithm, and to transmit spikes, and this is
reported to enable features to be extracted that are useful
for classification (Ferre et al., 2018). This has been extended
to deep convolutional neural networks for object recognition
(Kheradpisheh et al., 2018).

Unsupervised Learning for Object
Recognition and Spatial View Cells Using
the Spatial Statistics of Information From
the World
The temporal continuity typical of objects as they transform in
the natural world can be utilized by an associative learning rule
with a short term memory trace to aid with the building of
invariant object representations as set out above (Rolls, 2012,
2021a). However, there is another type of continuity that is
present as most objects transform in the visual world, namely
spatial continuity. We demonstrated that spatial continuity
can provide a basis for a system to self-organize transform-
invariant representations (Perry et al., 2006, 2010; Stringer et al.,
2006). We introduced a new learning paradigm ‘continuous
spatial transformation (CT) learning’ that can operate in neural
systems by mapping similar spatial input patterns to the same
postsynaptic neurons in a competitive learning network. While
the inputs change through the space of possible continuous
spatial transforms (e.g., translation, rotation, etc.), the active
synapses are modified onto the set of postsynaptic neurons.
Because other spatial transforms of the stimulus activate some
of the same input neurons as previously learned exemplars, a
common set of postsynaptic neurons is activated by the new
transforms, and learning of the new active inputs onto the same
postsynaptic neurons occurs.

The computational scheme is illustrated in Figure 8 (Perry
et al., 2006, 2010; Stringer et al., 2006). While a visual image is
presented at one location on the retina that activates neurons in
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FIGURE 8 | Continuous spatial transformation learning of transform-invariant visual representations of objects. This illustrates how continuous spatial transformation

(CT) learning would operate in a network with forward synaptic connections between an input Layer of neurons and an output Layer. Initially the forward synaptic

connection weights are set to random values. (A) The presentation of a stimulus to the network in position 1. Activation from the active (shaded black) input neurons

is transmitted through the initially random forward connections to activate the neurons in the output Layer. The neuron shaded black in the output Layer wins the

competition in the output Layer. The synaptic weights from the active input neurons to the active output neuron are then strengthened using an associative synaptic

learning rule. (B) The situation after the stimulus is shifted by a small amount to a new partially overlapping position 2. Because some of the active input neurons are

the same as those that were active when the stimulus was presented in position 1, the same output neuron is driven by these previously strengthened synaptic

afferents to win the competition. The rightmost input neuron shown in black is activated by the stimulus in position 2, and was inactive when the stimulus was in

position 1, now has its synaptic connection to the active output neuron strengthened (denoted by the dashed line). Thus the same neuron in the output Layer has

learned to respond to the two input patterns that have vector elements that overlap. The process can be continued for subsequent shifts, provided that a sufficient

proportion of input neurons is activated by each new shift to activate the same output neuron. (After Stringer et al., 2006).

Layer 1, a winning small set of neurons in Layer 2 associatively
modify their afferent synaptic connections from Layer 1 to learn
to respond to that image in that location. The same image
shown later at nearby locations, will, because of spatial overlap,
activate the same neurons in Layer 2 because some of the active
afferents are identical with those when the image was in the
first position. The key concept is that because these afferent
connections have been strengthened sufficiently while the image
is in the first location, then these afferent connections will
activate the same neurons in Layer 2 when the image is shown
in nearby overlapping locations. The result is that the same
neurons in the output Layer learn to respond to inputs that have
overlapping elements.

Figure 8 illustrates how the process can be continued for
other shifts, provided that a sufficient proportion of input
cells are activated by the individual shifts. The procedure
is repeated throughout the network, both with the image
moving across the retina, and hierarchically up through the
network. Across the levels of the network, transform invariant
(e.g., location invariant) representations of images are learned
successfully, setting up the network to implement invariant object
recognition. Similar CT learning can operate for other kinds
of transformation, including transforms of view and size (Perry
et al., 2006, 2010; Stringer et al., 2006).

VisNet can be trained with continuous spatial transformation
(CT) learning to form view-invariant representations
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(Stringer et al., 2006). It was demonstrated that CT learning
needs the training transforms to be spatially relatively
close, so that spatial continuity is present in the training
set; and that the order of stimulus presentation is not
needed, with even interleaving with other objects possible
during training, as spatial continuity rather than temporal
continuity drives the self-organizing learning with the purely
associative synaptic modification rule with no temporal trace
short-term memory term.

This research on view invariant learning using CT with VisNet
was extended to more complex 3D objects, which were also
used in human psychophysical investigations. It was found that
view invariant object learning can occur when spatial continuity
(with no temporal continuity) is present in a training condition
in which the images of different objects are interleaved (Perry
et al., 2006). However, the human view invariance learning was
better with sequential presentation of the images of each object,
providing evidence that temporal continuity is an important
factor in invariance learning in humans.

Continuous spatial transformation learning was further
extended to translation invariance (Perry et al., 2010). It was
shown that CT learning enables VisNet to learn translation
invariant representations; that the transforms must be spatially
close; that the temporal order of presentation of each transformed
image during training is not crucial for CT learning of translation
invariant representations; and that the number of transforms that
can be learned is relatively large (Perry et al., 2010). CT learning
can usefully be combinedwith temporal trace training as explored
further (Spoerer et al., 2016).

Stringer et al. (2005); Rolls et al. (2008), and Rolls (2021a)
proposed that the Gaussian spatial view fields of hippocampal
spatial view cells enable representations of scenes to be learned
due to associative learning driven by the overlap of the spatial
view fields of different neurons as the individual looks from
location to location in a viewed scene, including when the
individual traverses through the environment. This forms a
continuous attractor network that is effectively a representation
of a scene and is formed by the overlaps of the spatial fields of
neurons (Stringer et al., 2005; Rolls et al., 2008). This continuous
attractor representation of a spatial scene facilitates navigation
by enabling a trajectory through the continuous attractor of
spatial view cells (Rolls, 2021b). Analogous mechanisms are
proposed for place cell learning (Samsonovich and McNaughton,
1997; Stringer et al., 2002). These spatial continuous attractor
networks are sometimes referred to as charts of an environment
(Battaglia and Treves, 1998). It is noted here that this is in fact
an example of the use of the spatial statistics of the world to
build a representation, and is in fact CT (continuous spatial
transform) learning. As shown above, these spatial charts can
be built just by the overlap of spatial representations without
slow learning (Perry et al., 2010), so the temporal order in
which parts of a spatial scene are viewed is not a factor in how
such navigational charts including spatial view representations of
scenes are built. The use of the ‘spatial view cell charts’ of scenes
for navigation is considered further in Section “Slow Learning
and Coordinate Transforms for Spatial Functions Including
Navigation.”

SLOW LEARNING FOR OBJECT-BASED
GLOBAL MOTION IN THE DORSAL
VISUAL SYSTEM

In the cortex in the anterior part of the superior temporal sulcus,

which is a convergence zone for inputs from the ventral and

dorsal visual systems (Rolls, 2021a), Hasselmo et al. (1989b)

discovered some neurons that respond to object-based motion,

for example to a head rotating clockwise but not anticlockwise.

These neurons were discovered when the stimuli being shown to

themacaque were real heads performing thesemovements. Other

neurons responded to a head performing ventral flexion with

respect to the body (i.e., the head of a standing person moving

to look down). Systematic investigation with videos shown on

a screen confirmed that the neurons respond independently of

whether the head is upright or inverted, which reverses the optic

flow across the retina (Hasselmo et al., 1989b). The movement

that is encoded is thus with respect to the body, and is thus in

object-based coordinates (Hasselmo et al., 1989b). It is proposed

that neurons of this general type are important for natural social

behavior, for some of these neurons respond to turning the head

away, and also independently to closing the eyes, both of which

break social contact and often occur together.
In a unifying hypothesis with the design of the ventral

cortical visual system about how this might be computed, Rolls

and Stringer (2006b) proposed that the dorsal visual system
uses a hierarchical feedforward network architecture (V1, V2,
MT, MSTd, and parietal cortex) with training of the synaptic
connections with a short-term memory trace associative synaptic
modification rule to compute what is invariant at each stage.
Figure 9 illustrates the principle. It was demonstrated with
simulations that the proposal is feasible computationally, in that
invariant representations of the motion flow fields produced by
objects self-organize in the higher Layers of the architecture. The
computational architecture produces invariant representations
of the motion flow fields produced by global in-plane motion
of an object, in-plane rotational motion, and receding vs.
looming of the object. Invariant representations of object-
based rotation about a principal axis, of the type discovered
by Hasselmo et al. (1989b), were also produced in the model
(Rolls and Stringer, 2006b).

We thus proposed that the dorsal and ventral visual systems
may share some unifying computational principles (Rolls and
Stringer, 2006b). In fact, the simulations used a standard version
of VisNet, except that instead of using oriented bar (/Gabor filter)
receptive fields as the input to the first Layer of VisNet, local
motion flow fields provided the inputs.

The interesting and quite new principle is that some of the
same mechanisms including trace rule learning and hierarchical
organization that are used in the ventral visual system to compute
invariant representations of stationary objects may also be used in
the dorsal visual system to compute representations of the global
motion of a moving object. This may well be an example of a
principle of cortical operation, the re-use of the same principles of
cortical operation for different computations in different cortical
areas (Rolls, 2016, 2021a).
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FIGURE 9 | Invariant object-based global motion in the dorsal visual system. This shows two wheels at different locations in the visual field rotating in the same

direction. One rotating wheel is presented at a time, and a representation is needed in the case illustrated that the rotating flow field produced by the wheel in either

location is always clockwise. The local flow field in V1 and V2 is ambiguous about the direction of rotation of the two wheels, because of the small receptive field

size. Rotation that is clockwise or counterclockwise can only be identified by a global flow computation, with larger receptive fields. The diagram shows how a

network with stages like those found in the brain can solve the problem to produce position invariant global motion-sensitive neurons by Layer 3. The computation

involved is convergence from stage to stage as illustrated, combined with a short-term memory trace synaptic learning rule to help the network learn that it is the

same wheel rotating in the same direction as it moves across the visual field during training (during development). This is the computational architecture of VisNet. It

was demonstrated that VisNet can learn translation invariant representations of these types of object-based motion, by substituting the normal Gabor filters as the

input neurons in the input Layer corresponding to V1 with local optic flow motion neurons also present in V1. (After Rolls and Stringer, 2006b).

SLOW LEARNING AND COORDINATE
TRANSFORMS FOR SPATIAL
FUNCTIONS INCLUDING NAVIGATION

Slow Competitive Network Learning Can
Help to Convert Entorhinal Cortex Grid
Cells to Dentate/Hippocampal Place
Cells
Grid cells in the medial entorhinal cortex are activated when
a rodent is located at any of the vertices of a spatial grid
of equilateral triangles covering the environment (Giocomo
et al., 2011; Moser et al., 2015). However, cells in the dentate
gyrus and hippocampus of the rodent typically display place
fields, where individual cells are active over only a single
portion of the space (O’Keefe, 1979; Jung and McNaughton,
1993; Leutgeb et al., 2007; Moser et al., 2015). In a model
of the hippocampus, we have shown that the connectivity
from the entorhinal cortex to the dentate granule cells could
allow the dentate granule cells to operate as a competitive
network to recode their inputs to produce sparse orthogonal
representations, and this includes spatial pattern separation. We
further showed that the same computational hypothesis can
account for the mapping of entorhinal cortex grid cells to dentate

place cells (Rolls et al., 2006b). It was shown that the learning
in the competitive network is an important part of the way in
which the mapping can be achieved (Rolls et al., 2006b). This
approach has received support (Si and Treves, 2009). But we
further showed that incorporation of a short term memory trace
into the associative learning to implement slow learning can
help to produce the relatively broad place fields found in the
hippocampus (Rolls et al., 2006b).

It is now proposed that this same slow learning may help to
account for the shape of place fields, which become distorted if
there is an obstruction in the environment (Muller and Kubie,
1987). It is proposed that because the places on different sides
of a barrier are not encountered close together in time, the place
fields lose their continuity at the barrier, and stop at the barrier,
because the spatial locations on each side of the barrier are not
encountered close together in time, and so do not enable the
slow learning to make the fields continuous across the barrier.
This slow learning approach takes time into account, as does the
reinforcement learning approach (Stachenfeld et al., 2017).

Spatial View Cells
There is much evidence that the rodent hippocampus with
its place cells is involved in memory and navigation (O’Keefe
and Dostrovsky, 1971; O’Keefe and Nadel, 1978; O’Keefe, 1979;
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McNaughton et al., 1983, 2006; Burgess and O’Keefe, 1996;
Morris et al., 2003; Takeuchi et al., 2014; Edvardsen et al., 2020).
When we recorded in the macaque hippocampus, we found some
place cells (Rolls and O’Mara, 1995), but very interestingly, many
other neurons responded to where the monkey was looking in
space (Rolls et al., 1989b; Feigenbaum and Rolls, 1991; Rolls and
O’Mara, 1995). Bruce McNaughton suggested that the monkey
should be allowed to locomote, and then investigate whether
the spatial view cells might alter their properties, or place
cells might become more evident. Rolls et al., 1997a devised a
system that enabled the monkey to run quite naturally around
the lab while recordings were made of hippocampal neuronal
activity in a much richer environment, the rich environment
of a large open laboratory. Careful measurement of the place,
head direction, and eye position of the monkey during this
locomotion showed that the spatial view neurons encoded most
information about where the monkey was looking in allocentric
space, and not about place, head direction, or eye position (Rolls
et al., 1997a, 1998; Robertson et al., 1998; Georges-François et al.,
1999; Rolls and Wirth, 2018). The much visually richer open lab
environment also increased the proportion of spatial view cells,
compared to the cue-controlled environment used previously
(Rolls and O’Mara, 1995).

A key discovery was that these spatial view cells are updated
in the dark by self-motion. For example, a spatial view cell in
the dark, with curtains also blocking any view of the spatial
scene, responds when the macaque looks toward the spatial view
location where it responded in the light, and not when the
macaque looks elsewhere. The spatial view field was thus similar
in the light and the dark for many of these neurons (Robertson
et al., 1998). This continued for only a few minutes, after which
the spatial view field drifted, as the idiothetic (self-motion) update
requires path integration involving a memory system (Robertson
et al., 1998). This idiothetic update is potentially very useful in
the natural world, for if a spatial view is obscured for a short time
by an obstruction, then the spatial view system can continually
update the locations in space to maintain navigation for short
periods while the spatial view is obscured (Rolls, 2021b).

Thus this research involving foraging in an open lab visually
rich environment enabled us to reveal many properties of spatial
view cells, and further to show that they are involved in memory
of where objects (Rolls et al., 2005; Rolls and Xiang, 2006) and
rewards (Rolls and Xiang, 2005) are in viewed space. Further, it
is now proposed that these spatial view cells are important not
only in episodic memory (Kesner and Rolls, 2015; Rolls, 2018),
but also in navigation (Rolls and Wirth, 2018; Rolls, 2021b).
Indeed, the theory is that spatial view cells are very well suited to
navigation in primates including humans, for they offer a natural
way to navigate from landmark to landmark without explicit
geometrical calculations in a Euclidean space (Rolls, 2021b).
The mechanism is much simpler than the navigational systems
proposed for rodents based on place cells in the hippocampus and
grid cells in the entorhinal cortex involving maps of Euclidean
space (O’Keefe, 1979; Burgess and O’Keefe, 1996; Bicanski and
Burgess, 2018; Edvardsen et al., 2020).

The underlying mechanisms for navigation using spatial view
cells in primates including humans, and how slow learning may

be involved, are considered in Section “Slow Learning Combined
With Gain Modulation for Learning Coordinate Transforms in
the Dorsal Visual System Through to the Parietal Cortex, for Use
in Hippocampal Navigation.”

Slow Learning Combined With Gain
Modulation for Learning Coordinate
Transforms in the Dorsal Visual System
Through to the Parietal Cortex, for Use in
Hippocampal Navigation
A problem arises with navigation involving hippocampal spatial
view cells and approach to a sequence of viewed landmarks if
during navigation the landmarks are temporarily obscured. In
this situation, idiothetic update, that is update based on self-
motion, of spatial view cells (Robertson et al., 1998), can be
used, it is proposed. This enables the location in the scene
produced by idiothetic update to produce hippocampal spatial
view firing when the monkey is looking toward the obscured
view (Robertson et al., 1998), and could therefore be used to
guide navigation toward the location in allocentric space where
the relevant spatial view cells fire (Rolls, 2021b).

The mechanism for idiothetic update of spatial view cells
in primates needs to take into account eye position, as well as
head direction and the place where the individual is located.
Consistent with the neurophysiology of the primate dorsal visual
system (Snyder et al., 1998; Dean and Platt, 2006), it is proposed
that the coordinate transforms take place across a series of
stages of the dorsal visual system hierarchy through the parietal
cortex and thence via the retrosplenial cingulate cortex and
posterior cingulate cortex to the hippocampal system via the
parahippocampal gyrus (Rolls, 2020) (Figure 10).

This hierarchy transforms from egocentric representations
to ‘allocentric bearing to a landmark’ and then to allocentric
spatial view representations, with the brain regions for each stage
indicated in Figure 10 (Rolls, 2020). The system starts with
representations in retinal coordinates, and transforms these into
head-based egocentric representations in LIP and VIP using gain
modulation by eye position (Salinas and Abbott, 2001; Rolls,
2020). Then the head-centered representation is transformed into
an ‘allocentric bearing to a landmark’ representation in areas
such as parietal cortex 7a (Snyder et al., 1998) and posterior
cingulate cortex (Dean and Platt, 2006) using gain modulation
by head direction (Rolls, 2020). These neurons fire when a
macaque views a stimulus in allocentric space (Snyder et al.,
1998; Dean and Platt, 2006; Rolls, 2020). Then the ‘allocentric
bearing to a landmark’ representation is transformed into an
allocentric spatial view representation by gain modulation using
translation of the individual to different places (Rolls, 2020). This
builds a representation in the same spatial coordinates used in
the primate hippocampus and parahippocampal gyrus, namely
allocentric spatial view that represents a location in allocentric
space ‘out there’, independently of the exact place where the
animal is located, as well as its head direction and eye position
(Rolls et al., 1997a, 1998; Robertson et al., 1998; Georges-François
et al., 1999). This type of representation is ideal for the episodic
memory functions of the primate hippocampus, for it enables
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FIGURE 10 | Coordinate transforms in the primate dorsal visual system. Three stages of coordinate transforms that take place at different levels of the primate

dorsal visual system are shown. At each stage the coordinate transform is performed by gain modulation of the receptive field by an appropriate modulator, that is

usefully combined with slow learning of the type implemented in VisNet which helps the same neurons at a particular stage to develop what are effectively

representations that become independent of the modulating signal. In Layer 1 gain modulation by eye position combined with slow learning enables neurons to

develop representations in head-centered coordinates that are invariant with respect to retinal and eye position. In Layer 2 gain modulation by head direction

combined with slow learning enables neurons to develop representations in allocentric bearing to a stimulus such as a landmark coordinates that are invariant with

respect to head direction. In Layer 3 gain modulation by the place where the individual is located combined with slow learning enables neurons to develop

representations of a stimulus such as a landmark that are in allocentric spatial view coordinates with invariance with respect to where the individual is located. The

diagram shows the architecture of the VisNetCT model in which gain modulation combined with short-term memory trace associative learning was shown to

implement these transforms (Rolls, 2020). Each neuron in a Layer (or cortical area in the hierarchy) receives from neurons in a small region of the preceding Layer. It is

proposed that idiothetic update through this dorsal visual cortical stream is used for idiothetic update of hippocampal spatial view cells useful for navigation when the

environment may not be visible for short periods (Rolls, 2020, 2021b). PCC, posterior cingulate cortex; RSC, retrosplenial cortex.

memories to be formed of where in allocentric space an object
or person was seen. Because the memory is independent of the
exact place where the individual is located, if the same location
is seen from a different place, the hippocampal memory system
will correctly recall the object or person that was at that location
(Rolls, 2018, 2021a). Similarly, if the object or person is the recall
cue, the location in allocentric space where they were seen can
be recalled from the CA3 network in the hippocampus, and that
memory is suitable for navigation to that location, because it does
not depend on the place where the animal is, which would be very
restrictive indeed in a navigation ormemory system (Rolls, 2020).

The mechanism proposed at each stage is gain modulation,
but supplemented by trace rule slow learning as this greatly
helps to improve the coordinate transform by reducing effects of
imprecision which otherwise accumulate through the multi-stage
system shown in Figure 10 (Rolls, 2020). It is well established that
starting with retinal coordinates, gain modulation by eye position
can transform the representation into head-based egocentric
representations in LIP and VIP (Pouget and Sejnowski, 1997;
Salinas and Abbott, 2001; Salinas and Sejnowski, 2001). This
general mechanism was extended to two further stages in the
dorsal visual system, as shown in Figure 10 (Rolls, 2020).

Now, these types of coordinate transform are in effect a
form of invariance learning. First the representation becomes
invariant with respect to eye position, then with respect to
head direction, and then with respect to place, to produce the
idiothetic update of spatial view cells (Figure 10) (Rolls, 2020).
Rolls reasoned that therefore slow learning using the short-
term memory trace learning rule should help the coordinate
transform learning, by enabling the system to produce the
same output in for example head direction coordinates over
a whole set of different eye positions occurring while a visual
stimulus remained at the same location in space relative to
the head. This invariance slow learning mechanism was shown
to greatly improve the performance in a computational model
of the processes, and helped in the formation of spatial view
cells that are invariant with respect to eye position, head
direction, and the place of the individual (Rolls, 2020). Spatial
view cells may be very useful in primates including humans
not only in episodic memory characterized by associations
between objects and locations viewed in space (Kesner and
Rolls, 2015; Rolls, 2018, 2021a), but also in navigation toward
a sequence of viewed locations using spatial view cells (Rolls,
2021a,b).
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This therefore provides another interesting example of how
the statistics of the world, in the example just given a constant
location in the world that is being looked at (a ‘spatial view’)
invariantly with respect to eye position, head direction, or the
place where the individual is, help slow unsupervised learning to
produce behavior that is of great adaptive value in the natural
world for episodic memory and for navigation (Rolls, 2020,
2021a).

The overall theory of how allocentric spatial view cells
are formed in the first place, and can then be idiothetically
updated in the way just described by self-motion inputs which
must necessarily be converted into corresponding allocentric
coordinates, is in brief as follows, with more detail elsewhere
(Rolls, 2021a,b). The proposal is that hippocampal spatial
view cells are driven by parts of scenes which may contain
features represented in the ventral visual system. Different spatial
view cells are linked together to form a scene representation
in a continuous attractor network (Stringer et al., 2005). In
a continuous attractor network the synaptic connections are
strengthened between neurons that are nearby in the space,
because they have coactive firing due to the approximately
Gaussian shape of their overlapping spatial view fields. This
sets up a continuous map of space in which adjacent points
in the space are joined by their learned co-active firing due to
their nearness in the viewed space, as shown for spatial view
cells (de Araujo et al., 2001; Rolls and Stringer, 2005; Stringer
et al., 2005; Rolls, 2016, 2021a). This enables the space to be
read out continuously and sequentially, as a bubble of neural
activity traverses the space (Rolls, 2021a). These spatial view cells
to be useful for memory of where an object or person is in
the spatial environment, and for navigation, and for imagery,
and for the Art of Memory (Rolls, 2017), need to be invariant
with respect to the exact position on the retina, eye position,
head direction, and place where the viewer is located [and they
are, as described above and elsewhere (Georges-François et al.,
1999; Rolls, 2021b)]. The mechanism just described with the
primate fovea which provides a locally Gaussian spatial view of
the world enables the appropriate spatial scene representations
to be formed, which do not depend on where the viewer is
etc. because the representations are built just by the nearness
of locations in a scene. These locations are linked in the
correct spatial arrangement by associative synaptic learning of
coactive spatial view cells with overlapping spatial fields as the
viewer looks at different parts of the scene. The problem arises
when the scene is temporarily obscured – can the part of the
scene that the viewer is looking toward be updated by self-
motion, to enable scene location-object memory recall, and
navigation, to be performed? That is what is achieved by the
dorsal visual system coordinate transformmechanisms described
above, which utilize slow learning and gain modulation as the
underlying mechanisms, which can be repeated stage after stage
as illustrated in Figure 4 (Rolls, 2020).

The situation may be different in rodents, which do not have
a fovea nor a highly developed dorsal visual system for eye
movement control nor a posterior cingulate cortex, and which
may rely more on place-based navigation rather than spatial view
cell navigation (Rolls, 2021a,b). Slow learning may also be useful

in the learning of place cell representations (Franzius et al., 2007;
Schonfeld and Wiskott, 2015).

DISCUSSION AND CONCLUSION

An interesting issue to consider is that in the ventral visual
cortical stream, in the progression from V1 to V2 to V4 to
posterior (TEO) and then to anterior inferior temporal visual
cortex (TE), pyramidal cell basal dendrites cover a larger area
of cortex, have a greater dendritic length, have a greater spine
density, and have recurrent collateral connections that spread
approximately over a region that is as large as the areal spread of
the dendrites (Lund et al., 1993; Fujita and Fujita, 1996; Elston
and Rosa, 1997, 1998; Elston, 2002, 2007; Jacobs and Scheibel,
2002; Elston and Fujita, 2014; Luebke, 2017; Oga et al., 2017).
The average number of spines (each reflecting an excitatory
synaptic input) on the basal dendrites of macaque layer 3 cortical
pyramidal cells is in the order of 640 in V1, 1,139 in V2, 2,429
in V4, 4,812 in TEO, and 7,400 in TE (Elston and Rosa, 1998;
Elston, 2007). (These numbers are likely to be approximately
doubled by the backprojection inputs from higher cortical areas
that terminate especially but not exclusively in the superficial
cortical layers especially layer 1 of the neocortex (Abeles, 1991;
Markov et al., 2013, 2014a,b; Markov and Kennedy, 2013; Rolls,
2016).

In relation to the computational processes taking place in
the ventral cortical visual stream, the relatively small dendritic
area and numbers of spines in early stages such as V1 and
V2 are hypothesized to relate to the importance of maintaining
high spatial resolution for individual neurons. In VisNet in
Layer 1 which corresponds to V2 (Figure 1), this allows feature
combination neurons to be formed that reflect the exact positions
of the two features, so that e.g., ‘T’ can be distinguished from ‘L.’
(In this example the two features are a horizontal and vertical
line). This must be performed before translation invariance
is computed, and before the spatial position is less precisely
represented, for otherwise spatial feature combination learning in
which a neuron becomes sensitive to the exact spatial relation of
the features, and hence the ability to distinguish different objects
with similar features, would be impaired. For this computational
reason, the learning allowed in Layer 1 of VisNet is purely
associative, with no slow temporal trace, to minimize translation
invariance learning in Layer 1. Further, given that temporal
trace slow learning may be facilitated in part by the short-term
memory implemented by local attractor networks utilizing the
recurrent collateral connections between cortical pyramidal cells
that terminate especially on the basal dendrites, the relatively
small numbers of spines on the basal dendrites is also probably
related to no need at early stages of visual processing for the
neuronal activity to be maintained in short-term memory for
short periods of a second or two while different transforms of
an object may be presented in line with the natural statistics of
the viewed world.

In contrast, at higher levels of VisNet (Layers 2–4
corresponding to V4, posterior inferior temporal cortex
TEO, and to anterior inferior temporal cortex TE, see Figure 1),
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the aim is to extend the spatial receptive fields of neurons so that
they can receive all the information needed to encode a given
object by neuronal firing for all the different transforms of the
object that are possible, including translation, size, and view. Each
neuron by the final Layer (4) of VisNet and the real visual system
in the brain must be able to receive information from across
much of the visual field that can potentially be stimulated by
all possible transforms of a given object, and that is achieved by
the convergent multistage feedforward architecture illustrated in
Figure 1 with therefore large dendritic trees by the end of the
visual system. The premium here is on receiving many inputs
from a wide local region of cortex that might be involved in
responding to any transform of a single object. Further, given that
attractor networks are likely to be implemented in the neocortex
by the local recurrent collateral synapses between pyramidal cells
that are likely to terminatemainly on the basal dendrites, the large
numbers of synapses on each neuron in higher visual cortical
areas may be very helpful for implementation of the short-term
memory trace rule that is used for the slow learning, which may
need to be robustly maintained for periods as long as one to a
few seconds while different transforms of a given object are being
seen. For this attractor system to work, large numbers of synapses
devoted to the recurrent collateral excitatory connections are
needed, because the number of such synapses on each neuron
sets the number of different short-termmemories in the attractor
network in which a neuron can participate (Hopfield, 1982;
Treves, 1991; Treves and Rolls, 1991; Rolls, 2021a). The number
of recurrent collateral synapses on each neuron needs to be large
because of the sparse distributed encoding used in the neocortex
in which each neuron may participate in the encoding of many
different objects, with different firing rates to each object (Rolls
and Tovee, 1995; Franco et al., 2007; Rolls and Treves, 2011; Rolls,
2021a). Consistent with a short-termmemory trace implemented
in the inferior temporal visual cortex, these neurons continue
to fire for often 1 s after the termination of a stimulus (unless
a backward mask is applied, which provides evidence that the
maintenance is an active process) (Rolls and Tovee, 1994; Rolls
et al., 1999; Rolls, 2003).

The tutorial version of VisNet (Rolls, 2021a) allows parameters
such as the radius in the preceding Layer from which inputs
are received, the number of synapses per neuron for the inputs
in each Layer, and whether a purely associative or instead a
memory trace learning rule is used in each Layer, as these
parameters are important in the theory of the learning of
transform invariant representations in the ventral visual system
and in the operation of VisNet.

The aim of the research described here has been to better
understand how computations are performed by the brain, with
special reference to how transform-invariant representations
useful for vision are formed in the brain. The focus has therefore
been on biologically plausible mechanisms, and further details
of these are provided in Brain Computations: What and How
(Rolls, 2021a).

However, what has been elucidated here has implications for
training artificial neural networks. A key implication is that it can
be helpful to utilize information available in the temporal and
spatial statistics of the inputs, which as shown here can provide

important information for the learning of transform-invariant
representations that are useful in the natural world, or for that
matter elsewhere. This is essentially a form of unsupervised
learning, guided by the statistics of the inputs. It is unsupervised
in the sense that there is no teacher for each output neuron as
in deep convolution networks (LeCun et al., 2010, 2015) [which
is biologically implausible (Rolls, 2016, 2021a)]. Nor does the
training described here use reinforcement learning (Sutton and
Barto, 1998; Schultz, 2016; O’Doherty et al., 2017).

Another aspect of the type of training described here is
that it is systematic, with different views of the same object
being presented, as typically occurs when objects are viewed
in the natural world. In contrast, for learning with deep
convolution networks, typically thousands of objects are used
in ‘brute force’ training, with no systematic sets of transforms
of the same objects to help the learning of transform-invariant
representations. Another property of the brain is that it is able
to perform its computations for invariances in networks with
just 4 or 5 Layers (see Figure 1). Part of the reason for this
is to maximize processing speed, and minimize computation
and reaction time (Rolls, 2016, 2021a), but it does show that
networks with one hundred or more Layers are not needed
to solve the computations involved in transform-invariant
object recognition.

What is described here and elsewhere (Rolls, 2021a) may
thus it is hoped be useful for developing better artificial neural
networks and artificial intelligence. For example, convolutional
neural networks are typically trained on very large numbers of
single training image exemplars (snapshots) of the classes to be
learned, and can fail if a few pixels are altered, implying that they
learn pixel-level representations. It is proposed here that training
such networks with different transforms of objects would much
better enable transform-invariant shape-based representations
to be learned, leading to much more powerful performance.
Potential limitations of current deep learning methods have
been also been noted by others (Plebe and Grasso, 2019;
Sejnowski, 2020).
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