Learning Invariants using Decision Trees
and Implication Counterexamples

Pranav Garg  Daniel Neider

P. Madhusudan  Dan Roth

University of Illinois at Urbana-Champaign
{garg11, neider2, madhu, danr}@illinois.edu

Abstract

Inductive invariants can be robustly synthesized using a learning
model where the teacher is a program verifier who instructs the
learner through concrete program configurations, classified as pos-
itive, negative, and implications. We propose the first learning al-
gorithms in this model with implication counter-examples that are
based on machine learning techniques. In particular, we extend
classical decision-tree learning algorithms in machine learning to
handle implication samples, building new scalable ways to construct
small decision trees using statistical measures. We also develop a
decision-tree learning algorithm in this model that is guaranteed to
converge to the right concept (invariant) if one exists. We implement
the learners and an appropriate teacher, and show that the resulting
invariant synthesis is efficient and convergent for a large suite of
programs.

1. Introduction

Automatically synthesizing invariants, in the form of inductive
pre/ post conditions and loop invariants, is a challenging problem
that lies at the heart of automated program verification. If an
adequate inductive invariant is found or given by the user, the
problem of checking whether the program satisfies the specification
can be reduced to logical validity of verification conditions, which is
increasingly tractable with the advances in automated logic solvers.

In recent years, the black-box or learning approach to finding
invariants, which contrast white-box approaches such as interpolants,
methods using Farkas’ lemma, IC3, etc. [14, 18, 29, 31, 33, 40],
have gained popularity [25, 26, 52, 55, 56]. In this data-driven
approach, we split the synthesizer of invariants into two parts (see
figure to the right). One component is a teacher, which is essentially
a program verifier that can verify the program using a conjectured
invariant and generates counter-examples; it may also have other
ways of generating configurations that must or must not be in the
invariant (e.g., dynamic execution engines, bounded model-checking
engines, etc.). The other component is a learner, which learns from
counter-examples given by the teacher to synthesize the invariant.
In each round, the learner proposes an invariant hypothesis H,
and the teacher checks if the hypothesis is adequate to verify the

[Copyright notice will appear here once "preprint’” option is removed.]

Unpublished Manuscript

Teacher

Program + Spec

Dynamic Execution
generate + points

Bounded MC
generate + and -
points

program configs

Learner

Verifier

checks hypothesis H

(hypothesis inv)

program against the specification; if not, it returns concrete program
configurations that are used in the next round by the learner to
refine the conjecture. The most important feature of this framework
is that the learner is completely agnostic of the program and the
specification (and hence the semantics of the programming language,
its memory model, etc.). The learner is simply constrained to learn
some predicate that is consistent with the sample configurations
given by the teacher.

ICE Learning Model: The simplest way for the teacher to refute
an invariant is to give positive and negative program configurations,
ST and S, constraining the learner to find a predicate that includes
ST and excludes S~. However, this is not always possible. In
a recent paper, Garg et al. [26] note that if the learner gives a
hypothesis that covers all states known to be positive by the teacher
and excludes all states known to be negative by the teacher, but yet is
not inductive, then the teacher is stuck and cannot give any positive
or negative counter-example to refute the hypothesis.

Garg et al. [26] define a new learning model, which they call
ICE (for implication counter-examples) that allows the teacher to
give counter-examples of the form (x, y), where both x and y are
program configurations, with the constraint that the learner must
propose a predicate such that if the predicate includes x, then it
includes y as well. These implication counter-examples can be
used to refute non-inductive invariants: if H is not inductive, then
the teacher can find a configuration x satisfying H such that x
evolves to y in the program but y is not satisfied by H. This
learning model forms a robust paradigm for learning invariants,
including loop invariants, multiple loop invariants, and nested loop
invariants in programs [26]—the teacher can be both honest (never
give an example classification that precludes an invariant) and make
progress (always be able to refute an invariant that is not inductive
or adequate). This is in sharp contrast to learning only from positive
and negative examples, where the teacher is forced to be dishonest
to make progress.

Machine Learning for Finding Invariants: One of the biggest
advantages of the black-box learning paradigm is the possible usage
of machine learning techniques to synthesize invariants. The learner,
being completely agnostic to the program (its programming lan-
guage, semantics, etc.), can be seen as a machine learning algorithm

2015/7/14



that learns a Boolean classifier of configurations [42]. Machine
learning algorithms can be used to learn Boolean functions that
belong to various classes, such as k-CNF/k-DNF, Linear Threshold
Functions, Decisions Trees, etc., and some algorithms have already
been used in invariant generation [54]. However standard machine
learning algorithms for classification are trained on given sets of
positive and negative examples, but do not handle implications and
hence do not help in building robust learning platforms for invariant
generation.

The goal of this paper is to adapt the standard decision tree
learning algorithms to the ICE learning model in order to synthesize
invariants. The key differences between current machine learning
algorithms and the algorithms that we need are (a) to ensure that
the algorithms build consistent classifiers, without errors, however
small, (b) to ensure that they can learn from a sample that includes
implication counter-examples and be consistent with them, (c) to
adapt the statistical measures within the learning algorithm to take
into account the existence of implications, and (d) to ensure that the
learning converges eventually to an invariant, if one exists.

Decision trees over a set of numerical and Boolean attributes
provide a universal representation of Boolean functions composed of
atomic formulas that are either inequalities bounding the numerical
attributes by constants or Boolean attributes. Our starting points are
the well-known decision tree learning algorithms of Quinlan [42,
48, 49] that work by constructing the tree top-down from positive
and negative samples. These are efficient algorithms as they choose
heuristically the best attribute that classifies the sample at each stage
of the tree based on statistical measures, and do not backtrack nor
look ahead. One of the well-known ways to pick these attributes is
based on a notion called information gain, which is in turn based on
a statistical measure using Shannon’s entropy function [42, 49, 51].
The inductive bias in these learning algorithms is roughly to compute
the smallest decision tree that is consistent with the sample—a bias
that again suits our setting well, as we would like to construct the
smallest invariant formula amongst the large number of invariants
that may exist.

Machine learning algorithms, including the decision tree learning
algorithm, often do not produce concepts that are fully consistent
with the given sample—this is done on purpose to avoid over-fitting
to the training set, under the assumption that, once learned, the
hypothesis will be evaluated on new, previously unseen data. We
first remove these aspects from the decision tree algorithm (which
includes, for example, pruning to produce smaller trees at the cost of
inconsistency) as we aim at identifying a hypothesis that is correct
rather than one that only approximates the target hypothesis.

Our first technical contribution is a generic top-down decision
tree algorithm that works on samples with implications. This algo-
rithm constructs a tree top-down, with no backtracking, classify-
ing end-points of implications as it builds the tree. Whenever the
algorithm decides to classify a set of end-points, it immediately
propagates the decisions across implication chains. By maintaining
an invariant on the properties of the partial classification, it ensures
that it will never end up in an inconsistent classification nor end
up in a state where it cannot make progress. This ensures that we
never need to backtrack to find new valuations to end-points. We
prove that our algorithm, independent of what methods are used to
pick attributes to split nodes, always results in a decision tree that is
consistent with the sample (Section 3).

Our second technical contribution is a study of various natural
measures for learning decision trees in the presence of positive,
negative, and implication examples. We do this by developing
several novel “information gain” measures that are used to determine
the best attribute to split on the current collection of examples and
implications. A naive metric is to simply ignore implications when
choosing attributes—however, ignoring implications entirely seems

Unpublished Manuscript

to result in non-robust invariant generation, where we found that
even on simple examples the learning diverges. We propose two new
metrics, one that imposes an additional penalty to the information
gain measure that quantifies the number of implication pairs that are
cut by a predicate, and the other which is a natural extension of the
entropy measure to account for implications. We also tried several
other intuitive statistical ways to define heuristic measures to find
the best attributes, but the two described above gave the best results.

Our third contribution is to build a decision tree learning al-
gorithm for the ICE model so that it is convergent in an iterative
learning framework. In invariant synthesis, the passive learner for
decision trees operates in conjunction with a verification oracle that
takes hypothesized invariants produced by the learner and returns
samples that exhibit why the hypothesized invariant is incorrect. We
would like this iterative learning to terminate, but unfortunately, as
the concept class is infinite, decision tree learning (both the classical
one as well as the one we develop above for ICE) need not terminate.
Hence, we build a new algorithm that uses the Occam principle to
gain convergence—it strives to produce decision trees that use the
minimum thresholds for any sample. We do this by setting a maxi-
mum threshold m, and learning decision trees where thresholds stay
below m, incrementing m in an outer loop when such a tree does
not exist. Decision tree building is extremely random (due to the
statistical measures used to judge which attributes are best used for
a split), and hence figuring out that no tree with maximum threshold
m exists, without back-tracking, is challenging. We show how to
build a polynomial time learning algorithm that either constructs the
decision tree for a maximum threshold m or declares that no such
tree exists. This gives us an invariant generation scheme that is guar-
anteed to converge to an invariant, if one exists that is expressible
using the given attributes.

Finally, we implement our ICE decision tree algorithms (i.e.,
our generic ICE learning algorithm with the various statistical mea-
sures for choosing attributes) and build teachers to work with these
learners to guide them towards learning invariants. We perform ex-
tensive experiments on a set of programs, with small and intricate
loop invariants, taken from software verification competitions and
the literature. We compare the tool with both invariant generation
tools that use interpolation, as well as black-box ICE learning al-
gorithms that use random search and constraint solvers. Despite
being a fledgling algorithm, the first to use machine-learning algo-
rithms adapted to the ICE setting, we show that the techniques using
both statistical measures performs extremely well. On the class of
more than 50 benchmarks, our tool is in fact the only one that finds
adequate invariants in all of them.

The black-box approach to generating invariants is especially
attractive in situations where a programmer has partially annotated
programs (which can be complex, involving quantifiication, arrays,
etc.) that need to be strengthened to prove a program correct. White-
box techniques are not ready for this as they cannot typically handle
such quantified invariants and strengthen them. However, black-box
techniques follow a “guess-and-check” approach, which is readily
adaptable to this setting. We report a few experiments where our
tool is able to help strengthen partially annotated programs.

We believe that this work breaks new ground in adapting machine
learning techniques to invariant synthesis, giving the first efficient
robust ICE machine-learning algorithms for synthesizing invariants.
The experiments give hope that this technique, which works well
on small intricate loops, holds promise in tackling larger problems,
especially in helping lessen the annotation burden on programmers
proving their code correct.

Related Work Algorithms for invariant synthesis can be broadly cat-
egorized as white-box techniques and black-box techniques. Promi-
nent examples for white-box techniques include abstract interpre-
tation [20], interpolation [33, 40], and IC3 [14]. Template-based

2015/7/14



approaches for synthesizing invariants using constraint solvers have
been also explored in a white-box setting before [18, 29, 31]. On
the other hand, a prominent early example of black-box techniques
for synthesizing invariants is Daikon [22], which uses conjunctive
Boolean learning to find likely invariants from program configu-
rations recorded along dynamic test runs. A similar line of work
has been explored more recently in [24, 45] for synthesizing likely
polynomial and quantified list and array invariants, respectively.
However, it is important to note that the invariants synthesized in
this manner might not be frue inductive invariants of the program.
This shortcoming is gotten rid of in Houdini [23], which, like Daikon
also uses conjunctive Boolean learning to learn conjunctive invari-
ants over templates of atomic formulas but, has a constraint-solver
based teacher to iteratively guide the conjunctive learner by pro-
viding counterexamples till the concept learned is inductive and
adequate. Work on liquid types [34] uses a similar algorithm for
inferring refinement types for program expressions.

Following these early works, learning was explicitly introduced
in the context of verification by Cobleight et al. [16], followed by
applications of Angluin’s L™ [7] to verification problems such as
finding rely-guarantee contracts [5], stateful interface specifications
for programs [4], verifying CTL properties [59], and Regular Model
Checking [44].

Recently, learning has gained renewed interest in the context
of program verification, particularly for synthesizing loop invari-
ants [15, 25, 26, 37, 38, 53-56]. However, Garg et al. [26] argue that
merely learning from positive and negative examples for synthesiz-
ing invariants is inherently non-robust and introduce ICE-learning,
which extends the classical learning setting with implications. Impli-
cation counter-examples were also identified by Sharma et al [56],
but the learners proposed did not handle them in any way. Examples
of algorithms using ICE-learning have been subsequently proposed
for learning invariants over octogonal domains and universally quan-
tified invariants over linear data structures [25], Regular Model
Checking [44], and a general framework for generating invariants
based on randomized search [52]. Some generalizations of Hou-
dini [27, 58] can also be seen as ICE-learning algorithms.

In program or expression synthesis, a popular approach to syn-
thesis is using counter-example guided inductive synthesis (CEGIS),
which is also a black-box learning paradigm [6, 57] like ICE, and is
gaining traction aided by explicit enumeration, symbolic constraint-
solving and stochastic search algorithms.

Machine learning algorithms (see [42] for an overview) are often
used in practical learning scenarios due to their high scalability.
Amongst the most well-known machine learning algorithms for
learning linear classifiers are the winnow algorithm [39], percep-
tron [50], and support vector machines [19]. Since invariants in our
current work are arbitrary Boolean functions, our learner is build
on decision tree algorithms such as ID3 [48], C4.5 [49] and C5.0,
and not linear classifiers. Apart from these classification algorithms,
algorithms for learning more complicated structured objects using
structured prediction [9] have also become popular recently.

Turning to general learning theory, the field of algorithmic learn-
ing theory is a well-established field [36, 43]. Several learning mod-
els like PAC [35] and exact learning by Angluin [8] are well known
in machine learning literature. However, the learning setting closest
to ICE-learning is perhaps the mistake bound learning model [39], in
which a learner iteratively learns from incorrectly classified data and
needs to converge to a correct classifier within a bounded number of
wrong conjectures. In a passive setting, there has been some prior
work on learning concepts in a semi-supervised setting with equiva-
lence constraints (where unlabeled counterexample pairs need to be
labeled with the same classification) [2, 13]. This setting is arguably
easier to handle than handling directional implication constraints.
We are not aware of any machine learning algorithm designed to

Unpublished Manuscript

learn from labeled (positive or negative) data as well as implications
constraints.

2. Background: Learning Decision Trees from
Positive and Negative Examples

Our algorithm for learning invariants builds on the classical recursive
algorithms to build decision trees. (We refer the interested reader
to standard texts on learning for more information on decision tree
learning [42].) In particular, our learning algorithms are based on
learning decision trees using the algorithms of Quinlan, where the
tree is built top-down, choosing the best attribute at each stage using
an information theoretic measure that computes the information
gain in applying the attribute (quantified as the decrease in entropy
on the resulting divided samples), and as implemented by the ID3,
C4.0, and C5.0 algorithms [42, 48, 49].

Before we delve into the decision tree learning algorithm, let
us first give the context in which these algorithms will be used for
invariant synthesis. The reader is encouraged to think of decision
trees as Boolean combinations of formulae of the form a; < ¢,
where a; is drawn from a fixed set of numerical attributes A (which
assign a numerical value to each sample) and c is a constant, or of
the form b;, where b; is drawn from a fixed set of Boolean attributes
(which assign a truth value to each sample). When performing
invariant learning, we will fix a set of attributes typically as certain
arithmetic combinations of integer variables (for example, octagonal
combinations of variables of the form +x 4 y for all pair of
program variables x, y or certain linear combinations of variables
with bounded co-efficients). Boolean attributes are useful for other
non-numerical constraints (such as are x and y aliased, does x point
to nil, etc.). Consequently, the learner would learn the thresholds
(the values for c in a; < ¢) and the Boolean combination of the
resulting predicates, including arbitrary conjunctions of disjunctions
as a proposal for the invariant.

The Basic ID3 Algorithm Given a set of positive and negative
samples, the classical approach to building a decision tree works
by constructing the tree top-down (without backtracking), and is
sketched in pseudo code as Algorithm 1. In each step, the algorithm
chooses an attribute a from the given set of attributes (and possibly a
threshold c if the attribute is numeric), and then applies the predicate
defined by the attribute to the sample; this splits the sample into two
sets, distinguished by the predicate— those satisfying the predicate
and those that do not satisfy it. The algorithm then recurses on
these two sets of samples, building decision trees for them, and
then returns a tree where the root is labeled with the predicate and
the left and right subtrees are those returned by the recursive calls.
The base cases are when the sample is entirely positive or entirely
negative—in this case the algorithm returns a tree with a single node
that assigns the classification of these points appropriately as true or
false, respectively.

The crucial aspect of the extremely scalable decision tree learn-
ing algorithms is that they choose the attribute for the current sample
in some heuristic manner, and never back-track (or look forward) to
optimize the size of the decision tree. The prominent technique for
choosing attributes is based on a statistical property, called informa-
tion gain, to measure how well each attribute classifies the examples
at any stage of the algorithm. This measure is typically defined using
a notion called Shannon entropy [51], which, intuitively, captures
the impurity of a sample. The entropy of a sample S with p positive
samples and n negative samples is a value between 0 and 1, defined
to be

p p

n n
Entropy(S) = — lo — lo .
py(S) P e

2015/7/14



input :A sample S = (ST, S7) and Attributes
1 Return ID3 ((St,S™), Attributes).

Proc ID3 (Examples = (Pos, Neg), Attributes)

2 Create a root node of the tree.

3 if all examples are positive or all are negative then

4 Return the single node tree Root with label + or —,
respectively.

else

5 Select an attribute a (and a threshold ¢ for a if a is
numerical) that (heuristically) best classifies Examples.

6 Label the root of the tree with this attribute (and threshold).

7 Divide Examples into two sets: Examples,, that satisfy the

predicate defined by attribute (and threshold), and
Ezxamples_,, that do not.

8 Return tree with root and left tree

1D3 (Ezamples,, Attributes) and right subtree
1D3 (Ezamples_,, Attributes) ;

—ar

end
Algorithm 1: The basic inductive decision tree construction
algorithm underlying ID3, C4.0, and C5.0

Intuitively, if the sample contains only positive (or only negative)

points (i.e., if p = 0 or n = 0), then its entropy is 0, while if the
sample had roughly an equal number of positive and negative points,
then its entropy is close to 1. Samples of lower entropy indicate that
the classification is more complete, and hence are preferred.

When evaluating an attribute a (and threshold) on a sample S,
splitting it into S, and S, (points satisfying the attribute and points
that do not), one computes the information gain of that attribute
(w.r.t. the chosen threshold): the information gain is the difference
between the entropy of S and the sum of the entropies of S, and
S-o weighted by the number of points in the respective samples.
For numerical attributes, the thresholds also need to be synthesized;
in the case of information gain, however, it turns out that the best
threshold is always at some value occurring in the points in the
sample [49]. The algorithm chooses the attribute that results in the
largest information gain. So, for example, an attribute that results
in a split that causes two samples each with roughly half positive
and half negative points will be less preferred than an attribute that
results in a split that causes skewed samples (more positive than
negative or vice versa).

The above heuristic for greedily picking the attribute that works
best at each level has been shown to work very well in large and
a wide variety of machine learning applications [42, 49]. When
decision tree learning is used in machine learning contexts, there
are other important aspects: (a) the learning is achieved using a
small portion of the available sample, so that the tree learned can be
evaluated for accuracy against the rest of the sample, and (b) there
is a pruning procedure that tries to generalize and reduce the size
of the tree so that the tree does not overfit the sample. When using
decision tree learning for synthesizing invariants, we prefer to use
all the samples as we anyway place the passive learning algorithm in

a larger context by building a teacher which is a verification oracle.

Also, we completely avoid the pruning phase since pruning often
produces trees that are (mildly) inconsistent with the sample; since
we cannot tolerate any inconsistent trees, we prefer to avoid this
(incorporating pruning in a meaningful and useful way in our setting
is an interesting future direction).

In the context of invariant synthesis, we assume that all integer
variables mentioned in the program occur explicitly as numerical
attributes; hence, it turns out that any sample of mixed positive and
negative points can be split (potentially using the same attribute
repeatedly with different thresholds) and eventually separated into
purely positive and purely negative points (in the worst case, each
point is separated into its own leaf). Consequently, we are guaranteed

Unpublished Manuscript

to always obtain some decision tree that is consistent with any input
sample.

3. A Generic Decision Tree Learning Algorithm
in the Presence of Implications

In this section, we present the skeleton of our new decision tree
learning algorithm for samples containing implication examples
in addition to positive and negative examples. We present this
algorithm at the level of Algorithm 1, excluding the details of how
the best attribute at each stage is chosen. In Section 4, we articulate
several different natural ways of choosing the best attribute, and
evaluate them in experiments.

Our goal in this section is to build a top-down construction of
a decision tree for an ICE sample, such that the tree is guaranteed
to be consistent with respect to the sample; an ICE sample is a
tuple S = (S, S, 87) consisting of a finite set ST of positive
points, a finite set S~ of negative points, and a finite set S~ of
pairs of points corresponding to the implications. The algorithm
is an extension of the classical decision tree algorithm presented
in Section 2, which preserves the property to be consistent with
positive and negative samples. The main hurdle we need to cross is to
construct a tree consistent with the implications. Note that the pairs
of points corresponding to implications do not have a classification,
and it is the learner’s task to come up with a classification in a
manner consistent with the implication constraints. As part of the
design, we would like the learner to not classify the points a priori
in any way, but classify these points in a way that leads to a smaller
concept (or tree).

Our algorithm, shown in pseudo code as Algorithm 2, works
as follows. First, given an ICE sample (ST, S, S7) and a set of
attributes, we store S~ in a global variable Impl and create a set
Unclass of unclassified points as the end-points of the implication
samples. We also create a global table GG that holds the partial
classification of all the unclassified points (initially empty). We
then call our recursive decision tree constructor with the sample
(ST, S, Unclass).

Receiving a sample (Pos, Neg, Unclass) of positive, negative,
and unclassified examples, our algorithm chooses the best attribute
that divides this sample, say a, and recurses on the two resulting sam-
ples Ezamples, and Examples_ ,. Unlike the classical learning
algorithm, we do not recurse independently on the two sets—rather
we recurse first on Ezamples ,, which will, while constructing the
left subtree, make classification decisions on some of the unclassi-
fied points, which in turn will affect the construction of the right
subtree for Examples_,, (see the else clause in Algorithm 2). The
new classifications that are decided by the algorithm are stored and
communicated using the global variable G.

Whenever Algorithm 2 reaches a node where the current sample
has only positive points and implication end-points that are either
classified positively or unclassified yet, then the algorithm will,
naturally, decide to mark all remaining unclassified points positive,
and declare the current node to be a leaf of the tree (see first
conditional in the algorithm). Moreover, it marks in G all the
unclassified end-points of implications in Unclass as positive and
propagates this constraint across implications (taking the implication
closure of G with respect to the global set Impl of implications).
For instance, if (z,y) is an implication pair, both x and y are yet
unclassified, and the algorithm decides to classify x as positive, it
propagates this constraint by making y also positive in G; similarly,
if the algorithm decided to classify y as negative, then it would mark
x also as negative in GG. Deciding to classify x as negative or y as
positive places no restrictions on the other point, of course.

We need to argue why Algorithm 2 always results in a termi-
nating procedure that constructs a decision tree consistent with the

2015/7/14



input :An ICE sample S = (St,S~,S7) and Attributes

Initialize global Impl to S= .

Initialize G, a partial valuation of end-points of implications in Impl ,
to be empty.

Let Unclass be the set of all end-points of implications in Impl .

Set G to be the implication closure of the positive and negative
classifications in ST and S~ with respect to Impl.

5 Return DecTreeICE (({St, S~ Unclass), Attributes).

(SR

& W

Proc DecTreeICE (Examples = (Pos, Neg, Unclass), Attributes)

6 Move all points from Unclass that are positively, respectively
negatively, classified in G to Pos, respectively Neg.

7 Create a root node of the tree.

8 if Neg = () then

9 Mark all elements in Unclass as positive in G.

10 Take the implication closure of G w.r.t. Impl.

11 Return the single node tree Root, with label +.

12 else if Pos = () then

13 Mark all elements in Unclass as negative in G.

14 Take the implication closure of G w.r.t. Impl.

15 Return the single node tree Root, with label —.

16 else

17 Select an attribute a (and a threshold c for a if a is
numerical) that (heuristically) best classifies Examples and
Impl.

18 Label the root of the tree with this attribute a (and threshold
c).

19 Divide Examples into two sets: Examples,, that satisfy the
predicate defined by the attribute (and threshold) and
Ezamples_,, that do not.

20 T = DecTreel CE( Ezamples,,, Attributes) (may update
Q).

21 T> = DecTreeICE( Examples_,,, Attributes) (may
update G).

22 Return tree with root, left tree T4, and right tree T%.

end

Algorithm 2: The basic decision tree construction algorithm for
ICE samples

sample. As a preparation, we introduce a property of the sample and
the partial valuation for the implication end-points, called a valid
sample.

In the following description, let us fix an ICE sample S =
(S*,87,57), and let G be a partial valuation of end-points of in
S= . By abuse of notation, we use S U G to refer to the sample one
obtains from classifying the end-points of implications in S~ with
the (partial) valuation of G.

Definition 1 (Valid sample). A sample S = (ST,5~,57) is valid
if for every implication (z,y) € S~

1. it is not the case that x is classified positively and y negatively
inSUG;

2. it is not the case that x is classified positively and y is unclassi-
fiedin SUG; and

3. it is not the case that y is classified negatively and x is unclassi-
fiedin SUG.

A valid sample has the following property.

Lemma 1. For any valid sample (with partially classified end-
points of implications), extending it by classifying all unclassified
points as positive will result in a consistent classification, and
extending it by classifying all unclassified points as negative will
also result in a consistent classification.

Proof of Lemma 1. The above lemma is easy to prove: first, consider
the extension of a valid sample by classifying all unclassified points

Unpublished Manuscript

as positive. Assume, for the sake of contradiction, that this valuation
is inconsistent. Then, there exists an implication pair (z,y) such
that x is classified as positive and y is classified as negative. Since
such an implication pair could not have already existed in the valid
sample (by definition), it must have been caused by the extension.
Since we introduced only positive classifications, it must have been
that  (and not y) is the only new classification. Hence the valid
sample must have had the implication pair (z, y) with y classified as
negative and x being unclassified, which contradicts Condition 3 of
Definition 1. The proof of the extension with negative classifications
follows from similar arguments. O

However, Algorithm 2 does not classify all implication end-
points completely positive, or completely negative; recall that
Algorithm 2 only changes the classification (from unknown to
positive or negative, respectively) of unclassified implication end-
points in the current leaf and those that need to be updated during
the implication closure. It is not hard to verify that even such a
partial assignment preserves consistency of an ICE sample.

Corollary 1. Lemma 1 also holds if a subset of unclassified points
are classified (completely positively or completely negatively) and
the implication closure is taken.

It is now straightforward to prove the correctness of the decision
tree ICE learner.

Theorem 1. Algorithm 2, independent of how the attributes are
chosen to split a sample, always terminates and produces a decision
tree that is consistent with the input ICE sample.

Proof of Theorem 1. Theorem 1 follows from the fact that Algo-
rithm 2 always maintains a valid sample:

1. Algorithm 2 receives an ICE sample and applies the implication
closure, which results in a valid sample (or an inconsistency
is detected and the learning stops as there does not exist a
decision tree that classifies the sample correctly while satisfying
the implication constraints).

2. When Algorithm 2 arrives at a leaf that has only positive and
unclassified points, it classifies all these unclassified points to
be positive and takes the implication closure. Assuming that
the ICE sample was valid, the new sample is also valid due to
Corollary 1. In the case that Algorithm 2 arrives at a leaf that has
only negative and unclassified points, validity of the resulting
sample follows using similar arguments.

The above argument shows that Algorithm 2 never ends up in
an inconsistent sample, which proves its correctness. Moreover,
since we assume that every integer variable is also included as a
numerical attribute by itself (i.e., an attribute x exists for each integer
variable x), there always will be a numerical attribute that can split
any sample with a positive and a negative example, in Line 17 of
procedure ProcDecTree, which proves termination as well. O

The running time of Algorithm 2 is O(nlogn x m x |T|) for
a sample of size n, when the total number of attributes is m, and
when the learner learns a tree of size |T'|. Decision tree algorithms,
in general, scale very well with respect to number of attributes and
the sample. In Section 6, we report on scalability of our decision-tree
based learning algorithm with respect to the size of the sample. In
the next section, we explore several different ways to choose the
best attribute, at each stage of the decision tree construction, all of
which are linear or sub-quadratic on the sample.

2015/7/14



Y
1 +
1 + 72— -
————T,
0 5
(a) Sample before splitting
Yy 1
1 +
|
1 + +—>+ -
|
T,
0 I 5

(b) Samples after splitting

Figure 1: The samples discussed in Example 1.

4. Choosing Attributes in the Presence of
Implications

Algorithm 2 ensures that the resulting decision tree is consistent
with the given sample, irrespective of the exact mechanism used
to determine the attributes to split and their thresholds. As a
consequence, the original split heuristic based on information
gain (see Section 2), which is unaware of implications, might
simply be employed. However, since our algorithm propagates the
classification of data points once a leaf node is reached, just ignoring
implications can easily lead to splits that are good at the time of the
split but later turn into bad ones since the classification of points has
changed. The following example illustrates such a situation.

Example 1. Suppose that Algorithm 2 processes the sample shown
in Figure la, which also depicts the (only) implication in the global
set Impl.

When using the original split procedure (i.e., using information
gain while ignoring the implication and its corresponding unclas-
sified data points), the learner splits the sample with respect to
attribute x at threshold ¢ = 3 since this split yields the highest
information gain—the information gain is 1 since the entropy of the
resulting two subsamples is 0. Using this split, the learner parti-
tions the sample into Examples, and Examples_ , and recurses
on Ezamples,. Since Examples, contains only unclassified and
positively classified points, it turns all unclassified points in this
sample positive and propagates this information along the implica-
tion. This results in the situation depicted in Figure 1b. Note that
the learner now needs to split Examples_ , since the unclassified
data points in it are now classified positively.

On the other hand, if we consider the implications and their
corresponding data points while deciding the split, it allows us to
split the sample such that the antecedent and the consequent of the
implication both belong to either Examples,, or Examples_, (e.g.,
on splitting with respect to x with threshold ¢ = 4). Such a split has
the advantage that no further splits are required and, often, results
in a smaller tree. a

In fact, experiments showed that a learner which ignores im-
plications when choosing an attribute often learns relatively large
decision trees or even diverges. Hence, we next propose two meth-
ods that take implications into account while choosing the attribute
to split.

Penalizing Cutting Implications In order to better understand
how to deal with implications, we analyzed classifiers learned by
other ICE-learning algorithms for invariant synthesis, such as the
constraint solver-based ICE learner of [26]. This analysis showed

Unpublished Manuscript

that the classifiers finally learned (and also those conjectured during
the learning) almost always classify the antecedent and consequents
of implications equally (either both positive or both negative).

The fact that successful ICE learners almost always classify an-
tecedents and consequents of implications equally suggests that our
decision tree learner should avoid to “cut” implications. This is a
heuristic which assumes that, since the endpoints of the implication
counterexamples will eventually be labeled with the same classi-
fication, they would often reach the same leaf node in the learned
tree. Formally, we say that an implication (p, ¢) € Impl is cut by
the samples S, and S—, if p € S, and g € S—q, or p € S—, and
g € Su;' in this case, we also say that the split of S into S, and
S cuts the implication.

A straightforward approach to discourage cutting implications
builds on top of the original information gain and imposes a penalty
for every implication that is cut. This idea gives rise to the penalized
information gain that we define by

Gainpen (S, Sa, S-a) = Gain(S, Sa, S-a)

— Penalty(Sa, S-a, Impl) (1)
where S,, S-q is the split of the sample S, Gain(S, Sa, S-a)
is the original information gain based on Shannon’s entropy, and
Penalty(Sa, S-a, Impl) is a total penalty function that we assume
to be monotonically increasing with the number of implications cut
(we make this precise shortly). Note that this new information gain
does not prevent the cutting of implications (if required) but favors
not to cut them.

However, not every cut implication poses a problem: implications
whose antecedents are classified negatively and whose consequents
are classified positively are safe to cut (as this helps creating more
pure samples), and we do not want to penalize cutting those. Since
we do not know the classifications of unclassified points when
choosing an attribute, we penalize an implication depending on
how “likely” it is an implication of this type (i.e., we assign no
penalty if the sample containing the antecedent is predominantly
negative and the one containing the consequent is predominantly
positive). More precisely, given the samples S, and S-,, we define
the penalty function Penalty(Sa, S-a, Impl) by

(> 1=f(SaS-))+( D 1—f(5a S),

(z,y)€Impl (z,y)€Impl
rE€Sq,YyES-qa 2€S-4,YESa

where for two samples S1 = (Posi, Neg,, Unclass1), S2 =
(Pos2, Neg,, Unclassa2),
Ne Pos
f(ShSZ)_ | gl| | 2|

= [Pos| + | Neg,|  [Posa| + [Negs)|

is the relative frequency of the negative points in .S and the positive
points in .Sy (which can be interpreted as likelihood of an implication
from S; to S> being safe).

Extending entropy to an ICE Sample In the second variant of
information gain that we develop for deciding the best attribute
to split a given ICE sample, we do not change the definition of
information gain (as a function of the entropy of the sample) but
we extend Shannon’s entropy to deal with implications in the
sample using conditional probabilities. The entropy of a set of
examples is a function of the discrete probability distribution of
the classification of a point drawn randomly from the examples.
In a classical sample that only has points labeled positive or
negative, one could count the fraction of positive (or negative)
points in the set to compute these probabilities. However, an
estimation of these probabilities becomes non-trivial in the presence

'Given a sample S = (Pos, Neg, Unclass), we write € S as a
shorthand notation for ¢ € Pos U Neg U Unclass.

2015/7/14



of unclassified points that can be classified as either positive or
negative. Moreover, in an ICE sample, the classification of these
points is not independent anymore as the classification for the points
need to satisfy the implication constraints. Given a set of examples
with implications and unclassified points, we will first estimate
the probability distribution of the classification of a random point
drawn from these examples, taking into account the implication
constraints, and then use it for computing the entropy. We will use
this new entropy to compute the information gain while choosing
the attribute for the split.

Given S = (Pos, Neg, Unclass), and a set of implications Impl,
let Impl be the set of implications projected onto S such that both
the antecedent and consequent end-points in the implication are
unclassified (i.e., Imply = {(z1,22) € Impl | 1,22 € Unclass}).
For the purpose of entropy computation, we will assume that
there is no point in the examples that is common to more than
one implication. This is a simplifying assumption, which also
holds statistically if the space enclosing all the points is much
larger than the number of points. Let Unclass’ C Unclass be the
set of unclassified points in the sample that are not part of any
implication in Impl (for example, z1 € Unclass' if (z1,12) €
Impl and x2 € Pos). Note that points in Unclass’ can be classified
as either positive or negative by the learner, completely independent
of the classification of any other point. This is, for instance, not true
for points that are end-points of implications in Imply.

Let Pr(z = c) be the probability of the event that a point « € S
is classified as ¢, where c is either positive/+ or negative/—. Note
that Pr(x = +) is 1 when x € Pos and is 0 when = € Neg. Let us
define Pr(S, c) to be the probability of the event that a point which
is drawn randomly from S is classified as c. Then,

Pr(s,4) = — 3 Pr(w =)
N

zeSs

- ITl\( S5 Pra=+4) +

x € PosUNegUUnclass’

Z Pr(zi=+4) + Pr(ze =+) ) ?2)

(z1,22) Elmply

Recall that unclassified points z,, € Unclass’ are statistically
classified by the learner completely independent of other points
in the sample; so, we assume that the probability that a point
z, is classified as positive (or negative) is in accordance with
the distribution of points in the sample set S. In other words, we
recursively assign Pr(z., = +) = Pr(S,+).

For points 1 and x> that are involved in an implication Impl,
we assume that the antecedents x; are classified independently and
the classification of consquents x2 is conditionally dependent on
the classification of antecedents, such that the implication constraint
is satisfied. As a result, we assign Pr(z1 = +) = Pr(S, +), for the
same reason as described for x,, above. And for consequents x2, us-
ing conditional probabilities we obtain, Pr(ze = +) = Pr(z2 =
+|z1=4)Pr(z1i=+) + Pr(za =+ | 21 = —)-Pr(z1 = —).
From the implication constraint between z; and z2, we know that
x9 is guaranteed to be positive if x1 is classified positive, i.e.,
Pr(z2 = + | ®1 = +) = 1. However, when x; is classified
negative, the consequent x> is allowed to be classified as either
positive or negative completely independently, and hence we assign
Pr(zo =+ | z1 = —) = Pr(S, +).

Plugging in these values for probabilities in Equation 2 and using
p = |Pos |,n = |Neg |,i = |Impl |,u' = |Unclass’ | and |S | =
p+n+ 2+, Pr(S,+) is the positive solution of the following
quadratic equation:

i +(p+n—i)x—p=0

Unpublished Manuscript

As a sanity check, note that Pr(S,+) = _E_, if there are no
implications in the sample set (i.e., ¢ = 0). Also, Pr(S,+) = 1
if n = 0 and Pr(S,+) = 0if p = 0 (i.e., when the set S has no
negative or positive points). Once we have computed Pr(S, +), the
entropy of S can be computed in the standard way as
Entropy(S) = —Pr(S,+) - log, Pr(S,+)
— Pr(S,—) -log, Pr(S,—)

where Pr(S, —) = (1 — Pr(S, +)). Now, we plug this new entropy
in the information gain and obtain a gain measure that explicitly
takes implications into account.

5. Convergent Learning of Decision-trees

In this section, we build a decision-tree learner that is guaranteed
to terminate and produce an invariant for any program, provided
the invariant is expressible as a formula involving the numerical
and Boolean attributes our learner has been instantiated with. Note
that decision-tree learning for a sample always terminates (see
Theorem 1); we are concerned here with the termination of the
iterative learning algorithm that works with the teacher to learn an
invariant. The set of formulas involving numerical and Boolean
attributes is infinite and hence the iterative learning algorithm
presented thus far need not converge.

If we bound the maximum thresholds that occur in the inequali-
ties associated with numerical attributes, then, clearly, the set of all
semantically different Boolean formulas that respect this restriction
is bounded as well. Our strategy for convergence is to iteratively
bound the (absolute value) of the maximum threshold, thereby ef-
fectively searching for decision trees with minimal thresholds, and
growing the threshold only if we can prove that the current threshold
is insufficient to build a classifier consistent with the given sample.
Note that this search biases the learner towards finding concepts
with smaller thresholds, which is an Occam razor that we are happy
with, as we would like to infer invariants that have smaller constants
before exploring those with larger constants. Clearly, if there is some
invariant expressible using the numerical and Boolean attributes,
the learner will never increment the maximum threshold beyond
the maximum absolute constant used in this invariant. Moreover,
since there are only a finitely many (semantically different) formulae
with a bounded maximum threshold and since the learner can never
propose a conjecture twice (due to the fact that it always constructs
conjectures that are consistent with the current sample, which con-
tains a counterexample to any previous conjecture), the learner must
find a valid invariant.

Let us assume a set of numerical attributes A = {a1,...,an}
and let us assume (for simplicity) that there are no Boolean attributes.
Then the set of all Boolean formulae with absolute maximum
threshold m are defined to be the set of all Boolean combinations
of atomic predicates of the form a; < ¢, where |¢| < m. For any
m € N, the set of (semantically different) formulae with absolute
maximum threshold m is bounded.

In the setting when we have only positively/negatively labeled
samples (as opposed to ICE samples), such an algorithm is actually
easy to build, since we can easily know when no formula with
maximum threshold m can be consistent with the sample. We simply
take the standard CS5 algorithm, and modify the learner so that when
processing any node n of the tree with a sample (S*, S™) (line 5 of
Algorithm 1), we only look at predicates involving an attribute and
a threshold ¢, where |c| is at most m. If we succeed in building a
tree, then we would have learned a formula with absolute maximum
threshold m. However, if we get stuck, then it must be the case that
we are at a node n with sample (ST, S7), and no predicate with
threshold at most m is able to separate a positive point s* € ST
and a negative point s~ € S~ . This of course means that these two

2015/7/14



points are not separable by any Boolean formula with maximum
threshold m, and hence we can safely increment m, and iterate.

The above, however, fails in the ICE setting! The problem is that
the learner may have made some choices regarding the valuations
of end-points of implication counterexamples, and this choice may
lead it to get to a node where there are two points s and s~ that are
not separable (where these points were not marked to be positive and
negative in the original sample, but by the learner). Backtracking
from such a scenario to consider some other valuation is dangerous
as the learner may no longer run in polynomial time. The goal of
this section is to show how to build a passive decision-tree learner
that takes an ICE sample .S and an absolute maximum threshold m,
and either produces a decision-tree consistent with S or declares
that none exists, and runs in polynomial time in both | A| and |S|
and is independent of m.

Before we describe the precise algorithm, let us explain the
underlying idea that makes it work. Consider two points s, s in the
sample (i.e., s and s" occur as classified points or as some end-point
of an implication). Now, assume that there is no atomic predicate
of the form a; < ¢ with |¢| < m that separates these points (i.e.,
which evaluates to true on one and false on the other). Then, no
matter what final classification we come up with using a decision
tree, the classification of s and s’ will be necessarily identical: if s
was classified already to be positive (or negative), then s’ must have
the same classification; if s and s’ are both unclassified, then we
need to classify them both to be positive or both to be negative.

The key idea now is to identify all such pairs of inseparable
points s and s’, and add the implications (s, s") and (s', s) to the
ICE sample, which captures the condition that they need to be
labeled with the same classification. We can then simply run our
ICE decision tree learner on this augmented ICE sample. In fact, we
can do even better— when it is not possible to construct any decision-
tree, consistent with the ICE sample, with absolute threshold values
at most m, we also detect this using a pre-processing check.

Let us formally define the way we add new implications for a
maximum threshold m € N. Assume that we have an ICE sample
S = (§%,87,87), and let T be the set of points occurring in
S (classified or otherwise). Given 7', we now define the following
equivalence class =,,, on 1"

§ =m, § iff there is no predicate of the form a; < c with |c| < m
that separates s and s’.

Based on this equivalence relation, we now augment the original
sample S to obtain what we call the m-augmented ICE sample
of S, denoted by S @& m. We proceed in two steps. First, we
construct a new sample S’ = (S™, 57, 57 U E) by copying S and
adding implications E = {(s,5") | s =, s’} to ST (i.e., we add
implications between all =,,, points). Then, we take the implication
closure of S’, which produces the m-augmented ICE sample S & m.
Recall that the implication closure repeats the following steps until
a fixed point is reached: it takes implications (s,s’) where s is
positively classified and adds s” as positive to the sample; similarly,
it takes implications (s, s’) where s’ is negatively classified, and
adds s as negative to the sample.

The notion of valid samples (see Definition 1), which intuitively
states that a sample is implication-closed and has no inconsistent
implications, now gives us a handle to check whether a Boolean
formula with absolute maximum threshold m that is consistent with
S exists or not. More precisely, we can show that:

a) If S & m is not valid, then there is no Boolean formula with
absolute maximum threshold m that is consistent with S. In the
overall learning loop, we would increment m in this case and
restart learning from S.

Unpublished Manuscript

b) If S @ m is valid, then calling our ICE decision tree learner (i.e.,
Algorithm 2) on S & m while restricting it to predicates that
use thresholds with absolute values at most m is guaranteed to
terminate and return a tree that is consistent with S.

Before we prove these claims, let us describe in more detail
the modification of Algorithm 2 mentioned in Part (b). To force
Algorithm 2 to only split a sample with a threshold whose absolute
value is less or equal to some bound m € N, it is indeed enough to
modify Line 17 such that the algorithm only considers thresholds
c that satisfy |¢| < m. We call the learning algorithm resulting
from this simple modification bounded ICE decision tree learner,
or bounded ICE-DT learner for short.

With this defined, we can now prove both claims.

Proof of Part (a). Let S be an ICE sample and m € N. Assume, for
the sake of a contradiction, that S®&m = (ST, 57,57 ) is not valid
but there is a formula f with absolute maximum threshold m that
is consistent with S (where consistency is defined in the obvious
way as classifying points correctly and respecting implications).
Since S & m is implication-closed (by definition), the only property
of validity that can fail is that there exist s, s’ such that s € ST,
s € S7, and (s,s') € S7. Since f is consistent with S and
has maximum threshold m, it satisfies all the new implication
constraints that were added between =,,,-equivalent points. Hence f
is also consistent with its implication closure, which is S & m. This,
however, is a contradiction as f must classify s as positive and s’ as
negative, and hence does not satisfy the implication (s, s). O

Proof of Part (b). Again, let S be an ICE sample and m € N.
Moreover, assume that S @ m is a valid sample. Analogous to
the correctness proof of Algorithm 2 (i.e., Theorem 1), we know
that when given a valid initial sample, the bounded ICE-DT learner
maintains validity and produce a decision tree that is consistent with
the sample. However, it is left to show that the bounded ICE-DT
learner is guaranteed to terminate. In particular, we need to show that
in any node that is not a leaf, it will be able to find some predicate
(using a threshold |¢| < m) according to which it can split the
current (sub-)sample. This was guaranteed in Algorithm 2 due to
the fact that two points can always be separated (using an attribute
that is different for both points and a suitable threshold), which does
not hold now because we have restricted thresholds to those whose
absolute values is at most m. We show now, however, that a split
with threshold |c¢| < m is always possible due to the validity of
Se&m.

Assume that the bounded ICE-DT learner processes a node with
the (sub-)sample S’ = (S+,57,87) of S @ m containing a
positive point p € ST and a negative point n € S~. Moreover,
assume that it cannot find an attribute and threshold |c¢| < m that
separates p and n. Hence, it follows that p =, n, and S’ contains
the implication pair (p, n) as this pair is added to the initial sample
and the set of implications S~ does not change during the recursive
construction of the tree. This means that S’ is not valid since p € ST,
n € 87, and (p,n) € ST . However, this is a contradiction since
the bounded ICE-DT learner starts with a valid sample S & m, and
maintains valid samples throughout, which implies that S’ must be
valid. O

The algorithm sketched in pseudo code as Algorithm 3 produces
a consistent decision tree with minimal threshold m € N, which can
be seen as follows. Since any valid sample allows for a consistent
decision tree, there exists a threshold m™ for which S @& m™ is valid
and, therefore, Algorithm 3 terminates. Moreover, Algorithm 3 starts
with m = 0 and increases m by one only if the sample .S & m is not
valid (i.e., there is no Boolean formula with absolute threshold m

2015/7/14



that is consistent with 5, hence, it will produce a tree with minimal
threshold.

input :An valid ICE sample S = (St, S, 5™ ) and Attributes

1 m < 0.
2 T < set of all points occurring in the sample.
3 while (true) do

4 Compute =, on 7.
5 Construct S & m.
6 if (S & m is valid ) then
7 Run the bounded ICE-DT learner with bound m and return
the decision tree it constructs.
else
8 | m<—m+1
end
end

Algorithm 3: Convergent ICE decision-tree learning algorithm.

Building S @ m and checking whether it is valid can be done in
poynomial-time. Computing =, is a partition refinement algorithm:
in each refinement step, we consider an attribute a and only those
values for thresholds that occur in the sample plus the thresholds
—m and +m, and refine the equivalence class based on the elements
of the sample it can separate. Consequently, computing S & m can
be done in polynomial time. Furthermore, the bounded DT-ICE
learner also considers only those values for thresholds that occur in
the sample plus the thresholds —m and +m. Consequently, it too
will work polynomial in the input sample.

The following theorem states the main result of this section,
namely that when paired with a honest teacher, Algorithm 3 always
terminates and returns an invariant given that one exists.

Theorem 2. Fix a set of numerical attributes and Boolean attributes
over a set of program configurations. Consider a program P
which has an inductive invariant that proves it satisfies a safety
specification, where the invariant is expressible as a Boolean
combination of the attributes with arbitrary inequalities. Then
Algorithm 3 will converge on an inductive invariant of the program
P when paired with any honest teacher.

6. Experiments and Evaluation

To assess the performance of our decision tree ICE learner, we im-
plemented a prototype of Algorithm 2, with the two information
gain measures, described in Section 4, as an invariant synthesis tool
for Boogie [10] programs and compare it to other invariant genera-
tion algorithms. We conducted all of the following experiments on
a Core i5 CPU with 6 GB of RAM running Windows 7 with a 10
minute timeout limit.

Learner: 'We implemented the learning algorithm on top of the
freely available version of the C5.0 algorithm (Release 2.10) [49].
Since we rely on learning without classification errors, we disable
all of C5.0’s optimizations, such as pruning, boosting, etc.

Furthermore, though our learning algorithm can work with any
class of predicates (including non-linear predicates), we parameter-
ize it, by default, with the class of octagonal predicates (of the form
+x + y < ¢). More precisely, we add all numerical attributes of the
form 4z =+ y for all combinations of variables z, y in the program
(note that the learner learns the thresholds c as well as the Boolean
combination of these predicates). This class of predicates is suffi-
cient to express most invariants in our benchmark and, furthermore,
all black-box learners that we compare with are also instantiated, by
default, with this class of predicates.

Teacher: 'We implemented a teacher in Boogie [10], which gener-
ates verification conditions for a given input program. The teacher

Unpublished Manuscript

prioritizes returning positive/negative counterexamples to implica-
tion counterexamples. Since loop invariants usually do not involve
large constants, the teacher biases the learner towards trees with
smaller thresholds by producing counterexamples that have small
values. When searching for counterexamples, we iteratively bound
the absolute values of the variables to 2, 5, 10, and oo till we find a
counterexample.

Experimental Results for Invariant Generation: We evaluate
the two configurations of the decision-tree based learner discussed
in Section 4 in the context of invariant synthesis and compare them
to various other invariant synthesis algorithms. The experimental
results are tabulated in Table 1, and the scatter-plots comparing the
time taken by solvers is depicted in Figure 2.

Solvers: We first tabulate times of CPAchecker [12], which is a
white-box state-of-the-art verifier; we use the configuration that
corresponds to the predicate abstraction and the interpolation [41]
based refinement. Note that CPAchecker has a disadvantage as it
does not restrict itself to finding Boolean combinations of octagonal
constraints, while all the black-box learners do. Next we tabulate
results for the black-box learners. The first is a randomized search
based invariant synthesis tool [52]; this uses its own in-built teacher.
The second is the constraint-solver based learner from [26] (called
ICE-CS); this uses a teacher that does not bound counterexamples
(as its in-built search bounds the constants in predicates iteratively
anyway). The last two columns depict the new decision tree learners
in this paper, from Section 4, which includes the learner that
computes the information gain which accounts for implications
(called ICE-DT-entropy) and the learner that penalizes splits that
cut implications (called ICE-DT-penalty).

Benchmarks: We report results for a suite of programs®, which in-
cludes all programs from the SV-COMP (2014 and 2015) benchmark
“loop” suite [1] (which involves small programs but with intricate
loop invariants) and programs from the literature [3, 26, 28, 30, 32].
The SV-COMP examples which were buggy programs are excluded,
of course, as our technique only proves correct programs correct’
Furthermore, we exclude SV-COMP benchmarks where the loop
invariant involved arrays* as well as programs where the invariant is
extremely simple (like true or x = 0), since all tools took no time.
Some programs in Table 1 are the natural unbounded versions of
programs that were artificially bounded in SV-COMP to simplify
them. We additionally have a few benchmarks that require invariants
over non-linear integer arithmetic, and also some partially annotated
programs where the invariant needs to be strengthened to prove
them correct (we explain these benchmarks later in this section).
The programs in our suite have up to 100 lines of C code, involve
up to 15 program variables, and often need complex invariants for
their static verification.

Since the performance of the randomized search based invariant
synthesis depends on the randomly chosen seed, we run it 10 times
for every program and report the minimum and maximum time, the
average of the times (when it doesn’t timeout) and the number of
runs where it times out (> 10 min.). For the constraint solver based
learner and our decision tree learners we provide details about the
composition of the final sample, in terms of the number of positive,
negative and implication counter-examples that were required to
learn an adequate invariant and the number of rounds to converge.

2 all programs are provided as supplemental material

3When a program is buggy, we could find this bug when we find an
inconsistent sample; however, this is not a scalable approach to find bugs.

4We handle only those array programs in which the invariant itself is scalar,
and not a quantified array invariant.

2015/7/14



Table 1: Results comparing different invariant synthesis tools. X indicates that the tool times out (> 10 minutes); x indicates that the tool
incorrectly concludes that the program is buggy; Xyro indicates that the tool runs out of memory; P, N, I are the number of positive, negative
examples and implications in the final sample of the resp. learner; #R is the number of rounds, and 7" is the time in seconds.

White-box Black-box

Program CPAchecker Randomized Search [53] ICE-CS [26] ICE-DT-entropy ICE-DT-penalty

[12] (s) Min.(s) Max.(s) Avg.(s) + TO PN.I #R T(s) ‘ PN.I #R T(s) ‘ PN.I #R T(s)

SV-COMP programs and variants [1]
array 2 0 123 18.5+3/10 TO 47,11 14 0.5 6,7,22 34 1.47 511,32 48 22
array2 2.4 0.1 384.5 105.7 +4/10 TO 4,75 7 0.3 23,1 5 0.22 2,4,1 6 0.39
afnp Xto 0.1 0.7 0.3 +0/10 TO 1,19,15 29 3.6 1,3,7 11 0.48 1,2,7 10 0.47
cggmp 2 — — —+10/10 TO 1,36,50 71 51.1 1,18,45 64 3.48 1,17,42 60 3.01
countud X — — —+10/10 TO 3,12,7 13 1 3,10,5 17 0.69 293 13 0.51
dtuc XTto 4.9 190.4 62.8 +2/10 TO 39,14 12 0.7 2,5,11 12 0.51 4,11,14 21 0.83
ex14 2.4 0 0.1 0.0 + 0/10 TO 25,1 7 0 1,1,0 2 0.12 1,1,0 2 0.11
exldc 1.8 0.2 31.6 3.4 +0/10 TO 22,1 4 0 2,2,0 3 0.12 22,0 3 0.14
ex23 54 0.1 127.5 21.8+1/10 TO 5,32,40 69 17.5 6,23,12 36 1.59 89,1 15 0.56
ex7 57 0 160.2 22.0 + 0/10 TO 1,2,1 2 0 1,1,0 2 0.12 1,1,0 2 0.09
matrix]1 33 — — —+10/10 TO 293 8 0.3 6,82 9 0.61 69,2 10 0.58
matrixllc 3 — — —+10/10 TO 4,124 8 0.9 7,132 10 0.59 7,13,1 9 0.5
matrix]2 34 0.7 0.7 0.7 +9/10 TO 8,19,13 27 229 8,11,8 23 1.25 9,11,6 22 1.06
matrix]2c 3.1 308 308 308.0 +9/10 TO XTo 15,26,10 44 2.61 || 20,35,22 66 3.95
ncll 2.1 0 0.1 0.1 +0/10 TO 5,157 18 0.7 3,6,5 13 0.58 2,44 9 0.39
ncllc 2.1 0.1 46.1 6.3 +2/10 TO 4,6,3 10 0.4 333 8 0.36 3,33 8 0.27
suml 1.9 270.2 270.2  270.2+9/10 TO 2,15,10 17 2.3 3,11,2 14 0.58 3,11,2 14 0.56
sum3 2 0 0.1 0.1 +0/10 TO 1,3,1 4 0.1 14,1 6 0.31 14,1 6 0.31
sum4 22 4.7 26.8 11.4 +0/10 TO 1,23,31 44 35 1,9,41 51 2.42 1,8,41 50 2.46
suméc 2 3.1 4202 171.2+6/10 TO 6,29,21 34 11.6 4,14,7 22 1.05 4,13,4 18 0.86
tacas 1.8 0 0.1 0.0 + 0/10 TO 78,5 14 1.7 || 14,10,17 38 1.65 11,8,7 23 0.81
trex1 1.9 0 90.6 9.1+ 0/10 TO 2,3,0 3 0 2,3,0 5 0.19 2,3,0 5 0.19
trex3 X — — —+10/10 TO 6,19,6 19 2.7 3,74 12 0.55 2,6,3 10 0.42
vsend 1.8 0 0.1 0.0 + 0/10 TO 1,1,0 2 0 1,1,0 2 0.14 1,1,0 2 0.11
Other programs
arrayinvl 3.8 — — —+10/10 TO XMoo 448,222 271 30.87 5,45,121 168 13.17
arrayinv2 45 0.1 56.4 16.7 + 0/10 TO 422,33 43 20.9 5,24,50 78 4.65 4,16,14 33 1.26
dec 154 0 0 0.0 + 0/10 TO 11,1 3 0 1,2,0 3 0.12 1,2,0 3 0.14
formula22 2 1.7 3479 172.8 +6/10 TO 1,18,11 22 1.8 1,16,32 49 2 1,7,20 28 1.09
formula25 2.3 9.1 163.5 56.6 +2/10 TO 1,46,30 49 14 1,53,3 57 2.26 1,53,3 57 2
formula27 22 — — —+10/10 TO XMmo 1,183,18 202 9.56 || 1,119,11 131 5.55
inc 154 0 0 0.0+ 0/10 TO || 3,12,101 112 1.7 3,1,102 106 431 3,1,100 104 3.92
inc2 1.8 0 8 0.8 +0/10 TO 343 8 0.1 2,3,1 6 0.22 23,1 6 0.23
loops Xto 96.1 284.1 159.2+4/10 TO 43,10 7 0.2 2,6,11 16 0.66 2,5,10 14 0.58
Programs from [3, 28, 30, 32]
add X — — —+10/10 TO 1,11,0 12 0.1 2,12,1 15 0.59 2,12,1 15 0.56
cegarl 1.9 0 0.1 0.1 +0/10 TO 11,1 3 0 3,1,1 5 0.17 3,1,1 5 0.22
cegar2 22 1.2 305.6 82.1+3/10 TO 4,20,14 28 9.5 4,78 17 0.61 59,14 26 0.94
dillig01 1.9 4.8 56.4 16.7 + 0/10 TO 5,15,10 17 0.7 24,1 6 0.27 24,1 6 0.23
dillig03 XTo 0.4 6.3 4.0 +4/10 TO 2,12,9 15 1 1,3,2 6 0.22 1,4,2 7 0.37
dillig05 XTo 6.4 172.3 87.5+4/10 TO 3,21,25 29 49 2,26,3 30 12 2,26,3 30 1.22
dillig07 1.9 0.2 16.6 4.1+0/10 TO 2,6,8 13 0.3 2,4,6 12 0.47 3,4,6 13 0.41
dillig12 Xrto — — —+10/10 TO XMoo 1,5,136 109 791 1,5,98 68 3.46
dillig15 1.9 — — —+10/10 TO 3,8,16 22 2.9 2,3,6 10 0.37 2,3,10 14 0.5
dilligl7 XTo — — —+10/10 TO 3,15,53 34 12.7 2,6,23 21 0.87 2,6,21 21 0.95
dillig19 2.3 62.7 455.7  269.0 + 0/10 TO 4,12,18 20 8.6 54,17 22 0.94 33,7 12 0.45
dillig24 1.9 — —+10/10 TO 6,7,28 17 1.4 0,11,6 15 0.62 0,11,6 15 0.7
dillig25 2 — — —+10/10 TO 1,41,96 51 14.9 1,7276 112 11.15 1,6,130 62 3.45
dillig28 Xto 115.3 228.5 193.6 +2/10 TO 1,5,14 11 0.2 1,4,26 19 0.75 1,3,17 14 0.59
figl 1.9 0.5 51.2 11.1+4/10 TO 2,51 6 0.1 24,1 6 0.22 24,1 6 0.22
fig3 1.9 0.3 52 2.7+ 8/10 TO 24,2 6 0.1 43,0 5 0.22 43,0 5 0.27
fig9 1.9 0 0.1 0.0 + 0/10 TO 0,2,0 2 0 1,1,0 2 0.12 1,1,0 2 0.09
wl 1.8 0 0.2 0.1 +0/10 TO 1,33 5 0 2,1,1 4 0.22 2,1,1 4 0.16
w2 1.9 0.1 2239 27.5+1/10 TO 24,1 4 0 11,1 3 0.14 11,1 3 0.12
Programs with invariants over non-linear integer arithmetic
multiply X — — —+10/10 TO XMo 2,28,12 42 24.18 6,47,19 71 59.76
sqrt X — — —+10/10 TO 3,26,26 32 9.2 3,15,14 31 1.42 428,14 43 1.97
square X — — —+10/10 TO XMoo 1,8,2 11 0.41 1,8,2 11 0.42
Invariant synthesis in a deductive-verification setting
array_diff — — 2,22 4 0.07 2,2,0 3 0.14 2,2,0 3 0.14
cpml — — — 2,4,0 5 2.78 2,4,0 5 2.81
cpm2 — — — 1,8,11 20 7.37 1,8,11 20 7.08
Aggregate || 41 /58 programs 39 / 58 programs 50 / 58 programs 58 / 58 programs 58 / 58 programs
Unpublished Manuscript 10 2015/7/14



TO

TO UL LU T T T TTTIT TT.r TO T T T T T T TTTT LB LBLRALLL T 107
w @ w
g g 60 E R .
z = z
ERSTIS * 2 E g 00| 8 .
& ox X 8 40| - = XX
[ ¥ [ = XX
A XX o) A X{X x
= . - g &
= S 20| 1= %
g 10~ |- x = = 2 _¢E) 10-1 | ¥ i
[ = =
povl ol vl vl g 0% X s 5 | X | % T T 1 S U1 I N AR
1072 107! 10° 10! 102 TO 0 20 40 60 TO 1072 10-' 10° 10" 10?2 TO
Time CPAchecker in s Time ICE CS in s Time ICE DT entropy in s
Figure 2: Runtime comparison between invariant synthesis tools. TO denotes timeout after 600 s
Observations: The hypothesis that we want to test is whether the microbenchmarks described below that show how poorly ICE-CS

learning-based invariant synthesis tools developed in this paper are
competitive with (not necessarily better than) state-of-the-art tools
in verification.

CPAchecker is a mature tool (it won the software verification
competition (SV-COMP) including the competition for the “loop”
category in it). From Table 1 and Figure 2(a), we conclude that our
learning algorithms are competitive to CPAchecker for synthesizing
invariants for the benchmarks. Out of the 58 programs, CPAchecker
synthesizes adequate invariants for 41 programs; however, recall
that it is at a disadvantage here as since it does not know that the
programs have octagonal constraints, while the black-box learners
do. Moreover, when we run CPAchecker in its competition configu-
ration, it was successful on 6 additional programs (but couldn’t find
invariants on the other 11).

To showcase the advantages of black-box learning, 3 out of these
58 programs, namely multiply, sqrt, and square, require invariants
over non-linear integer arithmetic which CPAchecker is unable to
synthesize. The black-box learning algorithms are completely ag-
nostic of the semantics of the program as long as the teacher can
generate counterexamples for the learner. Learning invariants for
these programs was not a problem for our decision-tree based learn-
ers and also, for a couple of these programs, for the constraint-solver
based learner. Note that for these three programs, we manually ask
the learning algorithms for all black-box learners to learn an invari-
ant over attributes which include octagonal attributes, as before, and,
additionally, attributes over non-linear terms. Even though solving
constraints over non-linear integer arithmetic is undecidable, our
Boogie-based teacher (in ICE-DT) had no problems in providing
counterexamples to refute inadequate invariant hypotheses.

Invariant synthesis using randomized search [53], in our experi-
ence, is very volatile, as shown by the large variation in run times
(see column showing minimum and maximum times), performing
fast as well as timing out on the same program. It times out on 16
programs on all runs. Further, there are around 22 programs for
which randomized search fails more than half of the time. However,
note that there are certain random walks where it finds the invariant
very fast.

Our decision tree based learners are also faster than the constraint
solver based learner ICE-CS, which times out or runs out of
memory on 6 programs. More importantly, we think that ICE-
CS will inherently hit a wall for larger programs. The number
of formulas that we are learning from grows with the number of
variables, the size of the invariant formula, and hence a learning
based algorithm may have to collect a large set of samples, each of
which refutes some of these formulae. The size of the constraints
in ICE-CS grows unduly, and running a constraint solver suffers
greatly when programs get slightly larger. We refer the reader to the

Unpublished Manuscript

performs when compared to ICE-DT as the sample sizes increase. In
fact, in the examples where it failed to find invariants, we found that
the sample sizes grew to be hundreds and involved up to 5 variables
with a template that would cause the constraints it generates to be
fairly large, which caused it run out of memory.

The two decision tree learners we build, ICE-DT-Entropy and
ICE-DT-Penalty are both equally efficient and effective in synthe-
sizing invariants (Figure 2(c)). Note that since our teacher returns
implications only if it cannot find positive/negative examples, all
programs that report a non-zero number of implications in the final
sample (~ 80% of programs) required implication counterexamples
to make progress.

Finding invariants in partially annotated programs Black-box
learning of invariants is particularly advantageous in the context
of deductive verification, where the programmer has manually
partially annotated the program with the specification, pre/post-
conditions for methods and complicated invariants that form the
crux of the proof of the correctness of the program, and we wish to
reduce the annotation burden of the programmer by automatically
strengthening the specified invariants by inferring simpler invariants
over scalar variables to prove the specification. Inferring such
a simple scalar invariant would be hard for static analysis tools
or white-box invariant synthesis engines such as CPAchecker, as
they cannot work with the complex quantified invariants already
written. A “guess-and-check” approach that black-box invariant
synthesis entails (including methods like Houdini [23]), on the other
hand, can learn such simple invariants as long as the teacher can
generate counterexamples for the learner (by even using incomplete
mechanisms such as E-matching [21] or natural proofs [46, 47]). The
table lists 3 examples where we tried our tool, and the tool was able
to strengthen invariants. These include array_diff (a program that
computes differences between successive values of a sorted array)
and two verified modules of C programs that model a distributed key-
value store protocol. The latter two had been deductively verified
in VCC [17] with complex invariants, and we removed some of
the scalar invariants from some methods, converted them to Boogie
code and asked the invariant synthesizers to infer them.

Robustness to small changes: To see how the learners would
perform if there were a few other variables which were not involved
in the invariant, we generated variations for 18 programs so that they
have (three) extra variables that are havoc-ed inside the loop. This
increases the search-space of the invariant synthesis problem for all
the black-box learners. ICE-CS times out on fwo of these additional
programs (sumli, matrix2c); it finishes but takes more time for some
programs. Randomized search fails (no successful run) on eight
additional programs. However, our decision tree learners continued

2015/7/14



P1 P2 ©3
T T
w Z
z 10| 8 10 - R 10 |- . 58
Q o) 45
: /f 11 1o | 23
= ==
) | | B o
Z 01 0.1 o1l D\5_/>///@ | g
0.01 w 0.01 ‘ :
10t 102 103 10 10! 10t 102 10% 10*
T T T T
» Z
£ 1op g 10 10 |- D\/ g S
Q = o=
£ 1r a 1 1} - =28
g 5=
g 01| /:— 0.1 0.1 - £
0.01 0.01 0.01 ‘
101 102 10 10 10t 102 10% 10* 10t 102 10® 10*
Sample size Sample size Sample size

—o— Decision tree-based
ICE learner

—&— Constraint solver-based

ICElearner [26]

Figure 3: Results of the scalability micro-benchmarks

to perform equally well for programs with these extra variables. The
learning algorithms underlying our approach are particularly good
in weeding out irrelevant attributes, and we believe this to be the
reason for their superior performance.

In practical examples such as GPUVerify [11], an invariant
typically involves only a small set of variables (two or three),
but candidates range over a large set of variables (some times up
to hundreds of them). We believe it is important for black-box
invariant generation algorithms to handle such scenarios. We have
also successfully applied our decision tree learner to learn invariants
for selected large GPU Verify programs (for instance prefixSum
and binomialOption), and though these are conjunctive invariants,
our learning algorithm worked well. A more careful study and a
full-blown invariant generation based on our techniques for race-
checking GPU programs is ongoing research.

6.1 Scalability Micro-benchmarks:

We finally report our tool’s performance on some micro-benchmarks
demonstrating the scalability of the decision tree ICE learner com-
pared to other learning techniques, namely the constraint solver-
based ICE learner of [26]. This benchmark consists of samples of
increasing size (containing between 50 and 50,000 data points)
that have been randomly drawn and classified with respect to three
formulas p1 = 21 < =1V y > 1, 2 1 —x2 > 2, and
(ngOSJ}o/\Ole/\OSwg/\$3#1/\:E47£1/\$5§£1)
such that half of the data points are positive and half are negative.
For each of the three formulas, the benchmark consist of a sam-
ple with no implications and a sample with i of the data points
unclassified and part of an implication.

The results of this benchmark are shown in Figure 3. The upper
row shows the results on samples without implications, wheres the
lower row shows results on samples with implications. Except for
one sample suite, the decision-tree based learner can handle samples
up to 50 000 data points, whereas the constraint-solver based learner
times out or runs out of memory on samples with 1000 data points
(with one exception). Note that the formulas ¢1, ¢2, ¢ involve
1 — 6 atomic formulas and range over 2 — 6 variables; for invariant
templates that have more atomic formulas to be determined and for
programs with more variables, the memory/time-out limit for the

Unpublished Manuscript

constraint solver based learner might be reached even below samples
with 1000 data-points (as seen in some of the invariant synthesis
benchmarks). As Figure 3 shows, the decision tree-learner is on
average one order of magnitude faster than ICE-CS, though it learns
formulas that are roughly of the same “size” (not visualized in the
figure). In summary, the micro-benchmark shows that the decision-
tree based ICE learner scales much better than the constraint-solver
based ICE learner, which motivates the use of machine-learning
based tools for invariant synthesis. Note, however, that these are
simply scalability micro-benchmarks to compare the learners, and
do not measure their efficacy in actually learning inductive program
invariants; efficicacy of learning invariants was discussed earlier.

7. Conclusions

We have presented a promising machine learning technique of learn-
ing decision trees from positive, negative, and implication counter-
examples that can be used to efficiently synthesize invariants ex-
pressed as Boolean combinations of predicates over numerical and
Boolean attributes. We have also adapted it so that it is provable
convergent, assuring that it will learn an invariant when an express-
ible invariant exists. It would be interesting to see if we can use the
learning algorithms in this paper to synthesize invariants over more
complex logics, such as data-structure invariants expressed in sepa-
ration logic. We believe that building custom invariant-generation
tools for particular domains, using domain knowledge to identify
interesting Boolean and numerical predicates using which invariants
can be synthesized, would bring our techniques to bear on larger
programs. GPU Verity [11], a race-checker for GPU programs does
precisely this and uses Houdini to generate conjunctive invariants;
our technique will extend invariant inference to arbitrary Boolean
combinations and allow omitting thresholds in numerical attributes.
Finding more domains where such black-box invariant synthesis
will scale and be effective is the most promising direction for future
work.

References

[1] Competition on Software Verification (SV-COMP) benchmarks.
https://svn.sosy-lab.org/software/sv-benchmarks/
tags/svcompl4/loops/.

2015/7/14


https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp14/loops/
https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp14/loops/

[2] Learning bayesian network parameters under equivalence constraints.
Artificial Intelligence, (0):—, 2015.

[3] A. Albarghouthi and K. L. McMillan. Beautiful interpolants. In
Proceedings of the 25th International Conference on Computer Aided
Verification, CAV’ 13, pages 313-329, 2013. ISBN 978-3-642-39798-1.

[4] R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of interface
specifications for java classes. In POPL 2005, pages 98—-109. ACM,
2005.

[5] R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional
verification by learning assumptions. In CAV 2005, volume 3576
of LNCS, pages 548-562. Springer, 2005.

[6] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa.
Syntax-guided synthesis. In FMCAD 2013, pages 1-17. IEEE, 2013.

[7]1 D. Angluin. Learning regular sets from queries and counterexamples.
Inf. Comput., 75(2):87-106, 1987.

[8] D. Angluin. Queries and concept learning. Mach. Learn., 2(4):319—
342, Apr. 1988. ISSN 0885-6125. . URL http://dx.doi.org/10.
1023/A4:1022821128753.

[9] G. BakIr, T. Hofmann, B. Scholkopf, A. J. Smola, B. Taskar, and
S. Vishwanathan. Predicting Structured Data. MIT Press, Cambridge,
MA, USA, 2007.

[10] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
FMCO 2005, volume 4111 of LNCS, pages 364-387. Springer, 2005.

[11] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson.
Gpuverify: A verifier for gpu kernels. SIGPLAN Not., 47(10):113—
132, Oct. 2012.

D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable
software verification. In CAV 2011, volume 6806 of LNCS, pages
184-190. Springer, 2011.

A. Blum and T. Mitchell. Combining labeled and unlabeled data
with co-training. In Proceedings of the Eleventh Annual Conference
on Computational Learning Theory, COLT” 98, pages 92—100, 1998.
ISBN 1-58113-057-0.

A.R. Bradley. Sat-based model checking without unrolling. In VMCAI
2011, volume 6538 of LNCS, pages 70-87. Springer, 2011.

[15] Y.-F. Chen and B.-Y. Wang. Learning boolean functions incrementally.
In CAV, volume 7358 of LNCS, pages 55-70. Springer, 2012.

[16] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning
assumptions for compositional verification. In TACAS 2003, volume
2619 of LNCS, pages 331-346. Springer, 2003.

[17] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. Vcc: A practical system for
verifying concurrent c. In TPHOLSs, pages 23-42, 2009.

[18] M. Colén, S. Sankaranarayanan, and H. Sipma. Linear invariant
generation using non-linear constraint solving. In CAV 2003, volume
2725 of LNCS, pages 420-432. Springer, 2003.

[19] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273-297, 1995.

[20] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In POPL 1977, pages 238-252. ACM Press, 1977.

[21] L. M. de Moura and N. Bjgrner. Efficient e-matching for smt solvers.
In CADE, pages 183-198, 2007.

[22] M. D. Ermnst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly
detecting relevant program invariants. In /CSE 2000, pages 449-458.
ACM Press, 2000.

[23] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for
ESC/Java. In FME, volume 2021 of LNCS, pages 500-517. Springer,
2001.

[24] P. Garg, C. Loding, P. Madhusudan, and D. Neider. Learning universally
quantified invariants of linear data structures. In CAV, pages 813-829,
2013.

[12]

[13]

[14]

Unpublished Manuscript

[25] P. Garg, C. Loding, P. Madhusudan, and D. Neider. Learning universally
quantified invariants of linear data structures. In CAV 2013, volume
8044 of LNCS, pages 813-829. Springer, 2013.

[26] P. Garg, C. Loding, P. Madhusudan, and D. Neider. ICE: A robust
framework for learning invariants. In CAV 2014, volume 8559 of LNCS,
pages 69-87. Springer, 2014.

[27] P. Garoche, T. Kahsai, and C. Tinelli. Incremental invariant generation
using logic-based automatic abstract transformers. In NFM 2013,
volume 7871 of LNCS, pages 139-154. Springer, 2013.

[28] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K.
Rajamani. Synergy: a new algorithm for property checking. In
SIGSOFT FSE, pages 117-127. ACM, 2006.

[29] S. Gulwani, S. Srivastava, and R. Venkatesan. Program analysis as
constraint solving. In PLDI 2008, pages 281-292. ACM, 2008.

[30] S. Gulwani, S. Srivastava, and R. Venkatesan. Program analysis as
constraint solving. In PLDI, pages 281-292. ACM, 2008.

[31] A. Gupta and A. Rybalchenko. Invgen: An efficient invariant generator.
In CAV 2009, volume 5643 of LNCS, pages 634—640. Springer, 2009.

[32] F. Ivancic and S. Sankaranarayanan. NECLA Benchmarks.
http://www.nec-labs.com/research/system/systems_
SAV-website/small_static_bench-vi.1.tar.gz.

[33] R. Jhala and K. L. McMillan. A practical and complete approach to
predicate refinement. In TACAS 2006, volume 3920 of LNCS, pages
459-473. Springer, 2006.

[34] M. Kawaguchi, P. M. Rondon, and R. Jhala. Type-based data structure
verification. In PLDI 2009, pages 304-315. ACM, 2009.

[35] M. J. Kearns and U. V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, Cambridge, MA, USA, 1994. ISBN
0-262-11193-4.

[36] M. J. Kearns and U. V. Vazirani. An introduction to computational
learning theory. MIT Press, Cambridge, MA, USA, 1994. ISBN
0-262-11193-4.

[37] S. Kong, Y. Jung, C. David, B.-Y. Wang, and K. Yi. Automatically
inferring quantified loop invariants by algorithmic learning from simple
templates. In APLAS. Springer, 2010.

[38] S. Krishna, C. Puhrsch, and T. Wies. Learning invariants using decision
trees. CoRR, abs/1501.04725, 2015.

[39] N. Littlestone. Learning quickly when irrelevant attributes abound:
A new linear-threshold algorithm. Machine Learning, 2(4):285-318,
1987.

[40] K. L. McMillan. Interpolation and sat-based model checking. In CAV
2003, volume 2725 of LNCS, pages 1-13. Springer, 2003.

[41] K. L. McMillan. Lazy abstraction with interpolants. In CAV 2006,
volume 4144 of LNCS, pages 123—136. Springer, 2006.

[42] T. M. Mitchell. Machine learning. McGraw Hill series in computer
science. McGraw-Hill, 1997. ISBN 978-0-07-042807-2.

[43] T. M. Mitchell. Machine learning. McGraw-Hill, 1997. ISBN 978-0-
07-042807-2.

[44] D. Neider. Applications of Automata Learning in Versification and
Synthesis. PhD thesis, RWTH Aachen University, April 2014.

[45] T. Nguyen, D. Kapur, W. Weimer, and S. Forrest. Using dynamic
analysis to discover polynomial and array invariants. In /CSE, pages
683-693. IEEE, 2012.

[46] E. Pek, X. Qiu, and P. Madhusudan. Natural proofs for data structure
manipulation in ¢ using separation logic. In PLDI, page 46, 2014.

[47] X. Qiu, P. Garg, A. Stefanescu, and P. Madhusudan. Natural proofs for
structure, data, and separation. In PLDI, pages 231-242, 2013.

[48] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):
81-106, 1986.

[49] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993. ISBN 1-55860-238-0.

[50] F. Rosenblatt. The perceptron: a probabilistic model for information

storage and organization in the brain. Psychological Review, 65(6):
386408, 1958.

2015/7/14


http://dx.doi.org/10.1023/A:1022821128753
http://dx.doi.org/10.1023/A:1022821128753
http://www.nec-labs.com/research/system/systems_SAV-website/small_static_bench-v1.1.tar.gz
http://www.nec-labs.com/research/system/systems_SAV-website/small_static_bench-v1.1.tar.gz

[51] C. E. Shannon. A mathematical theory of communication. The Bell
System Technical Journal, 27:379-423, 623-656, 1948.

[52] R. Sharma and A. Aiken. From invariant checking to invariant inference
using randomized search. In CAV 2014, volume 8559 of LNCS, pages
88-105. Springer, 2014.

[53] R. Sharma and A. Aiken. From invariant checking to invariant inference
using randomized search. In CAV 2014, volume 8559 of LNCS, pages
88-105. Springer, 2014.

[54] R. Sharma, A. V. Nori, and A. Aiken. Interpolants as classifiers. In
CAV 2012, volume 7358 of LNCS, pages 71-87. Springer, 2012.

[55] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori.
A data driven approach for algebraic loop invariants. In ESOP 2013,
volume 7792 of LNCS, pages 574-592. Springer, 2013.

[56] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, and A. V. Nori. Verifi-
cation as learning geometric concepts. In SAS 2013, volume 7935 of
LNCS, pages 388—411. Springer, 2013.

[57] A. Solar Lezama. Program Synthesis By Sketching. PhD thesis, EECS
Department, University of California, Berkeley, Dec 2008.

[58] A. Thakur, A. Lal, J. Lim, and T. Reps. Posthat and all that: Attaining
most-precise inductive invariants. Technical Report TR1790, University
of Wisconsin, Madison, WI, Apr 2013.

[59] A. Vardhan and M. Viswanathan. Learning to verify branching time
properties. Formal Methods in System Design, 31(1):35-61, 2007.

Unpublished Manuscript

2015/7/14



	Introduction
	Background: Learning Decision Trees from Positive and Negative Examples
	A Generic Decision Tree Learning Algorithm in the Presence of Implications
	Choosing Attributes in the Presence of Implications
	Convergent Learning of Decision-trees
	Experiments and Evaluation
	Scalability Micro-benchmarks:

	Conclusions

