
Learning Inverse Dynamics for Redundant
Manipulator Control

Joseph Sun de la Cruz, Dana Kulic
Department of Electrical and Computer Engineering

University of Waterloo

Waterloo, ON, Canada

{jsundela, dkulic}@uwaterloo.ca

William Owen
Department of Mechanical and Mechatronics Engineering

University of Waterloo

Waterloo, ON, Canada

bowen@uwaterloo.ca

Abstract—High performance control of robotic systems, in-
cluding the new generation of humanoid, assistive and enter-
tainment robots, requires adequate knowledge of the dynamics
of the system. This can be problematic in the presence of
modeling uncertainties as the performance of classical, model-
based controllers is highly dependant upon accurate knowledge of
the system. In addition, future robotic systems such as humanoids
are likely to be redundant, requiring a mechanism for redundancy
resolution when performing lower degree-of-freedom tasks. In
this paper, a learning approach to estimating the inverse dynamic
equations is presented. Locally Weighted Projection Regression
(LWPR) is used to learn the inverse dynamics of a manipulator
in both joint and task space and the resulting controllers are used
to drive a 3 and 4 DOF robot in simulation. The performance of
the learning controllers is compared to a traditional model based
control method and is also shown to be a viable control method
for a redundant system.

Index Terms—robotics, learning, control, redundancy resolu-
tion

I. INTRODUCTION

The development of robotics has yielded many types of con-

trol schemes for robotic manipulation. Motion control schemes

based on independent joint position tracking control are most

prevalent in industrial robots, enabling them to perform simple

tasks such as repetitive pick-and-place motions. An alternative

formulation is model-based tracking control, where knowledge

of the system dynamics is included in the control loop.

This can present numerous advantages such as compliance,

increased performance during high-speed movements, reduced

energy consumption and improved tracking accuracy [1] as

compared to methods which do not utilize knowledge of

the dynamics of the system. However, the performance of

model-based control is highly dependant upon having an

accurate representation of the robot’s dynamics, which includes

knowledge of inertial parameters such as link mass, centre

of mass and moments of inertia, and friction parameters.

Obtaining such a model is a complex task which involves the

modeling of nonlinear and highly coupled behaviour, including

physical processes such as backlash and friction which are

not well understood or difficult to model. Thus, assumptions

are often made to simplify the modeling process, leading to

inaccuracies in the model. Furthermore, uncertainties in the

physical parameters of a system may be introduced from

significant discrepancies between the manufacturer data and

the actual system [2]. Changes to operating conditions can

also cause the structure of the system model to change, thus

resulting in degraded performance. Recently, machine learning

approaches have been proposed to model the inverse dynamics

of a manipulator. Learning approaches do not assume a model

structure, but build a model based on the training data, treating

the inverse dynamics as a function estimation problem. The

approach can be divided into two broad classes [3], global

and local methods. Global methods generally attempt to fit the

nonlinear function globally through input space expansion and

linear combinations of the expanded inputs. Gaussian Process

Learning (GPR)[4] and Support Vector Regression (SVR) [1]

are examples of global methods. Until recently, GPR and

SVR methods have primarily been used for offline batch data

analysis due to high computational requirements [3]. Recent

approaches to approximating SVR through sparsification [5]

allow for online, global incremental learning. Local learning

consists of methods which fit the nonlinear function with

spatially localized linear models in the original input space

and automatically adjust the number of local models and

their locality to account for the nonlinearities of the estimated

function.

Locally Weighted Projection Regression (LWPR) is an

example of a local learning method which has been applied

in many instances to learn the inverse dynamics equation

for control [3],[6],[7] due to its ability to achieve online,

incremental learning by employing simple local linear models.

Local dimensionality reduction is also achieved, making the

algorithm capable of control of highly redundant systems [3].

Recent studies comparing these learning methods [8] show that

while SVR and GPR can potentially yield higher accuracy,

LWPR is better in terms of computational cost and is thus

highly suitable for real time learning. These features make

this approach very promising for on-line learning of robot

inverse dynamics, as the approach can be used to model the

relationship between the robot kinematics and torques without

exact knowledge of the model structure, and can be used to

adapt on-line to changes in the structure, such as changes in

mass due to picking up an unknown load.

For humanoid and other redundant robots, a key issue is

also redundancy resolution. Highly redundant systems typi-

cally have more degrees of freedom than are demanded by

1

978-1-4244-7107-2/10/$26.00 ©2010 IEEE

the task, the controller should be able to allocate degrees

of freedom appropriately, and possibly allow the system to

perform secondary tasks. For learning the inverse dynamics,

redundant degrees of freedom pose an additional challenge,

as there is no longer a unique mapping between the input

and the output variables, as an infinite combination of input

variables can achieve the desired output. This paper focuses

on demonstrating the ability of LWPR to learn the inverse

dynamics relationship for redundant systems. We propose a

redundancy resolution mechanism based on minimizing the

torque output as first introduced by Hollerback and Suh [9]

for model based control. Unlike [9], we propose an approach

which can be implemented without a-priori knowledge of the

dynamic model of the manipulator through the use of LWPR.

The remainder of this paper is organized as follows. In Section

II, the dynamic model of a rigid body manipulator and model

based control strategies are reviewed. Section III overviews

the LWPR algorithm and learning inverse dynamics. Section

IV presents the simulations and results. Finally, in Section V,

the conclusions and next steps are discussed.

II. BACKGROUND

A. Manipulator Dynamics

The dynamic equation of a manipulator characterizes

the relationship between its motion (position, velocity and

acceleration) and the forces that cause these motions. The

closed-form solution to this relationship is obtained through

the Lagrangian equation [10] and results in

M(q)q̈ + C(q, q̇) + G(q) = τ (1)

where q is the nx1 vector of generalized coordinates consisting

of the n joint angles for an n-degree of freedom (DOF)

manipulator, M(q) is the nxn inertia matrix, which is sym-

metric and positive definite for all values of q, C(q, q̇) is

the nx1 centripetal and Coriolis force vector, G(q) is the nx1
gravity loading vector and τ is the nx1 torque vector. Equation

(1) represents the dynamic structure of the manipulator, but

does not include additional torque components caused by

friction, backlash and actuator dynamics. If accounted for,

these components are modeled as additional terms in (1).

B. Task Space Dynamics

Manipulation tasks are typically described in terms of the

trajectory of the end effector, whereas the actuator control

signals to achieve this trajectory are specified in terms of

the generalized joint coordinates. From this point of view,

two approaches to the control of robot manipulators exist:

joint space and task space techniques. As the manipulator

equation in (1) is derived in terms of the generalized joint

coordinates q and its derivatives, it can be applied to achieve

joint space control techniques. To achieve task space control,

the joint space manipulator equation in (1) can be rewritten

as a function of the mx1 vectors of task space position x,

velocity ẋ and acceleration ẍ as follows

Λ(x)ẍ + μ(x, ẋ) + p(x) = Γ (2)

where

Λ(x) = J−T (q)M(q)J−1(q) (3)

μ(x, ẋ) = J−T (q)C(q, q̇)J−1(q) − Λ(x)J(q)q̇ (4)

p(x) = J−T (q)G(q) (5)

where q is the nx1 vector of generalized manipulator coordi-

nates, Λ is the nxn task space inertia matrix, μ is the nx1
task space Coriolis/centripetal vector, p is the nx1 task space

gravity vector, Γ is the nx1 vector of forces and torques in

the task space and J(q) is the 6xn Jacobian matrix, defined

by the differential kinematic equation relating task space and

joint space velocities

ẋ = J(q)q̇ (6)

and its derivative relating the corresponding accelerations

ẍ = J(q)q̈ + J̇(q)q̇ (7)

C. Computed Torque Control

Model-based controllers, or inverse dynamic controllers,

are a broad class of controllers which apply the joint space

dynamic equation (1) or the task space equation (2) to cancel

the nonlinear and coupling effects of the manipulator. A

common example of this is the computed torque control

approach [11],[10] in which the control signal u is composed

of the computed torque signal, uCT, which is set to the torque

determined directly from the inverse of the dynamic equations

(1) or (2). This term globally linearizes and decouples the

system, and thus a linear controller can be applied for the

feedback term, uFB, which stabilizes the system and provides

disturbance rejection. Typically a PD scheme is used such

that

uFB = kpe + kdė (8)

where kp and kd are proportional and derivative gain

matrices, and e = xd − x is the tracking error for task space

control or e = qd − q for joint space control. Thus, the

overall control signal u is given by

u = uFB + uCT (9)

Desirable performance of the computed torque approach is

contingent upon the assumption that the values of the parame-

ters in the dynamic model (1),(2) match the actual parameters

of the physical system. Otherwise, imperfect compensation of

the nonlinearities and coupling occurs.

D. Task Space Control

Manipulator control requires the transformation of end

effector motion, x to the corresponding joint motion, q through

the solution of the inverse kinematics problem. In the case of

joint space control, this is often done through iterative numer-

ical methods, or in closed form methods involving analytical

geometry [12] or though differential kinematics (6),(7) [13]. In

such cases, desired trajectories are specified in task space and

then converted to the equivalent motion in joint space. Joint

angles are then used in as the feedback signal. With task space

control, Cartesian positions of the end effector are fed back in

the control loop, and the inverse kinematics problem is solved

directly in the control loop through the use of differential

kinematics [14],[15],[16].

For redundant systems (i.e. systems with n > m),

redundancy resolution at the velocity level is achieved by

rearranging (6) to solve for ẋ in the following

q̇d = J†ẋd + (I − J†J)ξ1 (10)

where J† is a pseudo-inverse of the Jacobian J and ξ1 is an

arbitrary vector which controls the desired velocity behavior

in the null space. At the acceleration level, (7) is rearranged

to solve for ẍ in the following

q̈d = J†(ẍd − J̇q̇) + (I − J†J)ξ2 (11)

where ξ2, similar to ξ1, is an arbitrary vector which controls

the desired velocity behavior in the null space. By equating

(11) to the analytical time derivative of (10) [16], ξ2 can be

calculated as

ξ2 = J̇†J(q̇ − ξ1) + ξ̇1 (12)

Liegeois [17] determined that a position-dependant cost

function, g(q) can be minimized by equating ξ1 to the

gradient of g in the following

ξ1 = k
∂g

∂q
(13)

Many task space control schemes have been derived based

on the task space dynamic equation in (2) [14],[16]. One

particular class of these controllers is the resolved acceleration

type [15], which account for the desired acceleration of the

manipulator by using a control signal given by

ẍr = ẍd + Kd(ẋd − ẋ) + Kp(xd − x) (14)

where ẍr is the reference acceleration, ẍd, ẋd and xd are the

desired task space accelerations, velocities and positions, and

Kp and Kd are PD feedback gain matrices.

III. LEARNING INVERSE DYNAMICS

While the computed torque control approach requires ac-

curate knowledge of the structure of the dynamic model of

the manipulator, the learning approach requires no a-priori

knowledge of the dynamic model. Instead, the model can

be obtained directly using measured data [1]. This allows

unknown or typically unmodeled nonlinearities such as friction

and backlash to be accounted for. In order to be practical for

manipulator control, learning algorithms must process contin-

uous streams of large sets of training data to update the model

and predict outputs fast enough for real-time control. Locally

Weighted Projection Regression (LWPR) achieves these ob-

jectives though the use of various techniques in nonparametric

statistics [18].

A. Locally Weighted Projection Regression

The main idea behind the application of LWPR is to

approximate the nonlinear inverse dynamics equation (1)

with a set of piecewise local linear models based on the

training data that the algorithm receives. Formally stated,

this approach assumes a standard regression model of the form

y = f(X) + ε (15)

where X is the input vector, y the output vector, and ε a

zero-mean random noise term. Given a data point Xc, a

subset of data close to Xc, with the appropriately chosen

measure of closeness, or region of validity, a linear model

can be fit to the subset of data such that

y = βTX + ε (16)

where β are the set of parameters of the hyperplane that

describe y. The region of validity, termed the receptive field

[3] is given by

wk = exp(−1
2
(X − Xc)TDk(X − Xc)) (17)

where wk determines the weight of the kth local linear model,

Xc is the centre of the kth linear model, Dk corresponds

to a positive semidefinite distance metric which determines

the size of the receptive field. Given a query point X, LWPR

calculates a predicted output

ŷ(X) =
K∑

k=1

wkŷk/

K∑

k=1

wk (18)

where K is the number of linear models, ŷk is the prediction

of the kth local linear model given by (16) which is weighed

by wk associated with its receptive field. Thus, the prediction

ŷ(X) is the weighted sum of all the predictions of the local

models, where the models having receptive fields centered

closest to the query point are most significant to the prediction.

1) Partial Least Squares: Determining the set of parame-

ters, β of the hyperplane is time consuming in the presence of

high-dimensional input data, which is a characteristic of large

numbers of DOF in redundant robotic systems. LWPR assumes

that the data can be characterized by local low-dimension

distributions, and attempts to reduce the dimensionality of the

input space X by searching for the latent variables which

represent the fundamental relationships between the input and

output data. In order to achieve this, Partial Least Squares

regression (PLS) is used. PLS fits linear models using a set

of univariate regressions along selected projections in input

space which are chosen according to the correlation between

input and output data [18]. This ensures that irrelevant input

dimensions are excluded from the data set, meaning that the

input data X and output data y are reduced to the residual

sets Xres and yres, on which subsequent projections are

performed. This ensures that the next direction of projection

is orthogonal to the previous [18]. The mean squared error

(MSE) of the prediction after each projection is tracked, and

projections are added until the change in MSE becomes smaller

than a certain threshold.
2) Adjustment of Receptive Fields: The distance metric,

Dk, (17) which dictates the size and shape of its corresponding

receptive field, can be learned for each local model through

stochastic gradient descent given by

mn+1 = mn − α
∂Jcost

∂m
(19)

where α is the learning rate for gradient descent, D = mTm
and Jcost is a penalized leave-one-out cross-validation cost

function which addresses the issue of over-fitting of the data

[19]. Receptive fields are created if for a given training data

point, no existing receptive field possesses a weight wi (17)

that is greater than a threshold value of wgen, which is a

tunable parameter. The closer wgen is set to one, the more

overlap there will be between local models. Conversely, if two

local models produce a weight greater than a threshold wprune,

the model whose receptive field is smaller is pruned.

B. Learning in Joint Space
The problem of learning the inverse dynamics relationship

in the joint space can be described as the map from joint

positions, velocities and accelerations to torques

(q, q̇, q̈d) �→ u (20)

where u is the control signal in the form of an nx1 torque

vector, and q is the nx1 vector of generalized coordinates.

This means that the mapping has an input dimensionality of

3n and an output dimensionality of n. Redundancy is dealt

with outside of the control loop in the generation of the desired

joint space trajectory.

C. Learning in Task Space

In the task space, the inverse dynamics relationship relates

task space position, velocity and accelerations to the joint

space torques. However, In the case of redundant systems, the

dimension of u is greater than that of x, meaning that there is

an infinite number of joint configurations q which can yield

the same task position x. Thus, for proper localization of

learning, q must be included in the mapping for learning task

space control. Learning the inverse dynamics in task space is

equivalent to learning the mapping from

(q, q̇, ẍd) �→ u (21)

The addition of q to the mapping is critical to resolve the prob-

lem of non-convexity [20]. This property states that the motor

commands u which achieve the same desired acceleration ẍd

may not be associated with a unique configuration of the robot.

Thus, global averaging over all the learned models will yield

invalid solutions to the inverse dynamics problem. However,

spatial localization of the learned task can be achieved within

the vicinity of a particular pose by including q in the mapping

(21). Thus, when LWPR performs global averaging over all its

local linear models, the learned mapping forms a convex data

set.

D. Dealing with Redundancy

In order to deal with redundant systems, i.e. systems in

which n > m, a method of selecting a particular solution out

of the infinite number of solutions must be devised.

With humanoid and anthropomorphic manipulators,

redundancy resolution is often achieved by specifying a

desired posture for the robot and defining the cost function

(13) accordingly [16],[7],[20]. This approach to redundancy

resolution is typically used when there are a large number

of redundant degrees of freedom relative to the task. Other

methods of redundancy resolution commonly used with model

based controllers involve the minimization of energy or the

avoidance of joint limits or obstacles [9]. In order to test

the ability of LWPR to handle redundant manipulators, the

criteria of minimum torque [9] was selected by defining the

cost function as

g(q) = τT τ (22)

where τ is the nx1 torque vector and τT is its transpose,

which are functions of q as seen in (1). As in [17], let the

gradient of g(q) be H in the following

H = W
∂g
∂q

(23)

where H is a vector which points in the direction of the

greatest rate of change of g and W is a weighting matrix. H
is then input into the LWPR model along with the kinematic

variables during training. Thus, the mapping to be learned is

(q, q̇, ẍd, H) �→ u (24)

where the addition of H minimizes the cost function in (22).

IV. SIMULATION

In order to test the performance of LWPR, both redundant

and non-redundant manipulators were simulated in Matlab

using Peter Corke’s Robotics Toolbox [21] and the open

source Matlab LWPR code [3]. The simulations were carried

out on a 3 DOF and 4 DOF manipulator. Figure 8 trajectories

were used to test the trajectory following capabilities of the

learned inverse dynamics controller. The overall trajectory is

described by the task space equations

xd = 0.1sin(kt) + 0.1
yd = 0.1cos(kt/2) + 0.1
zd = 0

(25)

where pd = [xd yd zd]T are the desired end effector task

space positions and k is proportional to the frequency of the

trajectory. A frequency of approximately 0.25 Hz (k = 3)

was used to test the tracking capabilities of the controller. The

LWPR controller was trained for 60s while tracking the ‘figure

8’ trajectory at 0.25Hz with a poorly tuned PD controller, after

which training was stopped and an attempt to track the desired

trajectory was made. The system was then allowed to continue

to learn for an additional 120s. The durations of training were

determined by observing the mean squared error (MSE) of

the predicted torques from the LWPR controller. Training was

generally stopped when the observed MSE had asymptotically

decreased to a low value.

A. LWPR Tuning and Initialization

Although LWPR incorporates many algorithms which en-

able the system to automatically adjust its parameters for

optimal performance, initial values of these parameters can

significantly impact the convergence of the predictions. The

initial value for the distance metric D (17) dictates how large

a receptive field is upon initialization. Too small a value of

D (corresponding to large receptive fields) tends to delay

convergence while a larger value of D results in overfitting

of the data [3]. Next, the normalization constant, normin,

is used to normalize the inputs of the system according to

the expected range of each input dimension. Values for the

expected range of each input were obtained during the training

phase which will be described below. The initial value of

the learning rate α(19), which is for the gradient descent

process, determines the rate at which MSE of predictions

converge. Too high a value leads to instability and too low

a value leads to a slow convergence. Although this value is

automatically updated, it was found that its initial value has

a significant impact upon the initial rate of convergence of

the algorithm. These parameters were generally tuned through

a trial-and-error process which involved monitoring the MSE

of the predicted values during the training phase. The initial

performance of the LWPR controller is also highly dependant

upon the data sets that are used to train the LWPR model.

Because LWPR is a local learning approach, it must be trained

locally in the region(s) of input space that the manipulator will

be operating in. In order to train the model, a low-gain PD

controller was used to track the desired trajectories while the

LWPR model obtained training data by observing joint torques

and the resulting end effector movement, as described by the

mapping in (21).

B. Task Space

Figure 1 and Table I shows the tracking results for the

3 DOF case after the initial 60 seconds of training and the

subsequent performance after an additional 120s of training.

It can be seen that only after three minutes of learning, the

performance of the LWPR controller approaches that of the

resolved acceleration (RA) controller which assumes perfect

knowledge of the dynamic model.

C. Task Space with Redundancy

In order to assess the effectiveness of the redundancy opti-

mization, both the LWPR and RA (10-14) controller and were

simulated on a 4 DOF robot using the torque minimization

criteria in (23). Figure 2 and Table I illustrate that the initial

60s of training was insufficient to produce accurate tracking

results, as the RMS error in tracking is much higher than the

corresponding error of the 3 DOF case after the same amount

of learning. However, after training for a total of 240 seconds,

0 0.05 0.1 0.15 0.2

−0.4

−0.35

−0.3

−0.25

−0.2

X vs Xref

x [m]

y
[m

]

Xref
RA
LWPR 60s
LWPR 180s

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.01

0

0.01
x Error

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1
x 10

−3 y Error

E
rr

or
 [m

]

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1
x 10

−3 z Error

Time [s]

RA
LWPR 180s

Fig. 1. Simulation 1 - LWPR Tracking Error for 3 DOF after 180s

the LWPR model for the redundant system produces results

closer to that of the 3 DOF with 180 seconds of training.

The longer training times for the 4 DOF system are expected

since the dimension of the mapping to be learned is larger due

to the additional joint and the gradient term for redundancy

resolution, thus requiring more time for the algorithm to

acquire training data and incrementally improve its predictions.

The slightly larger error of the RA controller compared to the

3 DOF result is likely caused by the redundancy resolution in

the null space interfering with the task space [16].

Figure 3 plots the cost function (22) for both the RA and

LWPR controller after 240s of training. The LWPR controller

does a reasonable job of producing the same torque optimiza-

tion results as the RA controller as the major features of the

graphs are similar and close in magnitude. However, due to the

piecewise local linear models of LWPR, the controller changes

with each prediction and hence the cost function produced by

LWPR is not as smooth as with RA.

TABLE I
RMS TRACKING ERROR OF CONTROLLERS (MM)

3 DOF 4 DOF
Resolved Acceleration 1.79 1.86
LWPR, 60s Training 2.83 14.36
LWPR, 180s Training 1.90 2.87
LWPR, 240s Training \ 1.97

V. CONCLUSION AND FUTURE WORK

LWPR was shown to be a viable method of estimating the

nonlinear inverse dynamics relationship of robot manipulators,

0 0.05 0.1 0.15 0.2

−0.4

−0.35

−0.3

−0.25

−0.2

X vs Xref

x [m]

y
[m

]
Xref
RA
LWPR 60s
LWPR 240s

0.5 1 1.5 2 2.5 3 3.5 4
−2

0

2
x 10

−3 x Error

0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1
x 10

−3 y Error

E
rr

or
 [m

]

0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5
x 10

−3 z Error

Time [s]

RA
LWPR 240s

Fig. 2. Simulation 2 - LWPR Tracking Error for 4 DOF after 240s

0 0.05 0.1 0.15 0.2 0.25 0.3
0

200

400

600

Time [s]

g

LWPR
RA

Fig. 3. Cost Function - LWPR vs RA for 4 DOF

in order to be used as the computed torque term of an inverse

dynamics controller. This approach was able to handle learning

the mapping of the task space control scheme with the addition

of redundancy, proving that it is a viable approach to control

the newer generation of humanoid, assistive and entertainment

robots which possess high DOFs.

The approach of learning inverse dynamics poses several

advantages over the classical modeling approach, by reducing

sensitivity to modeling and modeling structure errors, and

allowing for online adaptation to changes in the model struc-

ture or parameters. The main issues with this approach lie

in the need for significant tuning and poor performance in

untrained areas. The former issue is not as constraining, as

the algorithm already deals with automatic tuning of critical

parameters which yield satisfactory performance in most cases.

However, the latter issue must be addressed in order for this

approach to be viable in the human environment, where safety

is of utmost importance.

Future studies will address the need for evaluation on real-

world robots by testing the system’s ability to cope with

uncertainties such as friction, sensor noise, payload changes

and perturbations to the plant model. These results will

be compared to classical model-based approaches. Secondly,

methods of incorporating a-priori knowledge of the dynamic

model of the system will be investigated.

REFERENCES

[1] D. Nguyen-Tuong, B. Scholkopf, and J. Peters, “Sparse online model
learning for robot control with support vector regression,” pp. 3121–
3126, Oct. 2009.

[2] K. Ayusawa, G. Venture, and Y. Nakamura, “Identification of humanoid
robots dynamics using floating-base motion dynamics,” pp. 2854–2859,
Sept. 2008.

[3] S. Vijayakumar, A. D’souza, and S. Schaal, “Incremental online learning
in high dimensions,” Neural Comput., vol. 17, no. 12, pp. 2602–2634,
2005.

[4] L. Csato and M. Opper, “Sparse on-line gaussian processes,” Neural
Comput., vol. 14, no. 3, pp. 641–668, 2002.

[5] D. Nguyen-Tuong, B. Scholkopf, and J. Peters, “Sparse online model
learning for robot control with support vector regression,” pp. 3121–
3126, Oct. 2009.

[6] C. Atkeson, “Using locally weighted regression for robot learning,” pp.
958–963 vol.2, Apr 1991.

[7] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kinemat-
ics,” pp. 298–303 vol.1, 2001.

[8] D. Nguyen-Tuong, J. Peters, M. Seeger, B. Schlkopf, and M. Verleysen,
“Learning inverse dynamics: A comparison,” 2008. [Online]. Available:
http://edoc.mpg.de/420029

[9] J. Hollerbach and K. Suh, “Redundancy resolution of manipulators
through torque optimization,” Robotics and Automation, IEEE Journal
of, vol. 3, no. 4, pp. 308 –316, august 1987.

[10] L. Sciavicco and B. Scicliano, Modelling and Control of Robot Manip-
ulators. Springer, 1996.

[11] J. Craig, P. Hsu, and S. Sastry, “Adaptive control of mechanical manip-
ulators,” pp. 190–195, Apr 1986.

[12] T. Asfour and R. Dillmann, “Human-like motion of a humanoid robot
arm based on a closed-form solution of the inverse kinematics problem,”
pp. 1407–1412 vol.2, Oct. 2003.

[13] G. Tevatia and S. Schaal, “Inverse kinematics for humanoid robots,” pp.
294–299 vol.1, 2000.

[14] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” Robotics and Automa-
tion, IEEE Journal of, vol. 3, no. 1, pp. 43–53, February 1987.

[15] F. Caccavale, C. Natale, B. Siciliano, and L. Villani, “Resolved-
acceleration control of robot manipulators: A critical review with ex-
periments,” Robotica, vol. 16, no. 5, pp. 565–573, 1998.

[16] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational
Space Control: A Theoretical and Empirical Comparison,” The Int
Journal of Robotics Research, vol. 27, no. 6, pp. 737–757, 2008.

[17] A. Liegeois, “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” Systems, Man and Cybernetics,
IEEE Transactions on, vol. 7, no. 12, pp. 868 –871, dec. 1977.

[18] S. Schall, C. Atkeson, and S. Vijayakumar, “Scalable techniques from
nonparametric statistics for real time robot learning,” Applied Intelli-
gence, vol. 16, pp. 49–60, 2002.

[19] S. Schaal and C. G. Atkeson, “Constructive incremental learning from
only local information,” Neural Computation, vol. 10, no. 8, pp. 2047–
2084, 1998.

[20] J. Peters and S. Schaal, “Learning to Control in Operational Space,” The
Int. Journal of Robotics Research, vol. 27, no. 2, pp. 197–212, 2008.

[21] P. Corke, “A robotics toolbox for MATLAB,” IEEE Robotics and
Automation Magazine, vol. 3, no. 1, pp. 24–32, Mar. 1996.

